立体几何1 单元测试

合集下载

高一数学(必修二)立体几何初步单元测试卷及答案

高一数学(必修二)立体几何初步单元测试卷及答案

高一数学(必修二)立体几何初步单元测试卷及答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图所示,己知正方形O A B C ''''的边长为1,它是水平放置的一个平面图形的直观图,则其原图形的周长为( )A.8B.22C.4D.223+2.下列说法正确的是( ) A.三点确定一个平面B.圆心和圆上两个点确定一个平面C.如果两个平面相交有一个交点,则必有无数个公共点D.如果两条直线没有交点,则这两条直线平行3.正方体1111ABCD A B C D -中,P ,Q ,R 分别是AB ,AD ,11B C 的中点,那么正方体中过P ,Q ,R 的截面图形是( ) A.三角形B.四边形C.五边形D.六边形4.某圆柱的高为2,其正视图如图所示,圆柱上下底面圆周及侧面上的点A ,B ,D ,F ,C 在正视图中分别对应点A ,B ,E ,F ,C ,且3AE EF =,2BF BC =,异面直线AB ,CD 所成角的正弦值为45,则该圆柱的外接球的表面积为( )A.20πB.16πC.12πD.10π5.在《九章算术·商功》中将正四面形棱台体(棱台的上、下底面均为正方形)称为方亭.在方亭1111ABCD A B C D -中,1124AB A B ==,四个侧面均为全等的等腰梯形且面积之和为122( ) 282B.283142D.1436.异面直线是指( ) A.空间中两条不相交的直线B.分别位于两个不同平面内的两条直线C.平面内的一条直线与平面外的一条直线D.不同在任何一个平面内的两条直线7.如图,在正方体1111ABCD A B C D -中,E ,F 分别是11A D ,11B C 的中点,则与直线CF 互为异面直线的是( )A.1CCB.11B CC.DED.AE8.下列说法中正确的是( ) A.三点确定一个平面 B.四边形一定是平面图形 C.梯形一定是平面图形D.两个不同平面α和β有不在同一条直线上的三个公共点二、多选题(本题共4小题,每小题5分,共20分。

新人教版高中数学选修一第一单元《空间向量与立体几何》测试题(有答案解析)

新人教版高中数学选修一第一单元《空间向量与立体几何》测试题(有答案解析)

