空间几何体单元测试题
空间几何体单元测试卷答案

空间几何体单元测试卷答案 一、选择题 (每小题5分, 共30分)1. D2. B3. C4. B5. C6. C、 填空题 (每小题5分, 共 20 分)7. 球 8. R 9. . 2 10. 50cm 2三、 解答题 (共3小题,共 50分)11. 解:(1)设正四棱柱的底面边长为 a ,高为h , 由题意2a 2 + h 2= 81 ① ............................................................................ 2 分 2a 2 + 4ah = 144 即 a 2 + 2ah = 72 ② ........................ 4 分 ①X 8 —②X 9 得 7a 2— 18ah + 8h 2= 0 即(7a — 4h ) ( a -2h )= 0, ......... 6 分 因此7a — 4h = 0或a = 2h ,由此可见由①②构成方程组有两组满足条件的解,故 满足这些条件的正四棱柱有 2个. .................................. 8分(2)由(1)得,正四棱柱的底面边长a 和高h 满足7a = 4h 或a = 2h , 当7a = 4h 时,代入①可求得 a = 4,h=7;此时正四棱柱的体积为V=a 2h=42X 7=112(cm 3).当a = 2h 时,同理可得r 30 360… 八 当x = cm 时,S 取到最大值 cm 2. ............................................... 16分 7 72 3 113.解:(1)依题意,可得—r - 108 ① ................................ 3分3 6 且-r 3r 2h 108 ② ................... 6分 3 3 r 27 ,.•• r 3 (cm);代入②可求得 h 10 (cm).…9分(2)若将试管垂直放置,并注水至水面离管口 4cm 处,此时水的体积为2 3 2 2 212分a = 6, h=3;此时正四棱柱的体积为 V=a 2h=62X 3=108(cm 3). 12.解:如图SAB 是圆锥的轴截面,其中 SO = 12, OB = 5. 设圆锥内接圆柱底面半径为 0Q = 乂,由厶SO 1CSOB ,SO 1 _ SO O 1C OB ,SO 1 = SO OBOO 1 = SO — SO 1= 12—玛, 5 则圆柱的表面积19分 S = S 侧+ 2S 底=2 nx + 2 n x 2 = 2 n 7 2 12x — X 5 由①得 16分V r3r2(h 4) r2[ r (h 4)] ...............................3 32 2 33 [ 3 (10 4)] 72 (cm ) ....... ........................... 15分18分。
高中数学必修2第一章《空间几何体》单元练习题(含答案)

高中数学必修2 第一章《空间几何体1》单元练习题一、选择题1.有一个几何体的三视图如下图所示,这个几何体应是一个( )A.棱台B.棱锥C.棱柱D.都不对2.棱长都是1的三棱锥的表面积为()B.3.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是()A.25π B.50π C.125π D.都不对4.正方体的内切球和外接球的半径之比为()AB2 C.235.在△ABC中,02, 1.5,120AB BC ABC==∠=,若使绕直线BC旋转一周,则所形成的几何体的体积是()A.92π B.72π C.52π D.32π6.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是()A.130 B.140 C.150 D.160二、填空题1.一个棱柱至少有 _____个面,面数最少的一个棱锥有 ________个顶点,主视图左视图俯视图顶点最少的一个棱台有 ________条侧棱。
2.若三个球的表面积之比是1:2:3,则它们的体积之比是_____________。
3.正方体1111ABCD A B C D - 中,O 是上底面ABCD 中心,若正方体的棱长为a , 则三棱锥11O AB D -的体积为_____________。
4.如图,,E F 分别为正方体的面11A ADD 、面11B BCC 的中心,则四边形E BFD 1在该正方体的面上的射影可能是___________。
5.已知一个长方体共一顶点的三个面的面积分别是2、3、6,这个 长方体的对角线长是___________;若长方体的共顶点的三个侧面面积分别为3,5,15,则它的体积为___________. 三、解答题1.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12M ,高4M ,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4M (高不变);二是高度增加4M (底面直径不变)。
(完整版)空间几何体测试题及答案,推荐文档

而 l12 l22 4a2 , 即152 52 92 52 4a2 , a 8, S侧面积 ch 4 8 5 160
7.D
V1
: V2
(Sh) : (1 3
Sh)
3:1
8.C
V1 :V2 8 : 27, r1 : r2 2 : 3, S1 : S2 4 : 9
9.A
二、10、 3 R3
、
、
的几何体构成的组合体.
13.正方体 ABCD A1B1C1D1 中, O 是上底面 ABCD 中心,若正方体的棱长为 a ,
则三棱锥 O AB1D1 的体积为____________ 三、解答题(每小题 13 分,共 26 分) 14.将圆心角为1200 ,面积为 3 的扇形,作为圆锥的侧面,求圆锥的表面积和体积
空间几何体测试题
(满分 100 分)
一、选择题(每小题 6 分,共 54 分)
1.有一个几何体的三视图如下图所示,这个几何体应是一个( )
A.棱台
B.棱锥
C.棱柱
D.都不对
主视图
左视图
俯视图
3.对于一个底边在 x 轴上的三角形,采用斜二测画法作出其直观图,其直观图面积是原三
角形面积的( )
A. 2 倍
C.1: 2
D.1:4
二、填空题(每小题 5 分,共 20 分) 10.半径为 R 的半圆卷成一个圆锥,则它的体积为________.
11.右面三视图所表示的几何体是
.
