高一数学必修四知识点总结

合集下载

高一数学必修四知识点总结材料

高一数学必修四知识点总结材料

高一数学必修四知识点总结1.三角函数................................................. (2)2.平面向量................................................. (7)3.三角恒等变换................................................. (10)三角函数知识点⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2、象限角:角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为22,2k k k παπαπ⎧⎫<<+∈Z ⎨⎬⎩⎭第二象限角的集合为22,2k k k παπαππ⎧⎫+<<+∈Z ⎨⎬⎩⎭第三象限角的集合为322,2k k k παππαπ⎧⎫+<<+∈Z ⎨⎬⎩⎭第四象限角的集合为3222,2k k k παπαππ⎧⎫+<<+∈Z ⎨⎬⎩⎭轴线角:终边在x 轴上的角的集合为{},k k ααπ=∈Z 终边在y 轴上的角的集合为,2k k πααπ⎧⎫=+∈Z ⎨⎬⎩⎭终边在坐标轴上的角的集合为,2k k παα⎧⎫=∈Z ⎨⎬⎩⎭3、与角α终边相同的角的集合为{}2,k k ββπα=+∈Z4、已知α是第几象限角,确定()*n nα∈N 所在象限的方法:先把各象限均分n 等份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象限对应P xyAOM T 的标号即为nα终边所落在的区域. 6、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是lrα=.尤其是长度l r =的弧所对的圆心角叫做1rad 。

7、弧度制与角度制的换算公式:180 3.14rad π=≈,1180rad π=,180157.3rad π⎛⎫=≈ ⎪⎝⎭. 8、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==.9、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()220r r x y =+>,则sin y r α=,cos x r α=,()tan 0yx xα=≠. 10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.(取决于三角函数定义中的坐标正负)α6π4π 3π 2π 23π 34π 56π π32π2π sin α0 12223213222121- 0cos α132 221212-22- 32- 1- 0 1tan α0 3313/3- 1- 33-0 / 011、三角函数线(有方向的线段):sin α=MP ,cos α=OM ,tan α=AT . 12、同角三角函数的基本关系:()221sin cos 1αα+=()2222sin 1cos ,cos 1sin αααα=-=-;()sin 2tan cos ααα=sin sin tan cos ,cos tan αααααα⎛⎫== ⎪⎝⎭.13、三角函数的诱导公式:()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=.()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名不变,符号看象限(把α当成是锐角,判断等号右边三角函数所在象限符号).()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭. ()6sin cos 2παα⎛⎫+=⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭. 口诀:奇变偶不变,符号看象限(奇偶看与90的倍数). 14、函数b x A y ++=)sin(ϕω的图像变换 第一种变换:先周期后相位sin y x =纵坐标不变横坐标伸长(01)ω<<或缩短(1ω>)到原来的1ω倍 sin y x ω=所有点向左(0)ϕ>或向右(0)ϕ<平移ϕω个单位 sin()y x ωϕ=+ 横坐标不变纵坐标伸长(1A >)或缩短(01)A <<到原来的A 倍 sin()y A x ωϕ=+ 所有点向上(0)b >或向下(0)b <平移b 个单位 sin()y A x b ωϕ=++ 第二种变换:先相位后周期sin y x =所有点向左(0)ϕ>或向右(0)ϕ<平移ϕ个单位 sin()y x ϕ=+纵坐标不变横坐标伸长(01)ω<<或缩短(1ω>)到原来的1ω倍 sin()y x ωϕ=+横坐标不变纵坐标伸长(1A >)或缩短(01)A <<到原来的A 倍 sin()y A x ωϕ=+ 所有点向上(0)b >或向下(0)b <平移b 个单位 sin()y A x b ωϕ=++15、函数()()sin 0,0y x B ωϕω=A ++A >>及cos()y A x B ωφ=++的性质:①振幅:A ;②周期:2πωT =;③频率:12f ωπ==T ;④相位:x ωϕ+;⑤初相:ϕ. 当1x x =时,取得最小值为min y ;当2x x =时,取得最大值为max y ,则()m a x m i n 12y yA =-,()max min 12y yB =+,()21122x x x x T=-<.函数tan()y x ωϕ=+,周期T πω=. 16、正弦函数、余弦函数和正切函数的图象与性质:sin y x =cos y x =tan y x =图象作图法 五点法(0,0)(,1)2π(,0)π3(,1)2π-(2,0)π 五点法(0,1)(,0)2π(,1)π3(,0)2π(2,1)π 三点两线法2x π=±(0,0)(,1)4π(,1)4π--定义域 R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1- []1,1-R最值当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=-()k ∈Z 时,min 1y =-.当()2x k k π=∈Z 时, max 1y =;当2x k ππ=+ ()k ∈Z 时,min 1y =-. 既无最大值也无最小值 周期性 2π 2ππ 奇偶性奇函数 偶函数 奇函数单调性在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z 上是增;在32,222k k ππππ⎡⎤++⎢⎥⎣⎦减在[]()2,2k k k πππ-∈Z 上是增函数;在[]2,2k k πππ+()k ∈Z 上是减函数.在,22k k ππππ⎛⎫-+ ⎪⎝⎭()k ∈Z 上是增函数.函数 性质对称中心 ()(),0k k π∈Z(),02k k ππ⎛⎫+∈Z ⎪⎝⎭(),02k k π⎛⎫∈Z⎪⎝⎭对称轴()2x k k ππ=+∈Z()x k k π=∈Z无对称轴注:()()sin 0,0y x ωϕω=A +A >>的性质则把x ωϕ+当作整体进行处理。

