加速度传感器(G3)
加速度传感器原理结构使用说明校准和参数解释

加速度传感器原理结构使用说明校准和参数解释一、加速度传感器原理:加速度传感器是一种能够测量物体在三个空间维度上的加速度变化的传感器。
其工作原理基于牛顿第二定律,即F=ma,其中F为作用力,m为物体的质量,a为物体的加速度。
传感器通过测量物体上的惯性力来间接测量物体的加速度。
一般情况下,加速度传感器是基于微机械系统(MEMS)技术制造的。
二、加速度传感器结构:加速度传感器的主要结构包括质量块(或称为振动子系统)、阻尼器、感受层以及电子转换装置。
质量块通常是一个微小的振动系统,可以沿多个轴向振动。
当物体受到外力或加速度影响时,质量块的相对位置发生改变,从而产生相应的电信号输出。
三、加速度传感器使用说明:1.安装:加速度传感器通常需要固定在被测物体上,可以使用螺栓、胶水、焊接等方式进行安装。
需要注意的是,传感器的位置和方向应该与被测物体的运动方向保持一致。
2.供电:传感器通常需要外部直流电源供电,供电电压和电流应符合传感器的要求。
3.输出信号:加速度传感器的输出信号通常为模拟信号(如电压或电流),也有一些传感器输出数字信号。
用户在使用传感器时需要根据实际需求来选择合适的信号处理方式。
4.数据处理:传感器的输出信号可以连接到数据采集设备或控制系统中进行进一步处理和分析。
用户可以根据需求选择合适的数据处理方法和算法。
5.维护:加速度传感器通常需要定期检查和维护,包括清洁传感器表面、检查传感器连接是否松动等。
四、加速度传感器校准:为了确保加速度传感器测量结果的准确性和可靠性,通常需要进行校准。
校准可以分为两个步骤:静态校准和动态校准。
1.静态校准:静态校准主要是通过将传感器放置在水平面上并保持静止状态来进行。
根据重力加速度的方向可以计算出传感器在其坐标轴上的零偏差或者非线性误差。
2.动态校准:动态校准主要是通过将传感器连接到知道真实加速度的振动台或运动载体上进行。
通过与已知加速度值进行比较,可以计算出传感器的灵敏度和线性误差。
g-sensor工作原理

g-sensor工作原理
G-sensor(重力感应器)是一种能够测量物体受到的加速度的传
感器,它可用于智能手机、汽车、安全设备等领域。
其工作原理是基
于牛顿第二定律,即力等于质量乘以加速度,通过测量物体的加速度
来判断物体受到的力的大小。
G-sensor采用微机电系统(MEMS)技术,将一个微小的质量块放
置在一个感应薄膜上,当物体发生加速度时,质量块就会在薄膜上运动,并且由于惯性力的作用,薄膜受到的力也会随之发生变化。
这时,电容式传感器会检测感应薄膜的变化,根据变化的程度来计算出物体
受到的加速度。
G-sensor的灵敏度很高,能够感知非常微小的加速度变化。
当手
机进行晃动、旋转、倾斜等操作时,G-sensor就能够感知到加速度的
变化,进而控制手机屏幕的自动旋转、游戏的重力感应等功能。
在汽
车领域,G-sensor可以用于判断车辆是否发生了侧翻、碰撞等情况,
从而触发安全气囊的开启。
总之,G-sensor利用微机电系统技术实现了对物体加速度的测量,其应用领域非常广泛,让我们的生活更加方便、安全。
简述加速度传感器的组成及原理

简述加速度传感器的组成及原理加速度传感器(Accelerometer)是一种测量物体加速度的传感器装置,主要用于测量物体的加速度和倾斜角度。
它可以广泛应用于汽车、手机、航空航天等领域。
下面将从组成和工作原理两个方面进行详细阐述。
一、组成加速度传感器通常由质量块、弹簧、电容、传感器芯片和电子线路等几个重要组成部分构成。
1.质量块:质量块是加速度传感器的核心组件,其质量决定了传感器的灵敏度。