正视图
侧视图
俯视图
12.已知,ABCD 为等腰梯形,两底边为 AB,CD 且 AB>CD,绕 AB 所在的直线旋转一周
所得的几何体中是由
11、 2 :1 12、 六棱锥
高中数学必修2第一章《空间几何体》单元检测卷含解析

必修2第一章《空间几何体》单元检测卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.以边长为1的正方形的一边所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于 ( ) A.2πB.πC.2 D.12.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )A.18+36 5 B.54+18 5C.90 D.813.已知一个底面是菱形、侧面是矩形的四棱柱,侧棱长为5,菱形的对角线的长分别是9和15,则这个棱柱的侧面积是 ( )A.3034 B.6034C.3034+135 D.1354.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为V1和V2,则V1:V2= ( )A.1:3 B.1:1C.2:1 D.3:15.若两个球的表面积之比为1:4,则这两个球的体积之比为 ( )A.1:2 B.1:4C.1:8 D.1:166.如图,△O′A′B′是水平放置的△OAB的直观图,则△OAB的面积为 ( )A .6B .3 2C .6 2D .127.某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为 ( )A .1B . 2C . 3D .28.若一圆柱与圆锥的高相等,且轴截面面积也相等,那么圆柱与圆锥的体积之比为 ( ) A .1 B .12 C .32D .349.半径为R 的半圆卷成一个圆锥,则它的体积为 ( ) D .324πR 3B .38πR 3C .525πR 3D .58πR 3 10.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有 ( )A .14斛B .22斛C .36斛D .66斛11.已知底面为正三角形,侧面为矩形的三棱柱有一个半径为 3 cm 的内切球,则此棱柱的体积是 ( )A .9 3 cm 3B .54 cm 3C .27 cm 3D .18 3 cm 312.一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为 ( )D .13+23π B .13+23π C .13+26π D .1+26π 第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.如图是△AOB 用斜二测画法画出的直观图,则△AOB 的面积是________.14.圆柱的高是8 cm ,表面积是130π cm 2,则它的底面圆的半径等于________cm.15.棱锥的高为16,底面积为512,平行于底面的截面面积为50,则截得的棱台的高为________. 16.如图是一个组合几何体的三视图,则该几何体的体积是________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)把一个圆锥截成圆台,已知圆台的上、下底面半径的比是1:4,母线长为10 cm.求圆锥的母线长.18.(本小题满分12分)如图所示,四棱锥V-ABCD的底面为边长等于2 cm的正方形,顶点V与底面正方形中心的连线为棱锥的高,侧棱长VC=4 cm,求这个四棱锥的体积.19.(本小题满分12分)如下图,一个圆锥形的空杯子上面放着一个半球形的冰淇淋,如果冰淇淋融化了,会溢出杯子吗?请用你的计算数据说明理由.20.(本小题满分12分)已知某几何体的侧视图与其正视图相同,相关的尺寸如图所示,求这个几何体的体积.21.(本小题满分12分)据说伟大的阿基米德逝世后,敌军将领马塞拉斯给他建了一块墓碑,在墓碑上刻了一个如图所示的图案,图案中球的直径与圆柱底面的直径和圆柱的高相等,圆锥的顶点为圆柱上底面的圆心,圆锥的底面是圆柱的下底面.试计算出图案中圆锥、球、圆柱的体积比.22.(本小题满分12分)如图所示,有一块扇形铁皮OAB,∠AOB=60°,OA=72 cm,要剪下来一个扇形环ABCD,作圆台形容器的侧面,并且余下的扇形OCD内剪下一块与其相切的圆形使它恰好作圆台形容器的下底面(大底面).试求:(1)AD的长;(2)容器的容积.必修2第一章《空间几何体》单元检测题侧A.【第2题解析】由三视图,知该几何体是一个斜四棱柱,所以该几何体的表面积S =2×3×6+2×3×3+2×3×35=54+185,故选B .【第5题解析】设两个球的半径分别为r 1、r 2,∴S 1=4πr 21,S 2=4πr 22. ∴S 1S 2=r 21r 22=14,∴r 1r 2=12. ∴V 1V 2=43πr 3143πr 32=(r 1r 2)3=18. 故选C . 【第6题解析】△OAB 是直角三角形,OA =6,OB =4,∠AOB =90°,∴S △OAB =12×6×4=12. 故选D.【第7题解析】根据三视图,可知几何体的直观图为如图所示的四棱锥V -ABCD ,其中VB ⊥平面ABCD ,且底面ABCD 是边长为1的正方形,VB =1.所以四棱锥中最长棱为VD . 连接BD ,易知BD =2,在Rt △VBD 中,VD =VB 2+BD 2= 3. 故选C .【第8题解析】设圆柱与圆锥的底半径分别为R , r ,高都是h ,由题设,2R ·h =12×2r ·h ,∴r =2R ,V 柱=πR 2h ,V 锥=13πr 2h =43πR 2h ,∴V 柱V 锥=34,故选D .【第9题解析】依题意,得圆锥的底面周长为πR ,母线长为R ,则底面半径为R 2,高为32R ,所以圆锥的体积为13×π×(R 2)2×32R =324πR 3. 故选A .【第10题解析】设圆锥底面半径为r ,则14×2×3r =8,∴r =163,所以米堆的体积为14×13×3×(163)2×5=3209,故堆放的米约为3209÷1.62≈22,故选B . 【第11题解析】由题意知棱柱的高为2 3 cm ,底面正三角形的内切圆的半径为 3 cm ,∴底面正三角形的边长为6 cm ,正三棱柱的底面面积为9 3 cm 2,∴此三棱柱的体积V =93×23=54(cm 3).故选B . 【第12题解析】根据三视图可知,四棱锥的底面是边长为1的正方形、高是1,半球的半径为22,所以该几何体的体积为13×1×1×1+12×43π(22)3=13+26π. 故选C .【第16题解析】由三视图可知该组合几何体下面是一个圆柱,上面是一个三棱柱,故所求体积为V =12×3×4×6+16π×8=36+128π. 故填36+128π. 【第17题答案】403cm【第17题解析】如图,设圆锥母线长为l ,则l -10l =14,所以l =403cm.【第18题答案】4143cm 3【第18题解析】如图,连接AC 、BD 相交于点O ,连接VO ,∵AB =BC =2 cm , 在正方形ABCD 中, 求得CO = 2 cm , 又在直角三角形VOC 中, 求得VO =14 cm ,∴V V -ABCD =13S ABCD ·VO =13×4×14=4143(cm 3).故这个四棱锥的体积为4143cm 3.【第20题答案】7π4.【第20题解析】由三视图可知,该几何体是大圆柱内挖掉了小圆柱,两个圆柱高均为1,底面是半径为2和32的同心圆,故该几何体的体积为4π×1-π(32)2×1=7π4.【第21题答案】1:2:3.【第21题解析】设圆柱的底面半径为r ,高为h ,则V 圆柱=πr 2h . 由题意知圆锥的底面半径为r ,高为h ,球的半径为r ,∴V 圆锥=13πr 2h ,∴V 球=43πr 3.又h =2r ,∴V 圆锥:V 球:V 圆柱=(13πr 2h ):(43πr 3):(πr 2h )=(23πr 3):(43πr 3):(2πr 3)=1:2:3.。
人教版数学高一第一章空间几何体单元测试精选(含答案)3

【答案】 2 1 3 4 2
评卷人 得分
三、解答题
试卷第 8页,总 11页
40.一张长为10cm ,宽为 5cm 的矩形纸,以它为侧面卷成一个圆柱,求该圆柱的体积.