高一数学必修4知识点梳理:平面向量

高一数学必修4知识点梳理:平面向量

2、零向量:长度为0第二章平面向量1、向量定义:既有大小又有方向的量叫做向量,向量都可用同一平面内的有向线段表示.的向量叫零向量,记作0;零向量的方向是任意的.3、单位向量:长度等于1个单位长度的向量叫单位向量;与向量a 平行的单位向量:e =±a a ||4、平行向量(共线向量):方向相同或相反的非零向量叫平行向量也叫共线向量,记作//ab ;规定0与任何向量平行.5、相等向量:长度相同且方向相同的向量叫相等向量,零向量与零向量相等.注意:任意两个相等的非零向量,都可以用同一条有向线段来表示,并且与有向线段的起点无关。

6、向量加法运算:⑴三角形法则的特点:首尾相接⑵平行四边形法则的特点:起点相同baCBA -=A -AB =B a bC Cc高一数学必修4知识点梳理:平面向量⑶运算性质:①交换律:+=+a b b a ;②结合律:++=++a b c a b c ()();③+=+=a a a 00.⑷坐标运算:设=a x y ,11(),=b x y ,22(),则+=++a b x x y y ,1212)(. 7、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设=a x y ,11(),=b x y ,22(),则-=--a b x x y y ,1212)(.设A 、B 两点的坐标分别为x y ,11(),x y ,22(),则AB =--x x y y ,2121)(.8、向量数乘运算:⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作λa . ①=λλa a ;②当>λ0时,λa 的方向与a 的方向相同;当<λ0时,λa 的方向与a 的方向相反; 当=λ0时,=λa 0.⑵运算律:①=λμλμa a ()();②+=+λμλμa a a ();③+=+λλλa b a b (). ⑶坐标运算:设=a x y ,(),则==λλλλa x y x y ,,()().9、向量共线定理:向量≠a a 0()与b 共线,当且仅当有唯一一个实数λ,使=λb a . 设=a x y ,11(),=b x y ,22(),其中≠b 0,则当且仅当-=x y x y 01221时,向量a 、≠b b 0()共线.10、平面向量基本定理:如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1、λ2,使=+λλa e e 1122.(不共线的向量e 1、e 2作为这一平面内所有向量的一组基底)11、分点坐标公式:设点P 是线段P P 12上的一点,P 1、P 2的坐标分别是x y ,11(),x y ,22(),当P P =PP λ12时,点P 的坐标是⎝⎭++ ⎪⎛⎫++λλλλx x y y 11,1212. 12、平面向量的数量积:⑴定义:≠≠≤≤⋅=θθa b a b a b cos 0,0,0180)(.零向量与任一向量的数量积为0. ⑵性质:设a 和b 都是非零向量,则①⊥⇔⋅=a b a b 0.②当a 与b 同向时,⋅=a b a b ;当a 与b 反向时,⋅=-a b a b ;⋅==a a a a 22或=⋅a a a .③⋅≤a b a b .⑶运算律:①⋅=⋅a b b a ;②⋅=⋅=⋅λλλa b a b a b ()()();③+⋅=⋅+⋅a b c a c b c ().⑷坐标运算:设两个非零向量=a x y ,11(),=b x y ,22(),则⋅=+a b x x y y 1212. 若=a x y ,(),则=+a x y 222,或=+a x y 22.设=a x y ,11(),=b x y ,22(),则⊥⇔+=a b x x y y 01212.设a 、b 都是非零向量,=a x y ,11(),=b x y ,22(),θ是a 与b 的夹角,则++==⋅+θx yx ya ba b x x y y cos 112222221212.