在质量块上附加有传感器芯片和弹簧。
2.弹簧:弹簧与质量块相连,起到支撑和恢复质量块位置的作用。
弹簧的刚度和形状会影响传感器的精度和频率响应。
3.电容:电容存在于传感器芯片上,负责测量加速度变化。
当加速度发生变化时,质量块和芯片之间的间隙产生微小的位移,导致电容值的变化。
4.传感器芯片:传感器芯片是加速度传感器的核心部件,负责将物理量转换为电信号。
传感器芯片一般采用压电材料制成,当加速度变化时,会产生相应的电荷。
5.电子线路:电子线路负责接收传感器芯片输出的电信号,经过放大、滤波和模数转换等处理,最终输出可用的加速度信号,实现与外部设备的连接。
二、原理加速度传感器基本原理是利用牛顿第二定律:当一个物体受到外力作用时,将产生加速度。
加速度传感器利用质量块的加速度与传感器芯片产生的电信号之间的关系,来测量物体的加速度。
1.惯性式原理:惯性式加速度传感器常用的实现方式是通过质量块在弹簧环境中的运动来测量加速度。
当物体发生加速度变化时,质量块会受到惯性力的作用而产生相应的振动。
2.压电式原理:压电加速度传感器采用的是压电晶体材料的特性。
当物体产生加速度时,质量块的运动会压缩或拉伸压电晶体,使其产生电荷变化。
通过测量这种电荷变化,可以反推出物体的加速度。
3.血压式原理:血压式加速度传感器采用压电效应和电容效应相结合的方式来测量加速度。
当物体产生加速度时,质量块的运动会改变电容间隙,进而改变电容值。
通过测量电容的变化,可以计算出物体的加速度。
三轴加速度传感器工作原理

三轴加速度传感器工作原理
1.介绍三轴加速度传感器
三轴加速度传感器是一种测量物体三个方向上加速度的传感器。
其工作原理基于牛顿第二定律,即物体的加速度与物体所受合力成正比,与物体质量成反比。
三轴加速度传感器可用于许多应用中,如智能手机、嵌入式系统和运动跟踪器。
2.传感器的构成
三轴加速度传感器通常由微电机系统(MEMS)制造。
传感器由一个质量极小的振动器和一对电容器组成,一般安装于一个小型IC芯片上。
当传感器受到加速度时,悬挂在振动器上的质点会偏离平衡位置。
偏离的质量会导致电容器之间的电容值发生变化,因此通过测量电容值的变化,就可以计算出物体受到的加速度。
3.工作原理
三轴加速度传感器具有三个方向的感应器,即X、Y、Z轴。
当物体受到加速度时,每个感应器所测量的电容变化量与物体的加速度成正比。
例如,当一个运动员跑步时,他会向前加速,导致X轴感应器的电容值增加。
同样,当一个物体在平面上偏离位置,Y和Z轴感应器的电容值将发生变化。
4.应用场景
三轴加速度传感器广泛应用于各种应用场景中。
在智能手机中,它们可用于自动旋转屏幕和检测手机的手持位置。
此外,在运动跟踪器中,这些传感器可以检测人们在运动时的活动量和步数。
在车辆上,它们可以用于检测车辆受到的横向和纵向加速度,以及车辆的倾斜角度。
5.结论
三轴加速度传感器是一种测量加速度的重要工具,它们可广泛应用于各种领域。
通过更好地理解其工作原理和应用,我们可以更好地利用这些传感器的优势,使人们的日常生活和工作更加舒适和高效。
三轴传感器原理

三轴传感器原理
三轴传感器利用精密的加速度计技术,能够测量物体在三个不同方向上的加速度。
它由三个互相垂直的加速度计组成,分别测量物体在x,y和z方向上的加速度。
加速度计是一种基于微机电系统(MEMS)技术的装置,它由微小的硅片和振动质量组成。
当物体在某个方向上加速时,振动质量会受到力的作用而移动,导致电荷的变化。
这个电荷变化被转化为电压信号,通过放大和电路处理后,变成数字信号。
三轴传感器将三个加速度计的输出信号进行整合,从而得到物体在不同方向上的加速度数据。