125
【答案】
cm3 或 125
cm3 .
π
2π
41.如图所示,在四边形 ABCD 中, A0, 0 , B 1,0 , C 2,1 , D 0,3 ,将四边
A.等边三角形
B.直角三角形
C.三边中只有两边相等的等腰三角形
D.三边互不相等的三角形
【答案】A
8.如图所示,观察四个几何体,其中判断正确的是( ).
A.(1)是棱台 C.(3)是棱锥 【答案】C
B.(2)是圆台 D.(4)不是棱柱
试卷第 2页,总 11页
9.一个球的内接正方体的表面积为 54,则球的表面积为( )
1
PB1= A1B1,则多面体 P-BCC1B1 的体积为( )
4
A.
8 3
C.4
【答案】B
16
B.
3
D.5
评卷人 得分
二、填空题
27.圆台的上底面半径为 2,下底面半径为 3,截得此圆台的圆锥的高为 6,则此圆台
的体积为____________.
【答案】 38 π 3
28.已知在三棱锥 P ABC 中,侧面与底面所成的二面角相等,则点 P 在平面 ABC 内的射影一定是 ABC 的__________心.
所示),则其侧视图的面积是 ( )
A.4 3cm2
B.2 3 cm2
C.8 cm2
D.4 cm2
【答案】A 21.若一个圆柱的正视图与其侧面展开图相似,则这个圆柱的侧面积与全面积之比为( )
几何立体单元测试题及答案

几何立体单元测试题及答案一、选择题(每题2分,共20分)1. 一个立方体的体积是27立方厘米,它的边长是()厘米。
A. 3B. 6C. 9D. 122. 一个长方体的长、宽、高分别是5厘米、4厘米和3厘米,它的表面积是()平方厘米。
A. 94B. 104C. 114D. 1243. 一个圆柱的底面半径是2厘米,高是5厘米,它的体积是()立方厘米。
A. 12πB. 20πC. 30πD. 40π4. 一个圆锥的底面半径是3厘米,高是4厘米,它的体积是()立方厘米。
A. 12πB. 15πC. 18πD. 24π5. 一个球的体积是(4/3)πr³,其中r是球的半径。
如果球的体积是100π立方厘米,那么它的半径是()厘米。
A. 3B. 5C. 7D. 96. 一个正四面体的每个面都是等边三角形,且边长为a厘米,那么它的表面积是()平方厘米。
A. a²B. 2a²C. 3a²D. 4a²7. 一个正八面体的每个面都是等边三角形,且边长为a厘米,那么它的表面积是()平方厘米。
A. 2a²B. 3a²C. 4a²D. 6a²8. 一个正十二面体的每个面都是正五边形,且边长为a厘米,那么它的表面积是()平方厘米。
A. 3a²B. 5a²C. 6a²D. 9a²9. 一个正二十面体的每个面都是等边三角形,且边长为a厘米,那么它的表面积是()平方厘米。
A. 5a²B. 10a²C. 15a²D. 20a²10. 一个正六面体(立方体)的对角线长度是√3a厘米,其中a是它的边长。
如果边长是2厘米,那么对角线的长度是()厘米。
A. 2√3B. 3C. 4D. 6二、填空题(每题2分,共20分)11. 一个长方体的长、宽、高分别是l、w、h,它的体积公式是 V =_______ 。
高中数学-《空间几何体》单元测试卷
高中数学-《空间几何体》单元测试卷一、选择题(每题5分)1.下列说法正确的是()A.圆锥的侧面展开图是一个等腰三角形B.棱柱即是两个底面全等且其余各面都是矩形的多面体C.任何一个棱台都可以补一个棱锥使它们组成一个新的棱锥D.通过圆台侧面上一点,有无数条母线2.一个几何体的三视图如图所示,其中正视图与侧视图都是边长为2的正三角形,则这个几何体的侧面积为()A.B.2πC.3πD.4π3.如图是由哪个平面图形旋转得到的()A.B.C.D.4.一个圆锥的母线长为20cm,母线与轴的夹角为30°,则圆锥的高为()A.B.C.20cm D.10cm5.(5分)已知正方形的直观图是有一条边长为4的平行四边形,则此正方形的面积是()A.16 B.16或64 C.64 D.都不对6.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为V1和V2,则V1:V2=()A.1:3 B.1:1 C.2:1 D.3:17.(5分)圆锥的轴截面是等腰直角三角形,侧面积是16π,则圆锥的体积是()A.B.C.64πD.128π8.一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是()A.B.C.D.9.一个几何体的三视图如图,该几何体的表面积是()A.372 B.360 C.292 D.28010.将正方体(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的左视图为()A.B.C.D.二、填空题(每题5分)11.已知棱台的上下底面面积分别为4,16,高为3,则该棱台的体积为.12.半径为R的半圆卷成一个圆锥,则它的体积为.13.正方体的内切球和外接球的半径之比为.14.一个直径为32厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高9厘米则此球的半径为厘米.15.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是.三、解答题16.(2014秋•瓯海区校级期中)把一个圆锥截成圆台,已知圆台的上、下底面半径的比是1:4,母线长10cm.求:圆锥的母线长.17.画出下列空间几何体的三视图.18.(如图)在底面半径为2母线长为4的圆锥中内接一个高为的圆柱,求圆柱的表面积.19.(2010秋•海南校级期末)将圆心角为120°,面积为3π的扇形,作为圆锥的侧面,求圆锥的表面积和体积.20.一个空间几何体的底面是边长为3的正三角形,侧棱垂直于底面,它的三视图如图所示,AA1=3.(1)请画出它的直观图(不要求写出画法);(2)求这个几何体的表面积和体积.21.如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=,AD=2,求四边形绕AD旋转一周所围成几何体的表面积及体积.参考答案与试题解析一、选择题(每题5分)1.下列说法正确的是()A.圆锥的侧面展开图是一个等腰三角形B.棱柱即是两个底面全等且其余各面都是矩形的多面体C.任何一个棱台都可以补一个棱锥使它们组成一个新的棱锥D.