第三章 三角恒等变形1、同角三角函数基本关系式(1)平方关系:αα=+221cos sin (2)商数关系:=tan sin cos ααα(3)倒数关系:αα=1cot tan=+sin tan tan 1222ααα ; =+co s 1t an 122αα注意: tan ,cos ,sin ααα 按照以上公式可以“知一求二”2、两角和与差的正弦、余弦、正切S +βα)(:=++sin cos cos sin )sin(βαβαβα S -βα)(:=--sin cos cos sin )sin(βαβαβα C +βα)(:a =+-sin sin cos cos )cos(βαβαβ C -βα)(:a =-+sin sin cos cos )cos(βαβαβ T +βα)(: =++-)tan(tan tan tan tan 1βαβαβαT -βα)(: =--+)tan(tan tan tan tan 1βαβαβα正切和公式:-⋅+=+βαβαβα)tan tan 1()tan(tan tan3、辅助角公式:222222cos sin sin cos b a x b x a a b a x b b a x +=++++⎛⎝⎫⎭⎪⎪ x b a x x b a +⋅+=⋅+⋅+=ϕϕϕ2222)sin cos cos (sin )sin((其中ϕ称为辅助角,ϕ的终边过点b a ),(,tan ϕ=b a)4、二倍角的正弦、余弦和正切公式: S 2α: =cos sin 22sin αααC 2α: -=sin cos 2cos 22ααααα-=-=221cos 2sin 21 T 2α: =-2tan tan 2tan 12ααα*二倍角公式的常用变形:①、=-αα|sin |22cos 1,=+αα|cos |22cos 1;②、=-αα1212|sin |2cos , =+αα1212|cos |2cos③-=+-=ααααα442221cos sin 21cos sin 2sin 2;=-442cos sin cos ααα;*降次公式:=cos sin 122sin ααα ααα=-+-=2sin 2cos 12122cos 12 ααα=++=2cos 2cos 12122cos 125、*半角的正弦、余弦和正切公式:±=-ααsin2cos 12 ; ±=+ααcos 2cos 12, ±=-+tan2cos 1cos 1ααα=-=+cos 1sin sin cos 1αααα6、同角三角函数的常见变形:(活用“1”)① -=cos 1sin 22αα; -±=cos 1sin 2αα;-=sin 1cos 22αα; -±=sin 1cos 2αα; ②=++=22cot tan sin cos cos sin 22sin θθθθθθθ,αααααααθθ2cot 22sin 2cos 2cos sin sin cos tan cot 22==-=-③ααααα2sin 1cos sin 21)cos (sin 2±=±=±; |cos sin |2sin 1ααα±=± 7、补充公式:*①万能公式2tan12tan2sin 2ααα+=; 2t a n12t a n1c o s 22ααα+-=; 2t a n12t a n2t a n 2ααα-=*②积化和差公式)]sin()[sin(21cos sin βαβαβα-++=)]sin()[sin(21sin cos βαβαβα--+=)]cos()[cos(21cos cos βαβαβα-++=)]cos()[cos(21sin sin βαβαβα--+-=*③和差化积公式2cos 2sin 2sin sin βαβαβα-+=+; 2sin2cos 2sin sin βαβαβα-+=- 2co s 2co s 2co s co s βαβαβα-+=+;2sin2sin 2cos cos βαβαβα-+-=- 注:带*号的公式表示了解,没带*公式为必记公式。