通过测量这些加速度数据,我们可以获取物体的运动状态和姿态。
例如,在移动设备中,三轴传感器可以用来检测设备的倾斜、旋转和震动,从而实现自动旋转屏幕、晃动控制等功能。
此外,三轴传感器还可与其他传感器如陀螺仪和磁力计结合使用,进一步提高姿态测量的准确性。
陀螺仪可测量物体的角速度,磁力计可测量地球的磁场方向,这些信息可以与加速度计的数据结合,提供更精确的姿态测量结果。
总之,三轴传感器利用加速度计技术,能够测量物体在不同方向上的加速度,从而实现姿态测量和运动跟踪等功能。
它在移动设备、虚拟现实、智能穿戴设备等领域具有广泛的应用前景。
三轴加速度传感器工作原理

三轴加速度传感器工作原理三轴加速度传感器是测量物体在三个空间轴上的加速度的装置。
它们通常由微机电系统(Microelectromechanical Systems, MEMS)技术制造,具有小体积、低功耗和高精度的特点。
三轴加速度传感器能够广泛应用于物体定位、动作检测和姿态测量等领域。
一个典型的三轴加速度传感器通常由三个独立的加速度传感器构成,分别对应于物体的X、Y和Z轴。
这些传感器通常是微机电系统中的压电式传感器或微机械式传感器。
压电式传感器通过压电效应来测量加速度。
当物体在一些方向上受到外力作用时,会导致传感器内的压电材料产生压电效应,从而在传感器的表面产生电荷。
这个电荷的大小与物体受到的外力的大小成正比,从而可以得到物体在该方向上的加速度。
微机械式传感器则通过物体的惯性来测量加速度。
这些传感器通常由质量块和支撑结构组成。
当物体在一些方向上受到外力作用时,质量块惯性地保持其原来的运动状态,而支撑结构则产生变形。
通过测量这种变形,可以计算出物体在该方向上的加速度。
为了得到物体在三个空间轴上的加速度,三个传感器通常被组合在一起,形成一个三轴加速度传感器。
为了减少误差和干扰,传感器通常还配备了陀螺仪和磁力计等其他传感器。
陀螺仪可以测量物体的角速度,从而提供更准确的姿态测量。
磁力计可以测量磁场的方向,从而提供具备方向信息的定位。
三轴加速度传感器在实际应用中非常广泛。
例如,它们被广泛应用于智能手机和游戏手柄中,用于检测用户的手势和动作。
它们也被用于车辆的动态稳定控制和无人机的姿态控制等领域。
此外,三轴加速度传感器还可以与其他传感器结合使用,实现更多功能,如距离测量和姿态捕捉等。
三轴加速度传感器

三轴加速度传感器1. 引言三轴加速度传感器是一种常见的传感器技术,用于测量物体的加速度和倾斜度。
它在许多领域中得到广泛应用,包括运动检测、姿态测量、智能手机和游戏控制器等设备。
本文将介绍三轴加速度传感器的工作原理、应用领域和未来发展趋势。
2. 工作原理三轴加速度传感器基于微机电系统(MEMS)技术。
它通常由微机械结构、压电材料和电路组成。
当物体受到加速度时,微机械结构会产生微小的位移,并将其转化为电压信号。
这个信号经过放大和滤波后被传感器读取和解析。
三轴加速度传感器通常包含X、Y、Z三个轴向,分别对应物体运动的水平、垂直和纵深方向。
通过测量三轴的加速度值,传感器可以确定物体的运动状态。
3. 应用领域3.1 运动检测三轴加速度传感器广泛应用于运动检测领域。
它可以测量用户的步数、距离、速度和活动强度,用于运动追踪和健身监测。
许多智能手环、智能手表和健身器材上都配备了三轴加速度传感器。
3.2 姿态测量三轴加速度传感器可以测量物体的倾斜度和方向,用于姿态测量和姿势跟踪。
它在虚拟现实、增强现实和航空航天等领域中得到广泛应用。
例如,游戏控制器可以通过传感器测量玩家的倾斜动作,并将其映射到游戏中的角色操作。
3.3 智能手机和平板电脑三轴加速度传感器是智能手机和平板电脑中的重要组成部分。