通过圆台侧面上一点,有无数条母线【考点】棱台的结构特征;棱柱的结构特征;棱锥的结构特征.【专题】空间位置关系与距离.【分析】根据圆锥的几何特征,可判断A;根据棱柱的几何特征,可判断B;根据棱台的几何特征,可判断C;根据圆台的几何特征,可判断D.【解答】解:圆锥的侧面展开图是一个扇形,故A错误;棱柱即是两个底面全等且平行,其它各面的交线均互相平行的多面体,故B错误;棱台是由一个大棱锥被一个平行于底面的平面所截,夹在截面与底面的部分,故任何一个棱台都可以补一个棱锥使它们组成一个新的棱锥,故C正确;通过圆台侧面上一点,有且只有一条母线,故D错误;故选:C【点评】本题考查的知识点是棱锥,棱台,棱柱,圆台,圆锥,圆柱的几何特征,难度不大,属于基础题.2.一个几何体的三视图如图所示,其中正视图与侧视图都是边长为2的正三角形,则这个几何体的侧面积为()A.B.2πC.3πD.4π【考点】由三视图求面积、体积.【专题】计算题.【分析】由已知中的三视图,我们可以确定该几何体为圆锥,根据正视图与侧视图都是边长为2的正三角形,求出圆锥的底面半径和母线长,代入圆锥侧面积公式,即可得到答案.【解答】解:由已知中三视图可得该几何体为一个圆锥又由正视图与侧视图都是边长为2的正三角形故底面半径R=1,母线长l=2则这个几何体的侧面积S=πRl=2π故选B【点评】本题考查的知识点是由三视图求面积,其中根据已知中的三视图判断出几何体的形状及圆锥的底面半径和母线长是解答本题的关键.3.如图是由哪个平面图形旋转得到的()A.B.C.D.【考点】旋转体(圆柱、圆锥、圆台).【专题】阅读型.【分析】利用所给的几何体是由上部的圆锥和下部的圆台组合而成的,从而得到轴截面的图形.【解答】解:图中所给的几何体是由上部的圆锥和下部的圆台组合而成的,故轴截面的上部是直角三角形,下部为直角梯形构成,故选D.【点评】本题考查旋转体的结构特征,旋转体的轴截面的形状.4.一个圆锥的母线长为20cm,母线与轴的夹角为30°,则圆锥的高为()A.B.C.20cm D.10cm【考点】棱锥的结构特征.【专题】计算题.【分析】通过圆锥的母线长为20cm,母线与轴的夹角为30°,求出圆锥的高即得.【解答】解:由题设条件可知,在直角三角形中,圆锥的高:h=20cos30°=20×=.故选A.【点评】本题是基础题,考查圆锥的几何体的特征,正确利用圆锥的母线,底面半径构成的直角三角形,是解题的关键,考查计算能力.5.(5分)已知正方形的直观图是有一条边长为4的平行四边形,则此正方形的面积是()A.16 B.16或64 C.64 D.都不对【考点】平面图形的直观图.【专题】计算题.【分析】应分直观图中的平行四边形哪条边为4,两种情况,由斜二测画法规则可知,原正方形的边长可为4或8,求其面积即可.【解答】解:由斜二测画法规则可知,原正方形的边长可为4或8,故其面积为16或64.故选B【点评】本题考查对斜二测画法的理解,属基础知识的考查.6.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为V1和V2,则V1:V2=()A.1:3 B.1:1 C.2:1 D.3:1【考点】棱柱、棱锥、棱台的体积.【专题】计算题.【分析】由柱体,锥体的体积公式,代入计算即可.【解答】解:设圆柱,圆锥的底面积为S,高为h,则由柱体,锥体的体积公式得:故选D.【点评】本题考查柱体,锥体体积公式的直接应用,是基础题目.7.(5分)圆锥的轴截面是等腰直角三角形,侧面积是16π,则圆锥的体积是()A.B.C.64πD.128π【考点】旋转体(圆柱、圆锥、圆台).【专题】空间位置关系与距离.【分析】设底面半径为r,母线为l,由轴截面是等腰直角三角形得l=r,代入S侧=πrl求出r和l,再求出圆锥的高,代入体积公式计算.【解答】解:设圆锥的底面半径为r,母线为l,∵圆锥的轴截面是等腰直角三角形,∴2r=,即l=r,由题意得,侧面积S侧=πrl==16,解得r=4,∴l=4,圆锥的高h==4,∴圆锥的体积V=Sh==,故选:A.【点评】本题考查圆锥的体积、侧面积,以及轴截面问题,属于基础题.8.一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是()A.B.C.D.【考点】棱柱、棱锥、棱台的侧面积和表面积;旋转体(圆柱、圆锥、圆台).【专题】计算题.【分析】设圆柱底面积半径为r,求出圆柱的高,然后求圆柱的全面积与侧面积的比.【解答】解:设圆柱底面积半径为r,则高为2πr,全面积:侧面积=[(2πr)2+2πr2]:(2πr)2=.故选A.【点评】本题考查圆柱的侧面积、表面积,考查计算能力,是基础题.9.一个几何体的三视图如图,该几何体的表面积是()A.372 B.360 C.292 D.280【考点】由三视图求面积、体积.【专题】计算题;压轴题.【分析】三视图很容易知道是两个长方体的组合体,得出各个棱的长度.即可求出组合体的表面积.【解答】解:该几何体由两个长方体组合而成,其表面积等于下面长方体的全面积加上面长方体的4个侧面积之和.S=2(10×8+10×2+8×2)+2(6×8+8×2)=360.故选B.【点评】把三视图转化为直观图是解决问题的关键.又三视图很容易知道是两个长方体的组合体,得出各个棱的长度.把几何体的表面积转化为下面长方体的全面积加上面长方体的4个侧面积之和.10.将正方体(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的左视图为()A.B.C.D.【考点】简单空间图形的三视图.【专题】计算题.【分析】直接利用三视图的画法,画出几何体的左视图即可.【解答】解:由题意可知几何体前面在右侧的射影为线段,上面的射影也是线段,后面与底面的射影都是线段,轮廓是正方形,AD1在右侧的射影是正方形的对角线,B1C在右侧的射影也是对角线是虚线.如图B.故选B.【点评】本题考查几何体的三视图的画法,考查作图能力.二、填空题(每题5分)11.已知棱台的上下底面面积分别为4,16,高为3,则该棱台的体积为28.【考点】棱柱、棱锥、棱台的体积.【专题】计算题.【分析】直接利用棱台的体积公式,求出棱台的体积.【解答】解:故答案为:28.【点评】本题考查棱台的体积,考查计算能力,是基础题.12.半径为R的半圆卷成一个圆锥,则它的体积为.【考点】旋转体(圆柱、圆锥、圆台).【专题】计算题.【分析】设圆锥底面圆的半径为r,高为h,根据圆锥是由半径为R的半圆卷成,求出圆锥的底面半径与高,即可求得体积.