高一必修数学第四章知识点

高一必修数学第四章知识点

高一必修数学第四章知识点第一节直线与坐标系一、点和坐标在平面直角坐标系中,一个点可以用有序数对 (x, y) 表示,其中 x 表示横坐标,y 表示纵坐标。

二、直线的斜率1. 斜率的定义设两点 A(x₁, y₁) 和 B(x₂, y₂),其斜率 k 定义为 k = (y₂ - y₁) / (x₂ - x₁)。

2. 与坐标轴平行的直线的斜率与 x 轴平行的直线的斜率为 0;与 y 轴平行的直线没有斜率,记为∞。

三、直线的方程及性质1. 一般形式的直线方程直线的一般形式方程为 Ax + By + C = 0,其中 A、B、C 为常数且 A、B 不同时为 0。

2. 点斜式的直线方程已知直线上一点 P(x₁, y₁) 和斜率 k,则直线的点斜式方程为 y - y₁ = k(x - x₁)。

3. 斜截式的直线方程已知直线与 y 轴的交点为 (0, b) 和斜率 k,则直线的斜截式方程为 y = kx + b。

第二节二次函数的图像与性质一、二次函数的定义与图像二次函数的一般形式为 f(x) = ax² + bx + c,其中 a、b、c 为常数且a ≠ 0。

二、抛物线的开口方向1. a > 0 时,抛物线向上开口;2. a < 0 时,抛物线向下开口。

三、顶点坐标和对称轴1. 顶点坐标抛物线的顶点坐标为 V(-b/2a, f(-b/2a))。

2. 对称轴抛物线的对称轴为直线 x = -b/2a。

四、二次函数的性质1. 单调性a > 0 时,二次函数单调递增;a < 0 时,二次函数单调递减。

2. 零点二次函数与 x 轴交点的横坐标为零点,可通过解方程 ax² + bx + c = 0 求得。

3. 最值a > 0 时,二次函数的最小值为 f(-b/2a);a < 0 时,二次函数的最大值为 f(-b/2a)。

第三节平面向量与数量积一、平面向量的定义平面向量是具有大小和方向的有向线段。

高一数学知识点总结大全(最新版)

高一数学知识点总结大全(最新版)

高一数学知识点总结大全(最新版)要想学好数学,大量做题是必可避免的,熟练地掌握各种题型,这样才能有效的提高数学成绩。

今天小编在这给大家整理了高一数学知识点总结大全(最新版),接下来随着小编一起来看看吧!高一数学知识点总结第一章三角函数1.1任意角和弧度制1.2任意角的三角函数——阅读与思考三角形与天文学1.3三角函数的诱导公式1.4三角函数的图像与性质——探究与发现函数y=Asin(ωX+φ)及函数y=Acos(ωx+φ)的周期探究与发现利用单位圆中的三角函数线研究正弦函数、余弦函数的性质信息技术应用利用正切线画函数y=tanX,X∈(—2π,2π )的图像1.5函数y=Asin(ωX+φ)的图像——阅读与思考振幅、周期、频率、相位1.6三角函数模型的简单应用小结复习参考题第二章平面向量2.1平面向量的实际背景及基本概念——阅读与思考向量及向量符号的由来2.2平面向量的线性运算2.3平面向量的基本定理及坐标表示2.4平面向量的数量积2.5平面向量应用举例——阅读与思考向量的运算(运算律)与图形性质小结复习参考题第三章三角恒等变换3.1两角和与差的正弦、余弦和正切公式——信息技术应用利用信息技术制作三角函数表3.2简单的三角恒等变换复习参考题1.正角:按逆时针方向旋转形成的角叫做正角。

按边旋转的方向分零角:如果一条射线没有作任何旋转,我们称它形成了一个零角。

角负角:按顺时针方向旋转形成的角叫做负角。

的第一象限角{α|k2360°<α<90°+k2360°,k∈Z}分第二象限角{α|90°+k2360°<α<180°+k2360°,k∈Z}类第三象限角{α|180°+k2360°<α<270°+k2360°,k∈Z}第四象限角{α|270°+k2360°<α<360°+k2360°,k∈Z}或{α|-90°+k2360°<α<k2360°,k∈z}(象间角):当角的终边与坐标轴重合时叫轴上角,它不属于任何一个象限.2.终边相同角的表示:所有与角α终边相同的角,连同角α在内,可构成一个集合s={β|β=α+k2360°,k∈z}即任一与角α终边相同的角,都可以表示成角α与整个周角的和。

高一数学必修四必背知识点

高一数学必修四必背知识点

高一数学必修四必背知识点第一章二次函数与图像变换1. 顶点式和一般式的相互转换:二次函数的顶点式为:y = a(x - h)² + k二次函数的一般式为:y = ax² + bx + c2. 二次函数的图像变换:a) 向上、向下平移:顶点的纵坐标加减常数k,若k > 0向上平移,若k < 0向下平移。

b) 左右平移:顶点的横坐标加减常数h,若h > 0向左平移,若h < 0向右平移。

c) 上下翻折:纵坐标乘以-1。

d) 左右翻折:横坐标乘以-1。

3. 二次函数的最值与零点:a) 最值:当a > 0时,二次函数的最小值为k,无最大值;当a < 0时,二次函数的最大值为k,无最小值。

b) 零点:二次函数与x轴交点的横坐标。

第二章数列与数列的运算1. 等差数列的通项公式:a) 通项公式:an = a₁ + (n - 1)d,其中an为第n个数,a₁为首项,d为公差,n为项数。

b) 前n项和公式:Sn = (a₁ + an)n/2,其中Sn为前n项和。

2. 等比数列的通项公式:a) 通项公式:an = a₁q^(n - 1),其中an为第n个数,a₁为首项,q为公比,n为项数。

b) 前n项和公式:Sn = a₁(1 - q^n)/(1 - q),其中Sn为前n项和。

3. 递推数列的通项公式:a) 递推公式:an = f(an₋₁, an₋₂, ...),其中f为递推函数,an 为第n个数。

b) 已知初始项求通项公式:根据已知的前几项,通过观察求得递推函数。

第三章三角函数1. 基本三角函数:a) 正弦函数:y = sin(x)b) 余弦函数:y = cos(x)c) 正切函数:y = tan(x)d) 余切函数:y = cot(x)2. 三角函数的性质:a) 周期性:正弦函数和余弦函数的周期都为2π;正切函数和余切函数的周期为π。