一、选择题1.如图,正三角形ACB 与正三角形ACD 所在平面互相垂直,则二面角B CD A --的余弦值是( )A .12B .22C .33D .552.如图,正方体1111ABCD A B C D -中,12AP PA =,点M 在侧面11AA B B 内.若1D M CP ⊥,则点M 的轨迹为( )A .线段B .圆弧C .抛物线一部分D .椭圆一部分3.如图,在三棱锥P ﹣ABC 中,△ABC 为等边三角形,△PAC 为等腰直角三角形,PA =PC =4,平面PAC ⊥平面ABC ,D 为AB 的中点,则异面直线AC 与PD 所成角的余弦值为( )A .14B 2C .2D .124.如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,且1,2AB BC ==,60ABC ∠=,AP ⊥平面ABCD ,AE PC ⊥于E ,下列四个结论:①AB AC ⊥;②AB ⊥平面PAC ;③PC ⊥平面ABE ;④BE PC ⊥ .其中正确的个数是( )A .1B .2C .3D .45.正方体1111ABCD A B C D -中,动点M 在线段1A C 上,E ,F 分别为1DD ,AD 的中点.若异面直线EF 与BM 所成的角为θ,则θ的取值范围为( ) A .[,]63ππB .[,]43ππC .[,]62ππD .[,]42ππ6.如图,正四棱锥P ABCD -中,已知PA a =,PB b =,PC c =,12PE PD =,则BE =( )A .131222a b c -+ B .111222a b c --- C .131222a b c --+ D .113222a b c --+ 7.在一直角坐标系中,已知(1,6),(3,8)A B --,现沿x 轴将坐标平面折成60︒的二面角,则折叠后,A B 两点间的距离为( ) A .41B 41C 17D .178.在三棱锥P ABC -中,2AB BC ==,22AC =PB ⊥平面ABC ,点M ,N 分别AC ,PB 的中点,6MN =,Q 为线段AB 上的点,使得异面直线PM 与CQ 所成的角的余弦值为3434,则BQ BA为( )A .14B .13C .12D .349.如图,平行六面体中1111ABCD A B C D -中,各条棱长均为1,共顶点A 的三条棱两两所成的角为60°,则对角线1BD 的长为( )A .1B .2C .3D .210.如图,在菱形ABCD 中,23ABC π∠=,线段AD 、BD 的中点分别为E 、F .现将ABD ∆沿对角线BD 翻折,当二面角A BD C --的余弦值为13时,异面直线BE 与CF 所成角的正弦值是( )A .35 B .16C .26D .1511.已知在四面体ABCD 中,点M 是棱BC 上的点,且3BM MC =,点N 是棱AD 的中点,若MN xAB y AC z AD =++其中,,x y z 为实数,则x y z ++的值是( )A .12B .12-C .-2D .212.如图在一个120︒的二面角的棱上有两点,A B ,线段,AC BD 分别在这个二面角的两个半平面内,且均与棱AB 垂直,若2AB =1AC =,2BD =,则CD 的长为( ).A .2B .3C .23D .413.已知A ,B ,C 三点不共线,O 是平面ABC 外一点,下列条件中能确定点M 与点A ,B ,C 一定共面的是( ) A .OM OA OB OC =++ B .23OM OA OB OC =++ C .111222OM OA OB OC =++ D .111333OM OA OB OC =++ 二、填空题14.若面α的法向量(1,,1)n λ=,面β的法向量(2,1,2)m =--,两面夹角的正弦值为346,则λ=________. 15.如图所示,长方体1111ABCD A B C D -中,2AB BC ==,14CC =,点E 是线段1CC 的中点,点F 是正方形ABCD 的中心,则直线1A E 与直线1B F 所成角的余弦值为___16.如图,在棱长为2的正方体1111ABCD A B C D -中,E 为BC 的中点,点P 在底面ABCD 上移动,且满足11B P D E ⊥,则线段1B P 的长度的最大值为______17.a ,b 为空间两条互相垂直的直线,直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以AC 为旋转轴旋转,30ABC ∠=︒,有下列结论: ①当直线AB 与a 成60°角时,AB 与b 成30°角; ②当直线AB 与a 成60°角时,AB 与b 成45°角; ⑤直线AB 与a 所成角的最大值为60°; ④直线AB 与a 所成角的最小值为30°;其中正确的是___________.(填写所有正确结论的编号)18.如图,四棱锥P ABCD -中,ABCD 是矩形,PA ⊥平面ABCD ,1==PA AB ,2BC =,四棱锥外接球的球心为O ,点E 是棱AD 上的一个动点,给出如下命题:①直线PB 与直线CE 所成的角中最小的角为45︒;②BE 与PC 一定不垂直;③三棱锥E BCO -的体积为定值;④CE PE +的最小值为22,其中正确命题的序号是__________.(将你认为正确的命题序号都填上)19.