【解答】解:设圆锥底面圆的半径为r,高为h,则2πr=πR,∴∵R2=r2+h2,∴∴V=×π××=故答案为:【点评】本题考查圆锥的侧面展开图,考查圆锥的体积公式,属于基础题.13.正方体的内切球和外接球的半径之比为.【考点】球内接多面体.【专题】计算题.【分析】设出正方体的棱长,利用正方体的棱长是内切球的直径,正方体的对角线是外接球的直径,分别求出半径,即可得到结论.【解答】解:正方体的棱长是内切球的直径,正方体的对角线是外接球的直径,设棱长是a.a=2r内切球,r内切球=a=2r外接球,r外接球=,r内切球:r外接球=.故答案为:1:【点评】本题是基础题,本题的关键是正方体的对角线就是外接球的直径,正方体的棱长是内切球的直径,考查计算能力.14.一个直径为32厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高9厘米则此球的半径为12厘米.【考点】球的体积和表面积.【专题】计算题.【分析】根据圆柱水面升高的高度,求出水的体积,就是球的体积,然后求出球的半径.【解答】解:(cm)故答案为:12【点评】本题是基础题,考查圆柱的体积与球的体积的关系,考查计算能力,是送分题.15.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是.【考点】棱柱、棱锥、棱台的体积.【专题】计算题.【分析】利用正方体的体积减去8个三棱锥的体积,求解即可.【解答】解:在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥,8个三棱锥的体积为:=.剩下的凸多面体的体积是1﹣=.故答案为:.【点评】本题考查几何体的体积的求法,转化思想的应用,考查空间想象能力计算能力.三、解答题16.(2014秋•瓯海区校级期中)把一个圆锥截成圆台,已知圆台的上、下底面半径的比是1:4,母线长10cm.求:圆锥的母线长.【考点】旋转体(圆柱、圆锥、圆台).【专题】计算题.【分析】设圆锥的母线长为l,圆台上、下底半径为r,R.利用三角形相似,求出圆锥的母线长.【解答】解:设圆锥的母线长为l,圆台上、下底半径为r,R.∵∴∴答:圆锥的母线长为cm.【点评】本题考查圆锥的结构特征,考查计算能力,是基础题.17.画出下列空间几何体的三视图.【考点】简单空间图形的三视图.【专题】作图题.【分析】根据三视图的画法,直接画出(1)圆锥几何体的三视图;(2)下部是正六棱柱,上部是正六棱锥的三视图即可.【解答】解:(1)的三视图如下:(2)的三视图如下:【点评】三视图的画出,注意长对正,宽相等,高平齐的原则,同时注意看得到的为实线,看不到的为虚线,考查作图能力.18.(如图)在底面半径为2母线长为4的圆锥中内接一个高为的圆柱,求圆柱的表面积.【考点】棱柱、棱锥、棱台的体积.【专题】计算题;图表型.【分析】由已知中底面半径为2母线长为4的圆锥中内接一个高为的圆柱,我们可计算出圆柱的底面半径,代入圆柱表面积公式,即可得到答案.【解答】解:设圆锥的底面半径为R,圆柱的底面半径为r,表面积为S,底面半径为2母线长为4的圆锥的高为=2,则圆柱的上底面为中截面,可得r=1 (2分)∴2,∴.(6分)【点评】本题考查的知识点是圆柱的表面积,其中根据已知条件,求出圆柱的底面半径,是解答本题的关键.19.(2010秋•海南校级期末)将圆心角为120°,面积为3π的扇形,作为圆锥的侧面,求圆锥的表面积和体积.【考点】旋转体(圆柱、圆锥、圆台).【专题】计算题.【分析】设出圆锥的母线与底面半径,根据所给的圆锥的侧面积和圆心角,做出圆锥的母线长与底面半径,利用表面积公式和体积公式做出结果.【解答】解:设圆锥的母线为l,底面半径为r,∵3π=∴l=3,∴120°=,∴r=1,∴圆锥的高是∴圆锥的表面积是πr2+πrl=4π圆锥的体积是=【点评】本题考查圆锥的表面积和体积,解题时注意圆锥的展开图与圆锥的各个量之间的关系,做好关系的对应,本题是一个易错题.20.一个空间几何体的底面是边长为3的正三角形,侧棱垂直于底面,它的三视图如图所示,AA1=3.(1)请画出它的直观图(不要求写出画法);(2)求这个几何体的表面积和体积.【考点】由三视图求面积、体积.【专题】图表型;空间位置关系与距离.【分析】(1)根据几何体的三视图判断该几何体的形状,就可画出直观图.(2)由几何体的三视图可判断这个几何体是正三棱柱,所以体积是底面积乘高.根据三视图中所给数据,就可求出底面三角形的面积和高,进而求出体积及表面积.【解答】解:(1)这个几何体的直观图如图所示:(2)这个几何体是直三棱柱.由于底面正△ABC的边长为3,侧棱长BB′=CC′=AA′=3故所求全面积S=2S△ABC+3S BB'C'C=2×+3×3×3=+27;体积V=Sh==.【点评】本题考察了三视图、直观图的特点及其画法,直三棱柱体积的计算,需要有较强的空间想象力21.如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=,AD=2,求四边形绕AD旋转一周所围成几何体的表面积及体积.【考点】旋转体(圆柱、圆锥、圆台).【专题】计算题.【分析】旋转后的几何体是圆台除去一个倒放的圆锥,根据题目所给数据,求出圆台的侧面积、圆锥的侧面积、圆台的底面积,即可求出几何体的表面积.求出圆台体积减去圆锥体积,即可得到几何体的体积.【解答】解:四边形ABCD绕AD旋转一周所成的几何体,如右图:S表面=S圆台下底面+S圆台侧面+S圆锥侧面=πr22+π(r1+r2)l2+πr1l1===.体积V=V圆台﹣V圆锥=[25π++4π]×4﹣×2π×2×2=×39π×4﹣×8π=.所求表面积为:,体积为:.【点评】本题是基础题,考查旋转体的表面积与体积,转化思想的应用,计算能力的考查,都是为本题设置的障碍,仔细分析旋转体的结构特征,为顺利解题创造依据.。
空间几何体单元测试卷