b) 奇偶性:正弦函数和正切函数为奇函数,余弦函数和余切函数为偶函数。

高一年级数学必修四知识点(最新)

高一年级数学必修四知识点(最新)

1.高一年级数学必修四知识点⑴公比为q的等比数列,从中取出等距离的项,构成一个新数列,此数列仍是等比数列,其公比为q(m为等距离的项数之差)。

⑵对任何m、n,在等比数列{a}中有:a=a·q,特别地,当m=1时,便得等比数列的通项公式,此式较等比数列的通项公式更具有普遍性。

⑶一般地,如果t,k,p,…,m,n,r,…皆为自然数,且t+k,p,…,m+…=m+n+r+…(两边的自然数个数相等),那么当{a}为等比数列时,有:a。

a。

a。

…=a。

a。

a。

…。

⑷若{a}是公比为q的等比数列,则{|a|}、{a}、{ka}、{}也是等比数列,其公比分别为|q|}、{q}、{q}、{}。

⑸如果{a}是等比数列,公比为q,那么,a,a,a,…,a,…是以q为公比的等比数列。

⑹如果{a}是等比数列,那么对任意在n,都有a·a=a·q>0。

⑺两个等比数列各对应项的积组成的数列仍是等比数列,且公比等于这两个数列的公比的积。

⑻当q>1且a>0或00且01时,等比数列为递减数列;当q=1时,等比数列为常数列;当q<0时,等比数列为摆动数列。

2.高一年级数学必修四知识点初等函数是由幂函数、指数函数、对数函数、三角函数、反三角函数与常数经过有限次的有理运算及有限次函数复合所产生,并且能用一个解析式表示的函数。

非初等函数是指凡不是初等函数的函数。

初等函数是最常用的一类函数,包括常函数、幂函数、指数函数、对数函数、三角函数、反三角函数(以上是基本初等函数),以及由这些函数经过有限次四则运算或函数的复合而得的所有函数。