它可以实现自动屏幕旋转、姿势识别和步态分析等功能。
此外,多个传感器的组合使用,如加速度传感器和陀螺仪的联合使用,可以提供更精确的运动感知和定位能力。
4. 未来发展随着人工智能、物联网和移动技术的快速发展,三轴加速度传感器将在未来得到更广泛的应用。
以下是一些未来发展趋势:4.1 小尺寸化和低功耗随着智能设备更加轻薄和便携,对三轴加速度传感器的尺寸和功耗要求也越来越高。
未来的传感器将更加小巧,能够集成到更多类型的设备中,并且能够在较长时间内维持稳定的工作。
4.2 高精度和多参数测量未来的三轴加速度传感器将具备更高的精度和多参数测量能力。
三轴加速度传感器原理

三轴加速度传感器原理三轴加速度传感器是一种能够测量物体在三个方向上加速度的传感器。
它通常由微机电系统(MEMS)加速度传感器和信号处理电路组成,可以广泛应用于智能手机、平板电脑、运动追踪器、汽车安全系统等领域。
本文将介绍三轴加速度传感器的原理和工作方式。
三轴加速度传感器是基于牛顿第二定律的原理工作的。
根据牛顿第二定律,物体的加速度与作用在物体上的力成正比,与物体的质量成反比。
因此,通过测量物体所受的力,可以计算出物体的加速度。
三轴加速度传感器利用微机电系统的微小结构,在受到外部加速度作用时,微结构会产生微小的位移或应变,通过这种微小的变化,可以测量出物体在三个方向上的加速度。
三轴加速度传感器通常采用微机电系统(MEMS)技术制造。
MEMS技术是一种将微型机械结构、微型传感器、微型执行器和微型电子器件集成在一起的技术,可以实现微小尺寸、低功耗、高灵敏度的传感器。
在三轴加速度传感器中,微机电系统的微型结构会随着外部加速度的变化而发生微小的位移或应变,这种微小的变化会被传感器捕获并转换成电信号,再经过信号处理电路进行处理和放大,最终输出测量结果。
三轴加速度传感器可以测量物体在X、Y、Z三个方向上的加速度。
在静止状态下,传感器会受到重力的作用,产生一个固定的重力加速度。
当物体发生加速度运动时,重力加速度会与物体的运动加速度叠加,通过对叠加后的加速度进行分解和处理,就可以得到物体在三个方向上的加速度。
三轴加速度传感器在实际应用中具有广泛的用途。
在智能手机和平板电脑中,三轴加速度传感器可以用于屏幕旋转、姿态识别、摇晃操作等功能;在运动追踪器中,可以用于计步、睡眠监测、运动轨迹记录等功能;在汽车安全系统中,可以用于碰撞检测、车辆稳定控制等功能。
通过测量物体在三个方向上的加速度,三轴加速度传感器可以实现对物体运动状态的精确监测和控制。
总之,三轴加速度传感器是一种能够测量物体在三个方向上加速度的传感器,它利用微机电系统的微小结构和信号处理电路,可以实现对物体运动状态的精确监测和控制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Group LOGO3
压阻式加速度传感器
工艺流程
电容式MEMS加速度计的工艺一般采用的有:表面工艺、体硅工艺、LIGA工艺及 SOI+DRIE工艺等。下面介绍一下工艺流程:
(a)确定上下极板间的 电容间距 (b)用KOH对 两面的SiO2进行湿法刻 蚀 (c)等SiO2层被去除, 新的氧化层会在两面重新 生成,继续用KOH进行 湿法刻蚀直到SiO2层被 完全去除 Group LOGO3
Group LOGO3
压阻式加速度传感器
悬臂梁分析
悬臂梁根部的横向受力:
6ml a 2 bh 悬臂梁的电阻的相对变化率: 3ml R / R z z h h 44 2 a bh
z
质量块的质量m、 悬臂梁的宽度和厚度b,h、质量块中心至悬臂梁根部的距离l、 加速度a.