空间几何体单元测试卷(时间:50分钟,满分:100分)一、选择题(每小题5分,共30分)1.在一个棱柱中,下列说法正确的是()A.只有两个面平行B.所有的棱都平行C.所有的面都是平行四边形D.两底面平行,且各侧棱也互相平行2.将图1所示的三角形绕直线l旋转一周,可以得到如图2所示的几何体的是哪一个三角形()3.如右图,能推断这个几何体可能是三棱台的条件是()A.A1B1=2,AB=3,B1C1=3,BC=4B.A1B l=1,AB=2,B l C l=1.5,BC=3,A1C1=2,AC=3C.A l B l=1,AB=2,B1C l=1.5,BC=3,A l C l=2,AC=4D.AB=A1B1,BC=B1C1,CA=C1A14.下列命题中错误的是()A.圆柱的轴截面是过母线的截面中面积最大的一个B.圆锥的轴截面是所有过顶点的截面中面积最大的一个C.圆台的所有平行于底面的截面都是圆D.圆锥所有的轴截面是全等的等腰三角形5.下面几何体正视图和左视图类似的一个是()6.如下图,一个封闭的立方体,它6个表面各标出1、2、3、4、5、6这6个数字,现放成下面3个不同的位置,则数字l、2、3对面的数字是()A.4、5、6 B.6、4、5 C.5、4、6 D.5、6、4二、填空题(每小题5分,共20分)7.一个几何体,无论我们从哪个方向看,看到的结果都是一样的,则该几何体必定为_____ _.8.将半径为R的圆分割成面积之比为1∶2∶3的三个扇形作为三个圆锥的侧面,设这三个圆锥的底面半径依次为r l,r2,r3,则r1+r2+r3=___ _.9.如图,在三棱锥S—ABC中,SA=SB=SC=1,∠ASB=∠ASC=∠BSC=30°,一只蚂蚁从点A出发沿三棱锥的表面爬行一周后又回到A点,则蚂蚁爬过的最短路程为___ __.10.如图所示的积木是由16块棱长为1cm的正方体堆积而成的,则它表面积为_______ .第9题图第10题图三、解答题(共3小题,共50分)11.(本小题16分)正四棱柱的表面积是144cm2,对角线长是9cm.(1)试问满足这些条件的正四棱柱有多少个?请证明你的结论.(2)求所有满足条件的正四棱柱的体积.12.(本小题16分)圆锥的底面半径为5cm,高为12cm,当它的内接圆柱的底面半径为何值时,圆锥的内接圆柱表面积有最大值?最大值是多少?13. (本小题18分)一试管的上部为圆柱形,底部为与圆柱底面半径相同的半球形. 圆柱形部分的高为h cm ,半径为r cm ,试管的容量为108πcm 3,半球部分容量为全试管容量的61. (1)求r 和h ;(2)若将试管垂直放置,并注水至水面离管口4cm 处,求水的体积.。
高中数学必修二第一章《空间几何体》单元测试卷及答案
高中数学必修二第一章《空间几何体》单元测试卷及答案(2套)测试卷一一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.已知某空间几何体的三视图如图所示,则此几何体为( )A .圆台B .四棱锥C .四棱柱D .四棱台2.如图,△O ′A ′B ′是水平放置的△OAB 的直观图,则△OAB 的面积为( )A .6B .32C .62D .123.已知一个底面是菱形的直棱柱的侧棱长为5,菱形的对角线的长分别是9和15,则这个棱柱的侧面积是( ) A .3034B .6034C .3034135+D .1354.半径为R 的半圆卷成一个圆锥,则它的体积为( ) A .3324R π B .338R π C .3525R π D .358R π 5.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为V 1和V 2,则V 1:V 2=( ) A .1:3B .1:1C .2:1D .3:16.若一个底面是正三角形的三棱柱的正视图如下图所示,其顶点都在一个球面上,则该球的表面积为( )A .163π B .193π C .1912π D .43π7.一个正方体的体积是8,则这个正方体的内切球的表面积是( ) A .8πB .6πC .4πD .π8.如图是一个空间几何体的三视图,如果直角三角形的直角边长均为1,那么这个几何体的体积为( )A .1B .12 C .13D .169.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有( )A .14斛B .22斛C .36斛D .66斛103cm 的内切球,则此棱柱的体积是( ) A .393B .354cmC .327cmD .318311.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A .1727 B .59C .1027 D .1312.如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器的厚度,则球的体积为( )A .3500cm 3πB .3cm 3866πC .3cm 31372πD .3cm 32048π 二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的________(填入所有可能的几何体前的编号).①三棱锥;②四棱锥;③三棱柱;④四棱柱;⑤圆锥;⑥圆柱.14.用斜二测画法画边长为2的正三角形的直观图时,如果在已知图形中取的x 轴和正三角形的一边平行,则这个正三角形的直观图的面积是__________________.15.棱锥的高为16,底面积为512,平行于底面的截面面积为50,则截得的棱台的高为__________________.16.如图是一个组合几何体的三视图,则该几何体的体积是__________________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)把一个圆锥截成圆台,已知圆台的上、下底面半径的比是1:4,母线长为10cm.求圆锥的母线长.18.(12分)如图是一个几何体的正视图和俯视图.(1)试判断该几何体是什么几何体?(2)画出其侧视图,并求该平面图形的面积;(3)求出该几何体的体积.19.(12分)如下图,一个圆锥形的空杯子上面放着一个半球形的冰淇淋,如果冰淇淋融化了,会溢出杯子吗?请用你的计算数据说明理由.20.(12分)已知某几何体的侧视图与其正视图相同,相关的尺寸如图所示,求这个几何体的体积.21.(12分)如图所示,设计一个四棱锥形冷水塔塔顶,四棱锥的底面是正方形,侧面是全等的等腰三角形,已知底面边长为2m,高为7m,制造这个塔顶需要多少铁板?22.(12分)如图,正方体ABCD-A′B′C′D′的棱长为a,连接A′C′,A′D,A′B,BD,BC′,C′D,得到一个三棱锥.求:(1)三棱锥A′-BC′D的表面积与正方体表面积的比值;(2)三棱锥A′-BC′D的体积.)