即基本初等函数经过有限次的四则运算或有限次的函数复合所构成并可以用一个解析式表出的'函数,称为初等函数。

非初等函数的研究与发展是近现代数学的重大成就之一,极大拓展了数学在各个领域的应用,在概率论、物理学科各个分支中等有十分广泛的应用。

是函数的一个重要的分支。

高一必修四一数学知识点

高一必修四一数学知识点

高一必修四一数学知识点高中数学作为学生继续深入学习数学的阶段,对于数学知识点的理解和掌握变得尤为重要。

在高一必修四中,包含了一些重要的数学知识点,本文将为大家总结和概括这些知识点,帮助大家更好地学习和掌握这些内容。

1. 二次函数二次函数是高中数学中重要的一部分内容。

二次函数的标准形式为f(x) = ax² + bx + c,其中 a、b、c 是常数且a ≠ 0。

学习二次函数时,需要掌握以下几个重点内容:(1)二次函数的图像特征:顶点坐标、开口方向、对称轴等。

(2)二次函数的最值问题:如何求解二次函数的最值问题,以及与实际问题的应用。

(3)二次函数的零点问题:如何求解二次函数的零点,利用因式分解、配方法、求根公式等方法。

2. 平面向量平面向量是平面上的一个有向线段,具有大小和方向。

学习平面向量时,需要掌握以下几个重点内容:(1)向量的表示和运算:如何表示向量,向量的加法与减法,向量与标量的乘法。

(2)向量的数量积和向量积:了解向量的数量积和向量积的概念,以及它们的性质和运算法则。

(3)平面向量的坐标表示:平面向量可以用坐标表示,需要学习如何进行坐标表示。

3. 椭圆椭圆是高中数学中的一种曲线,具有许多特殊的性质和应用。

学习椭圆时,需要掌握以下几个重点内容:(1)椭圆的定义与性质:了解椭圆的定义,掌握椭圆的离心率、焦点、半长轴、半短轴等重要概念。

(2)椭圆的方程:熟悉椭圆的标准方程、一般方程的表示方法,以及如何通过给定的条件确定椭圆的方程。

(3)椭圆的应用:椭圆在几何光学、机械工程、天体力学等领域具有广泛的应用,需要了解椭圆在实际问题中的应用方法。

4. 函数的导数函数的导数是高中数学中另一个重要的概念。

学习函数的导数时,需要掌握以下几个重点内容:(1)导数的定义与性质:理解导数的定义,熟悉导数的性质,如可导性、导数的四则运算法则等。

(2)导数的计算方法:学习如何计算常见函数的导数,使用导数的基本公式进行计算。

高一数学必修四知识点总结b版

高一数学必修四知识点总结b版

高一数学必修四知识点总结b版在高一数学必修四课程中,我们学习了许多重要的知识点,这些知识点对于我们建立数学基础和进一步提高数学能力非常关键。

本文将对这些知识点进行总结,帮助我们更好地复习和掌握。

一、函数与导数1.函数的概念函数是一种特殊的关系,它将自变量和因变量联系起来。

我们学习了函数的定义、函数的表示方法以及函数的性质等内容。

2.导数与函数的变化率导数是函数在某一点的变化率,它的定义是函数在该点处的斜率。

我们学习了导数的概念、导数的计算方法以及导数在几何中的应用。

3.导数的基本性质导数具有一系列的基本性质,如导数的四则运算、常用函数的导数公式以及导数与函数图像的关系等。

二、平面几何与立体几何1.向量向量是描述空间中有方向和大小的量,它具有平移、共线性和比例三个基本性质。

我们学习了向量的定义、向量的线性运算以及向量在几何中的应用等内容。

2.平面几何基本概念平面几何是研究平面上的点、线、面及其性质的数学学科。

我们学习了平面几何的基本概念,如直线、角、相似三角形等。

3.立体几何基本概念立体几何是研究三维空间中的点、线、面及其性质的数学学科。

我们学习了立体几何的基本概念,如空间几何体的分类、立体几何体的表面积和体积计算等。

三、数列与数学归纳法1.数列数列是按照一定规律排列的一串数,它是数学研究中非常重要的概念。

我们学习了数列的定义、常见数列的性质以及数列求和公式等内容。

2.数学归纳法数学归纳法是一种数学证明方法,它是通过证明某个命题对于自然数的一个特定范围成立从而证明它对于所有自然数成立。

我们学习了数学归纳法的基本思想和应用技巧。

四、概率与统计1.概率的基本概念概率是用来描述随机事件发生可能性的数值,它是数学中的一个重要分支。

我们学习了概率的定义、概率计算的方法以及概率在实际问题中的应用等。

2.统计的基本概念统计是对数据进行收集、整理、分析和解释的过程,它在现代社会的各个领域都有广泛应用。

我们学习了统计的基本概念,如数据的表示方式、统计量的计算以及统计图表的制作等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学必修四知识点总结1、三角函数、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、2 2、平面向量、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、7 3、三角恒等变换、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、10 三角函数知识点⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2、象限角:角α得顶点与原点重合,角得始边与x 轴得非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角得集合为22,2k k k παπαπ⎧⎫<<+∈Z ⎨⎬⎩⎭第二象限角得集合为22,2k k k παπαππ⎧⎫+<<+∈Z ⎨⎬⎩⎭第三象限角得集合为322,2k k k παππαπ⎧⎫+<<+∈Z ⎨⎬⎩⎭第四象限角得集合为3222,2k k k παπαππ⎧⎫+<<+∈Z ⎨⎬⎩⎭轴线角:终边在x 轴上得角得集合为{},k k ααπ=∈Z 终边在y 轴上得角得集合为,2k k πααπ⎧⎫=+∈Z ⎨⎬⎩⎭终边在坐标轴上得角得集合为,2k k παα⎧⎫=∈Z ⎨⎬⎩⎭3、与角α终边相同得角得集合为{}2,k k ββπα=+∈Z4、已知α就是第几象限角,确定()*n nα∈N 所在象限得方法:先把各象限均分n 等份,再从x 轴得正半轴得上方起,依次将各区域标上一、二、三、四,则α原来就是第几象限对应得标号即为nα终边所落在得区域. 6、半径为r 得圆得圆心角α所对弧得长为l ,则角α得弧度数得绝对值就是lrα=.尤其就是长度l r =得弧所对得圆心角叫做1rad 。