Group LOGO3
压阻式加速度传感器
信号检测
本系统的信号检测电路采用压阻全桥来作为信号检测电路。 则电桥输出的表达式变为:
U SC
R Ue R
Group LOGO3
压阻式加速度传感器
工艺流程
为加工出图示的加速度传感器 ,主要采用下列加工手段来实现。采用注入、推进、 氧化的创新工艺来制作压敏电阻;采用KHO各向异性深腐蚀来形成质量块;并使 用AES来释放梁和质量块;最后利用键合工艺来得到所需的“三明治”结构。
压阻式加速度传感器
工艺流程
(d)在两面涂上光刻胶作为 湿法刻蚀的梁结构 (e)去除光刻胶以后两面重 新被氧化生成SiO2,随后再 EVG-100覆盖 (f)利用剩下的光刻胶进行刻 蚀然后移除光刻胶
Group LOGO3
压阻式加速度传感器
工艺流程
(j)随后通过梁结构中 间层与上下层连接 (K)控制480度的粘接 温度随后在1100度下保 存一小时。
Group LOGO3
概述
•加速度传感器 加速度传感器是一种能够测量加速力的电子设备。加速力就是 当物体在加速过程中作用在物体上的力,就好比地球引力,也 就是重力。加速力可以是个常量,比如g,也可以是变量。加 速度计有两种:一种是角加速度计,是由陀螺仪(角速度传 感器)的改进的。另一种就是线加速度计。 •加速度传感器中的分类
热对流式
压电式
其他类型加速度传感器
1.光波导加速度计
光波导加速度计的原理如下图所示:光源从波导1进入,经过分束部分后分成两部 分分别通入波导4和波导2,进入波导4的一束直接被探测器2探测,而进入波导2的 一束会经过一段微小的间隙后进入波导3,最终被探测器1探测到。有加速度时, 质量块会使得波导2弯曲,进而导至其与波导3的正对面积减小,使探测器1探测到 的光减弱。通过比较两个探测器检测到的信号即可求得加速度
MEMS LOGO
传感器技术
加速度传感器
组长:*** 组员:*******
目录
1
2 3
简述加速度传感器
电阻式加速度传感器
电容式加速度传感器
4
其他类型加速度传感器
Group LOGO3
篇前语
MEMS是什么?加速度传感器与MEMS什么关 系?
微机电系统(MEMS, Micro-ElectroMechanical System),也叫做微电子机械系统 微机电系统是集微传感器、微执行器、微机械 结构、微电源微能源、信号处理和控制电路、 高性能电子集成器件、接口、通信等于一体的 微型器件或系统。
新
新 新 成熟
Group LOGO3
微谐振式
谐振式加速度传感器是一种典型的 微机械惯性器件,基本工作原理是 利用振梁的力频特性,通过检测谐 振频率变化量获取输入的加速度。 微型热对流加速度计是利用封闭空 气囊内的自由热对流对加速度敏感 性。两个温度传感器对称地在有气 体的腔体两侧,中间有一个热源。 压电式加速度传感器是利用某些物 质如石英晶体的压电效应,在加速 度计受振时,质量块加在压电元件 上的力也随之变化。
Group 压电式加速度计
压电式加速度计利用了压 电效应,通过测量压电材 料两级的电势差即可求得 其形变压电原理在宏观尺 度的加速度计中应用颇为 广泛,这类加速度计的构 造多为基座和质量块之间 夹一压阻材料。
MEMS压电式加速度计
MEMS 压 电 式 加 速 度 计 采 用的结构与压阻式微加速 度计类似 , 都是悬臂梁末端 加质量块的震动系统,二 者差别在于镀在梁上的材 料不同,压电式加速度计 自然只要镀上压电材料, 而非压阻材料。
Group LOGO3
电容式加速度传感器
电容式加速度传感器是基于电容原理的极距变化型的电容传感器,其中一个电极 是固定的,另一变化电极是弹性膜片。弹性膜片在外力(气压、液压等)作用下发 生位移,使电容量发生变化。这种传感器可以测量气流(或液流)的振动速度(或加 速度),还可以进一步测出压力。
Group LOGO3
Group LOGO3
其他类型加速度传感器
2.谐振式加速度计
谐振式加速度计,Silicon Oscillating Accelerometer,简称SOA。一根琴弦绷 紧程度不同时弹奏出的声音频率也不同,谐振式加速度计的原理与此相同。若对 梁施加一确定的激振,检测其响应就可测出其固有频率,进而测出加速度。激振 的施加和响应的检测通常都是通过梳齿机构实现的。SOA的特点在于,它是通过 改变二阶系统本身的特性来反映加速度的变化的,这区别与电容式、压电式和光 波导式的加速度计。 SOA常见的结构有 S 结构和双端固定音叉( Double-ended Tuning Fork,DETF)两种。S结构原理图如下图所示,DEFT式就是在质量块的 另一半加上和左边对称的一套机构