答案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.【答案】D【解析】由几何体的三视图可得,该几何体为四棱台.故选D.【解析】△OAB 是直角三角形,OA =6,OB =4,∠AOB =90°,∴164122OAB S =⨯⨯=△.故选D .3.【答案】A【解析】由菱形的对角线长分别是9和15,得菱形的边长为22915334222⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,则这个菱柱的侧面积为3434530342⨯⨯=.故选A . 4.【答案】A【解析】依题意,得圆锥的底面周长为πR ,母线长为R ,则底面半径为2R,高为32R ,所以圆锥的体积2313332224R R R ⎛⎫⨯π⨯⨯=π ⎪⎝⎭.故选A . 5.【答案】D【解析】()121::3:13V V Sh Sh ⎛⎫== ⎪⎝⎭.故选D .6.【答案】B【解析】设球半径是R ,依题意知,该三棱柱是一个底面边长为2,侧棱长为1的正三棱柱,记上,下底面的中心分别是O 1,O ,易知球心是线段O 1O 的中点,于是222123192312R ⎛⎫⎛⎫=+= ⎪ ⎪ ⎪⎝⎭⎝⎭,因此所求球的表面积是2191944123R ππ=π⨯=, 故选B . 7.【答案】C【解析】设正方体的棱长为a ,则a 3=8,所以a =2,而此正方体内的球直径为2,所以S 表=4πr 2=4π.故选C . 8.【答案】C【解析】该几何体的直观图为如图所示的四棱锥P -ABCD ,且P A =AB =AD =1,P A ⊥AB ,P A ⊥AD ,四边形ABCD 为正方形,则2111133V =⨯⨯=,故选C .【解析】设圆锥底面半径为r ,则12384r ⨯⨯=,∴163r =,所以米堆的体积为21116320354339⎛⎫⨯⨯⨯⨯= ⎪⎝⎭,故堆放的米约为320 1.62229÷≈,故选B . 10.【答案】B【解析】由题意知棱柱的高为23cm ,底面正三角形的内切圆的半径为3cm , ∴底面正三角形的边长为6cm ,正三棱柱的底面面积为293cm ,∴此三棱柱的体积()3932354cm V =⨯=.故选B .11.【答案】C【解析】由零件的三视图可知,该几何体为两个圆柱组合而成,如图所示.切削掉部分的体积V 1=π×32×6-π×22×4-π×32×2=20π(cm 3), 原来毛坯体积V 2=π×32×6=54π(cm 3).故所求比值为1220105427V V π==π.故选C . 12.【答案】A【解析】设球的半径为R ,则由题知球被正方体上面截得圆的半径为4, 球心到截面圆的距离为R -2,则R 2=(R -2)2+42,解得R =5.∴球的体积为3345500cm 33π⨯π=.故选A .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.【答案】①②③⑤【解析】三棱锥的三视图中含有三角形,∴正视图有可能是三角形,满足条件. 四棱锥的三视图中含有三角形,满足条件. 三棱柱的三视图中含有三角形,满足条件. 四棱柱的三视图中都为四边形,不满足条件. 圆锥的三视图中含有三角形,满足条件. 圆柱的三视图中不含有三角形,不满足条件. 故答案为①②③⑤.14.【答案】6415.【答案】11【解析】设棱台的高为x ,则有2165016512x -⎛⎫= ⎪⎝⎭,解之,得x =11. 16.【答案】36+128π【解析】由三视图可知该组合几何体下面是一个圆柱,上面是一个三棱柱,故所求体积为1346168361282V =⨯⨯⨯+π⨯=+π.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.【答案】403cm . 【解析】如图,设圆锥母线长为l ,则1014l l -=,所以cm 403l =.18.【答案】(1)正六棱锥;(2)见解析,232a ;(3)332a .【解析】(1)由该几何体的正视图和俯视图可知该几何体是一个正六棱锥. (2)该几何体的侧视图如图.其中AB =AC ,AD ⊥BC ,且BC 的长是俯视图正六边形对边的距离,即3BC a =,AD 是正六棱锥的高,即3AD a =,所以该平面图形的面积为2133322a a a =.(3)设这个正六棱锥的底面积是S ,体积为V ,则223336S =,所以2313333322V a a a =⨯⨯=.19.【答案】不会,见解析.【解析】因为()33314144134cm 2323V R =⨯π=⨯⨯π⨯≈半球,()22311412201cm 33V r h =π=π⨯⨯≈圆锥,134<201,所以V 半球<V 圆锥,所以,冰淇淋融化了,不会溢出杯子. 20.【答案】74V π=. 【解析】由三视图可知,该几何体是大圆柱内挖掉了小圆柱,两个圆柱高均为1,底面是半径为2和32的同心圆,故该几何体的体积为23741124V π⎛⎫=π⨯-π⨯= ⎪⎝⎭.21.【答案】282m .【解析】如图所示,连接AC 和BD 交于O ,连接SO .作SP ⊥AB ,连接OP .在Rt △SOP 中,)7m SO =,()11m 2OP BC ==,所以)22m SP =, 则△SAB 的面积是)2122222m 2⨯⨯=.所以四棱锥的侧面积是)242282m ⨯,即制造这个塔顶需要282m 铁板.22.【答案】(13;(2)33a .【解析】(1)∵ABCD -A ′B ′C ′D ′是正方体, ∴2A B A C A D BC BD C D a ''''''======,∴三棱锥A ′-BC ′D 的表面积为213422232a a a ⨯=.而正方体的表面积为6a 2,故三棱锥A ′-BC ′D 的表面积与正方体表面积的比值为2233a . (2)三棱锥A ′-ABD ,C ′-BCD ,D -A ′D ′C ′,B -A ′B ′C ′是完全一样的.故V三棱锥A′-BC′D=V正方体-4V三棱锥A′-ABD=3 32114323a a a a-⨯⨯⨯=测试卷二一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.下图中的图形经过折叠不能围成棱柱的是()2.一个几何体的三视图如图所示,则这个几何体的体积等于()A.4 B.6 C.8 D.123.下列命题中,正确的命题是()A.存在两条异面直线同时平行于同一个平面B.若一个平面内两条直线与另一个平面平行,则这两个平面平行C.底面是矩形的四棱柱是长方体D.棱台的侧面都是等腰梯形4.水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图所示,是一个正方体的表面展开图,若图中“2”在正方体的上面,则这个正方体的下面是()A.0 B.9 C.快D.乐5.如图,O A B'''△是水平放置的OAB△的直观图,则AOB△的面积是()。