7、弧度制与角度制得换算公式:180 3.14rad π=≈,1180rad π=,180157.3rad π⎛⎫=≈⎪⎝⎭. 8、若扇形得圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==.9、设α就是一个任意大小得角,α得终边上任意一点P 得坐标就是(),x y ,它与原点得距离就是()0r r =>,则sin y r α=,cos x r α=,()tan 0yx xα=≠. 10、三角函数在各象限得符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四12、同角三角函数得基本关系:()221sin cos 1αα+=()2222sin 1cos ,cos 1sin αααα=-=-;()sin 2tan cos ααα=sin sin tan cos ,cos tan αααααα⎛⎫== ⎪⎝⎭.13、三角函数得诱导公式:()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z .()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-.()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名不变,符号瞧象限(把α当成就是锐角,判断等号右边三角函数所在象限符号).()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭. ()6sin cos 2παα⎛⎫+= ⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭.口诀:奇变偶不变,符号瞧象限(奇偶瞧与90得倍数).14、函数b x A y ++=)sin(ϕω得图像变换 第一种变换:先周期后相位sin y x =纵坐标不变横坐标伸长(01)ω<<或缩短(1ω>)到原来得1ω倍 sin y x ω=sin()y x ωϕ=+ A 倍 sin()y A x ωϕ=+ )b +第二种变换:先相位后周期sin y x =所有点向左(0)ϕ>或向右(0)ϕ<平移ϕ个单位 sin()y x ϕ=+纵坐标不变横坐标伸长(01)ω<<或缩短(1ω>)到原来得1ω倍 sin()y x ωϕ=+横坐标不变纵坐标伸长(1A >)或缩短(01)A <<到原来得A 倍 sin()y A x ωϕ=+ 所有点向上(0)b >或向下(0)b <平移b 个单位 sin()y A x b ωϕ=++ 15、函数()()sin 0,0y x B ωϕω=A ++A >>及cos()y A x B ωφ=++得性质:①振幅:A ;②周期:2πωT =;③频率:12f ωπ==T ;④相位:x ωϕ+;⑤初相:ϕ. 当1x x =时,取得最小值为min y ;当2x x =时,取得最大值为max y ,则()max min 12y y A =-,()max min 12y y B =+,()21122x x x x T=-<.函数tan()y x ωϕ=+,周期T πω=、 sin y x = cos y x = tan y x =图象作图法 五点法(0,0)(,1)2π(,0)π3(,1)2π-(2,0)π 五点法(0,1)(,0)2π(,1)π3(,0)2π(2,1)π 三点两线法2x π=±(0,0)(,1)4π(,1)4π--定义域 R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=-()k ∈Z 时,min 1y =-. 当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期 性 2π2ππ奇偶奇函数偶函数奇函数函数 性质注:()()sin 0,0y x ωϕω=A +A >>得性质则把x ωϕ+当作整体进行处理。

17、三角函数得奇偶性:()sin()f x A x B ωφ=++,则 ①()f x 为偶函数得充要条件就是,2k k Z πφπ=+∈②()f x 为奇函数得充要条件就是,k k Z φπ=∈,且B=0平面向量知识点一、向量得基本概念与基本运算 1、向量得概念:①向量:既有大小又有方向得量 向量不能比较大小,但向量得模可以比较大小.②零向量:长度为0得向量,记为0 ,其方向就是任意得,0与任意向量平行③单位向量:模为1个单位长度得向量④平行向量(共线向量):方向相同或相反得非零向量 ⑤相等向量:长度相等且方向相同得向量2、向量加法:设,AB a BC b ==,则a+b =AB BC +=AC(1)a a a=+=+00;(2)向量加法满足交换律与结合律;AB BC CD PQ QR AR +++++=,但这时必须“首尾相连”.3、向量得减法: ① 相反向量:与a 长度相等、方向相反得向量,叫做a得相反向量②向量减法:向量a 加上b 得相反向量叫做a 与b得差,③作图法:b a -可以表示为从b得终点指向a 得终点得向量(a 、b有共同起点)4、实数与向量得积:实数λ与向量a 得积就是一个向量,记作λa,它得长度与方向规定如下:(Ⅰ)a a⋅=λλ; (Ⅱ)当0>λ时,λa 得方向与a 得方向相同;当0<λ时,λa 得方向与a得方向相反;当0=λ时,0 =a λ,方向就是任意得5、两个向量共线定理:向量b 与非零向量a共线⇔有且只有一个实数λ,使得b =a λ6、平面向量得基本定理:如果21,e e就是一个平面内得两个不共线向量,那么对这一平面内得任一向量a,有且只有一对实数21,λλ使:2211e e a λλ+=,其中不共线得向量21,e e 叫做表示这一平面内所有向量得一组基底 二、平面向量得坐标表示1平面向量得坐标表示:平面内得任一向量a 可表示成a xi yj =+,记作a =(x,y)。