Group LOGO3
压阻式加速度传感器
工艺流程
(a) (b) (c) (d) (e) (f) 在硅片两侧积淀氮化硅。 在硅片的前侧积淀第一层多晶硅牺牲层,然后制作第一层。 在硅片的前侧积淀第二层氮化硅,并在硅片后侧积淀第一层氮化硅。 制作前侧和后侧。 积淀并制作金属层(镍)。 各向异性腐蚀来得到沟槽。
Group LOGO3
其他类型加速度传感器
3.热对流加速度计
一个被放置在芯片中央的热源在一个空腔中产生一个悬浮的热气团,同时由铝和 多晶硅组成的热电偶组被等距离对称地放置在热源的四个方向。在未受到加速度 或水平放置时,温度的下降陡度是以热源为中心完全对称的。此时所有四个热电 偶组因感应温度而产生的电压是相同的。
电容式加速度传感器
力学模型
电容式加速度传感器从力学角度可以看成是一个质量 —弹簧—阻尼系统。 根据牛顿第二定律可得力学模型为:
其中传感器无阻尼自振角频率、传感器阻尼比分别为:
对其进行零初始条件下的拉普拉斯变换,可得传递函数为:
可见,如果将传感器的壳体固定在载体上,只要能把质量块在敏感轴方向相对 壳体的位移测出来,便可以把它作为加速度的间接度量。
Group LOGO3
压阻式加速度传感器
数学模型
电容式加速度传感器可简化为如图所示的模型,相当于两个电容串联,建 立方程得到电容变化与加速度之间的关系为
质量块由于加速度造成的微小位移可转化为差动电容的变化,并且两电容 的差值与位移量成正比。从而可以测得加速度。
Group LOGO3
压阻式加速度传感器
加速度传感器的原理随其应用而不同,有压阻式,电容式,压 电式,谐振式、伺服式等。
Group LOGO3
压阻式加速度传感器
压阻式压阻式器件是最早微型化和商业化的一类加速度传感器。基于世界领先的 MEMS硅微加工技术,压阻式加速度传感器具有体积小、低功耗等特点,易于集 成在各种模拟和数字电路中,广泛应用于汽车碰撞实验、测试仪器、设备振动监 测等领域。
Group LOGO3
压阻式加速度传感器
工艺流程
(g)等刻蚀完成,对 称梁结构形成 (h)利用对称结构确 认中间梁位置 (i)上下两层形成 2μm的SiO2对称氧化 层来隔绝上中下三层
Group LOGO3
其他类型的加速度传感器
光波导式
目前广泛应用制备光学加速度计的 迈克尔逊、马赫—曾德等干涉仪的 核心部件都包含3 dB耦合器。
Group LOGO3
压阻式加速度传感器
构造原理
MEMS压阻式加速度传感器的敏感元件由弹性梁、质量块、固定框组成。 压阻式加速度传感器实质上是一个力传感器,他是利用用测量固定质量块 在受到加速度作用时产生的力 F来测得加速度a的。在目前研究尺度内,可 以认为其基本原理仍遵从牛顿第二定律。也就是说当有加速度a作用于传感 器时,传感器的惯性质量块便会产生一个惯性力 :F=ma, 此惯性力 F 作用于 传感器的弹性梁上,便会产生一个正比于F的应变。,此时弹性梁上的压敏 电阻也会随之产生一个变化量△ R ,由压敏电阻组成的惠斯通电桥输出一 个与△R成正比的电压信号V。
Group LOGO3
MEMS LOGO
[ THAT’S ALL]
Group LOGO3
压阻式加速度传感器
工艺流程
硅微机械加工技术是在传统的集成电路平面工艺的基础上发展起来的,是常规集 成电路工艺和硅微机械加工的独特技术的结合。这些独特的加工技术与常规集成 电路工艺相结合,才能制作出微电子机械系统。微机械加工技术一般分为体硅微 机械加工技术、表面硅微机械加工技术和LIGA技术三类。
Group LOGO3
压阻式加速度传感器
•作用机理 压阻式加速度传感器的悬臂梁上制作有压敏电阻,当惯性质量 块发生位移时,会引起悬臂梁的伸长或压缩,改变梁上的应力 分布,进而影响压敏电阻的阻值.压阻电阻多位于应力变化最明 显的部位。这样,通过两个或四个压敏电阻形成的电桥就可实 现加速度的测量。 •特点 压阻式加速度传感器低频信号好、可测量直流信号、输入阻抗 低、且工作温度范围宽,同时它的后处理电路简单、体积小、 质量轻。