空间几何体测试题及答案.doc
空间几何体测试题(满分100分)一、选择题(每小题6分,共54分)1.柯一个几何体的三视阁如下阁所示,这个几何体应是一个(A.棱台B.棱锥C.棱柱D.都不对3. 对于一个底边在X 轴上的三角形,采用斜二测凼法作出观图,其直观图血积是原三角 形面积的()3. 棱长都是1的三棱锥的表凼积为()A. V3B. 2^3C. 3^3D. 4^34. 长方体的一个顶点上三条棱长分别是3,4,5,且仑的8个顶点都在同一球面上,则这个球的表曲'积是()A. 25TTB. 507TC. 125兀D.都不对 5. 正方体的内切球和外接球的半径之比为()A. 73:1B. 73:2C. 2:^3D. ^3:36. 底面是菱形的棱柱其侧棱乘直于底面,且侧棱长为5,它的对角线的K:分别是9和15,则这个棱柱的侧而积是()A. 130B. 140C. 150D. 1607. 已知岡柱与圆锥的底側积相等,高也相等,它们的体积分别为V 和V 2,则()A. 1:3B. 1:1C. 2:1D. 3:18. 如果两个球的体积之比为8:27,那么两个球的表面积之比为() A. 8:27 B. 2:3 C. 4:9 D. 2:99. 圆锥平行于底而的截而而积是底面积的一半,则此截面分圆锥的高为上、卜‘两段的比为 ()A.-1) B. 1:2C. 1: y/2D. 1:4二、填空题(每小题5分,共20分)10. 半径为/?的半圆卷成一个岡锥,则它的体积为 _________ .俯视图A. 2倍主视图 左视图俯视阁12. 己知,ABCD 为等腰梯形,两底边为AB ,CD 且AB 〉CD,绕AB 所在的直线旋转一周所 13. H •:方体—屮,0是上底面中心,若正方体的棱为《,则三棱锥O - AB,D X 的体积为 ______________三、解答题(每小题13分,共26分)14. 将圆心角为120(),而积为3兀的扇形,作为圆锥的侧而,求圆锥的表而积和体积15. (如阳在欣半径为2,时线长为4的圆锥中内接一个高为人的圆柱, 求岡柱农面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
o'
x'
C
A
《空间几何体》单元测试题
一.选择题(共10小题,每小题5分) 1、下列命题正确的是( )
A 、以直角三角形的一直角边为轴旋转所得的旋转体是圆锥;
B 、以直角梯形的一腰为轴旋转所得的旋转体是圆台;
C 、圆柱、圆锥、圆台都有两个底面;
D 、圆锥的侧面展开图为扇形,这个扇形所在圆的半径等于圆锥底面圆半径。
2、圆锥的底面半径为1,高为3,则圆锥的表面积为( ) A 、π B 、π2 C 、π3 D 、π4 3、关于斜二侧画法,下列说法不正确的是( )
A 、原图形中平行于x 轴的线段,其对应线段平行于x ’ 轴,长度不变;
B 、原图形中平行于y 轴的线段,其对应线段平行于y ’ 轴,长度变为原来的
2
1; C 、在画与直角坐标系xoy 对应的x ‘o ’y ’时, x ’o ’y ’必须是︒45 D 、在画直观图时由于选轴的不同,所得的直观图可能不同。
4、一个水平放置的平面图形的直观图是一个底角为︒45,腰和上底长均为1的
等腰梯形,则该平面图形的面积等于( )
A 、2221+
B 、2
2
1+
C 、21
+
D 、22+
5、如图,甲、乙、丙是三个立方体图形的三视图,甲、乙、丙对应的标号正确的是( ).
①长方体 ②圆锥 ③三棱锥 ④圆柱
A .④③②
B . ②①③
C . ①②③
D . ③②④ 6、如果两个球的体积之比为8:27,那么这两个球的表面积之比为( ) A 、8:27 B 、2:3 C 、4:9 D 、2:9 7如图是长宽高分别为3、2、1在A 处, C '处有一小虫被蜘蛛网粘住,则蜘蛛沿正
方体表面从A 点爬到点 C '的最短距离为( ) A 、31+ B 、102+ C 、23 D 、32
第十题
N M C
C'
A
C
C'
8、圆柱的侧面展开图是边长为6π和4π的矩形,则圆柱的全面积为( ) A.6π(4π+3) B.8π(3π+1)
C.6
π(4π+3)或8π(3π+1) D.6π(4
π+1
)或8π(3π+2)
9、一个空间几何体的正视图、侧视图、俯视图如下图所示,则该几何体的表面积为( )
A 、π9
B 、π10
C 、π11
D 、π12
10、如图所示的正方体中,M 、N 分别是AA ''、C C 的中点,作四边形D MBN ',则四边形D MBN '在正方体各个面上的正投影图形中,不可能出现的是( )
D
C B
A
第九题
二.填空题(共5小题,每题5分)
11、直棱柱的侧面展开图是________,正棱锥的侧面展开图是一些全等的________
12、五棱台的上、下底面均是正五边形,边长分别是6 cm 和30 cm,侧面是全等的等腰梯形,侧棱长是13 cm,则它的侧面积为__________________
13、一个长方体的各顶点均在同一球的球面上 且一个顶点上的三条棱的长分别为1、
2、3,则此球的表面积为 。
14、若与球心距离为4的平面截球体所得的圆 面半径为3,则球的体积为
B
13. 14. 15. 16. 三、解答题
15、如图、梯形ABCD 中,AB//CD ,AB=4cm ,CD=2cm ,2
π
=
∠A ,试画出它
的直观图。
(保留作图痕迹)
16、右图几何体上半部分是母线长为5,底面圆半径为3下半部分是下底面圆半径为2,母线长为2几何体的表面积和体积。
侧视
17、一几何体的上半部分是底边边长为2cm ,高为3cm 的正三棱柱,下半部分是长宽高分别为3cm ,2cm ,3cm 的长方体,请画出该几何体的三视图。
18、某高速公路收费站入口处的安全标识墩如图所示,墩的上半部分是正四棱锥P-EFGH ,下半部分是长方体ABCD-EFGH ,图2、图3分别是该标识墩的正视图和俯视图。
求: (1)画出该标识墩的侧视图; (2)计算该标识墩的体积。