2平面向量得坐标运算:(1) 若()()1122,,,a x y b x y ==,则()1212,a b x x y y ±=±± (2) 若()()2211,,,y x B y x A ,则()2121,AB x x y y =-- (3) 若a =(x,y),则λa =(λx, λy)(4) 若()()1122,,,a x y b x y ==,则1221//0a b x y x y ⇔-= (5) 若()()1122,,,a x y b x y ==,则1212a b x x y y ⋅=⋅+⋅ 若a b ⊥,则02121=⋅+⋅y y x x 三.平面向量得数量积 1两个向量得数量积:已知两个非零向量a 与b ,它们得夹角为θ,则a ·b =︱a ︱·︱b ︱cos θ 叫做a 与b 得数量积(或内积) 规定00a ⋅=2向量得投影:︱b ︱cos θ=||a ba ⋅∈R,称为向量b 在a 方向上得投影投影得绝对值称为射影3数量积得几何意义: a ·b 等于a 得长度与b 在a 方向上得投影得乘积4向量得模与平方得关系:22||a a a a ⋅== 5乘法公式成立:()()2222a b a b a b a b +⋅-=-=-;()2222a b a a b b±=±⋅+222a a b b =±⋅+6平面向量数量积得运算律:①交换律成立:a b b a ⋅=⋅②对实数得结合律成立:()()()()a b a b a b R λλλλ⋅=⋅=⋅∈③分配律成立:()a b c a c b c ±⋅=⋅±⋅()c a b =⋅± 特别注意:(1)结合律不成立:()()a b c a b c ⋅⋅≠⋅⋅;(2)消去律不成立a b a c⋅=⋅不能得到b c =⋅(3)a b ⋅=0不能得到a =0或b =0 7两个向量得数量积得坐标运算:已知两个向量1122(,),(,)a x y b x y ==,则a ·b =1212x x y y +8向量得夹角:已知两个非零向量a 与b ,作OA =a , OB =b ,则∠AOB=θ (001800≤≤θ)叫做向量a 与b 得夹角cos θ=cos ,a b a b a b•<>=•=222221212121y x y x y y x x +⋅++当且仅当两个非零向量a 与b 同方向时,θ=00,当且仅当a 与b 反方向时θ=1800,同时0与其它任何非零向量之间不谈夹角这一问题9垂直:如果a 与b 得夹角为900则称a 与b 垂直,记作a ⊥b 10两个非零向量垂直得充要条件:a ⊥b ⇔a ·b=O ⇔2121=+y y x x第三章公式总结I 、sin:sin(α+β)=sin αcos β+sin βcos α sin(α-β)=sin αcos β-sin βcos αsin 2α-sin 2β=sin(α+β)sin(α-β) sin2α=2sin αcos α 1+sin2α=(sin α+cos α)2 1-sin2α=(sin α-cos α)22cos 1sin 22αα-=2tan 12tan2sin 2ααα+=2cos 12sin αα-±= )]cos()[cos(21sin sin βαβαβα+--=2sin2cos 2sin sin βαβαβα-+=- 2cos2sin 2sin sin βαβαβα-+=+ II 、cos:cos(α+β)=cos αcos β-sin αsin β cos(α-β)=cos αcos β+sin αsinβcos2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α=(cos α+sin α)(cos α-sin α)22cos 1cos 2αα+=2sin 112cos 22tan 12tan 1cos 2222ααααα-=-=+-=2sin2sin 2cos cos βαβαβα-+-=- 2cos2cos 2cos cos βαβαβα-+=+)]cos()[cos(21cos cos βαβαβα-++=2cos 2cos 12αα=+ 2sin 2cos 12αα=-III 、sin&cos:sin 2α-cos 2α=-cos2α (sin2α-cos2α)2=1-sin4αααα2sin 21cos sin = )]sin()[sin(21cos sin βαβαβα-++=角A 、B 、C 为△ABC 得三个内角:A+B+C=180°,sin(A+B)=sinC,.2sin 2cos ,2cos 2sin ,cos )cos(CB AC B A C B A =+=+-=+IV 、tan:βαβαβαtan tan 1tan tan )tan(-+=+ βαβαβαtan tan 1tan tan )tan(+-=- αααααααα2cos 12cos 1cos sin tan ,tan 1tan 22tan 2222+-==-= ααααααααααααααcos sin 1cos sin 1cos 1sin sin cos 1cos 1cos 12tan ,2tan 12tan2tan 2++-+=+=-=+-±=-=辅助角公式: Asin α+Bcos α=(A 2+B 2)1/2sin(α+t)。

相关文档
最新文档