在一直角坐标系中,已知()1,6A -,()3,8B -,现沿x 轴将坐标平面折成60︒的二面角,则折叠后A ,B 两点间的距离为__________.20.如图,在正四棱柱1111ABCD A B C D -中,底面边长为2,直线1CC 与平面1ACD 所成角的正弦值为13,则正四棱柱的高为_____.21.平行六面体ABCD ﹣A 1B 1C 1D 1中,棱AB 、AD 、AA 1的长均为1,∠A 1AD =∠A 1AB =∠DAB 3π=,则对角线AC 1的长为_____.22.已知向量()()2,1,3,1,2,1a b =-=-,若()a ab λ⊥-,则实数λ的值为______. 23.如图,长方体1111ABCD A B C D -中,2AB AD ==,122AA =,若M 是1AA 的中点,则BM 与平面11B D M 所成角的正弦值是___________.24.正三棱柱ABC A B C '''-,2,22AB AA ='=,M 是直线BC 上的动点,则异面直线AB '与C M '所成角的范围为_____________.25.设向量(2,23,2),(4,21,32)a m n b m n =-+=+-,且//a b ,则a b ⋅的值为__________.26.若平面α,β的法向量分别为(4,0,3)u =,(1,1,0)v =-,则这两个平面所成的锐角的二面角的余弦值为________.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】取AC 的中点E ,连接BE,DE,证明BE 垂直于平面ACD ,以点E 为原点建立空间直角坐标系,分别求出平面BCD 和平面CDA 的法向量,利用空间向量公式即可求出所求二面角的余弦. 【详解】如图示,取AC 中点E ,连结BE 、DE ,在正三角形ACB 与正三角形ACD 中, BE ⊥AC ,DE ⊥AC ,因为面ACB ⊥面ACD ,面ACB 面=ACD AC ,所以BE ⊥面ADC ,以E 为原点,ED 为x 轴正方向,EC 为y 轴正方向,EB 为z 轴正方向,建立空间直角坐标系,设AC =2,则())()()(0,0,0,3,0,0,0,1,0,0,1,0,3E DC A B -,平面ACD 的一个法向量为(3EB = 而()()0,1,3,3,1,0CB CD =-=-,设(),,n x y z =为面BCD 的一个法向量,则:·0·0n CB n DC ⎧=⎨=⎩即 3030y z y x ⎧-+=⎪⎨-+=⎪⎩,不妨令x =1,则()1,3,1n = 设二面角B CD A --的平面角为θ,则θ为锐角, 所以35cos |cos ,||||||||35EB n EB n EB n θ⋅====⨯.故选:D 【点睛】向量法解决立体几何问题的关键:(1)建立合适的坐标系; (2)把要用到的向量正确表示; (3)利用向量法证明或计算.2.A解析:A 【分析】首先建立空间直角坐标系,利用向量数量积的坐标表示求点M 的轨迹. 【详解】如图建立空间直角坐标系,设棱长为3,()3,0,2P ,()0,3,0C,()10,0,3D ,()3,,M y z ,()13,,3D M y z =-,()3,3,2CP =-, ()193230D M CP y z ⋅=-+-=,整理为:3230y z --=,点M 的轨迹方程是关于,y z 的二元一次方程,所以轨迹是平面11ABB A 平面内,直线3230y z --=内的一段线段.故选:A 【点睛】关键点点睛:本题考查利用几何中的轨迹问题,本题的关键是解题方法,建立空间直角坐标系后,转化为坐标运算,根据方程形式判断轨迹.3.B解析:B 【分析】取AC 的中点O ,连结OP ,OB ,以O 为坐标原点,建立如图所示的空间直角坐标系,利用向量法能求出异面直线AC 与PD 所成角的余弦值. 【详解】取AC 的中点O ,连结OP ,OB ,PA PC =,AC OP ∴⊥,平面PAC ⊥平面ABC ,平面PAC平面ABC AC =,OP ∴⊥平面ABC ,又AB BC =,AC OB ∴⊥,以O 为坐标原点,建立如图所示的空间直角坐标系,PAC ∆是等腰直角三角形,4PA PC ==,ABC ∆为直角三角形,(22A ∴,0,0),(22C -,0,0),(0P ,0,22), (2D ,6,0),∴(42AC =-,0,0),(2PD =,6,22)-,cos AC ∴<,2||||424AC PD PD AC PD >===-⨯.∴异面直线AC 与PD 所成角的余弦值为24. 故选:B .【点睛】本题考查异线直线所成角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算与求解能力,考查化归与转化思想,是中档题.4.D解析:D 【详解】已知1260AB BC ABC ==∠=︒,,, 由余弦定理可得2222cos60AC AB BC AB BC =+-︒3=, 所以22AC AB +2BC =,即AB AC ⊥,①正确;由PA ⊥平面ABCD ,得AB PA ⊥,所以AB ⊥平面PAC ,②正确;AB ⊥平面PAC ,得AB ⊥PC ,又AE PC ⊥,所以PC ⊥平面ABE ,③正确;由PC ⊥平面ABE ,得PC BE ⊥,④正确,故选D .5.A解析:A 【详解】以D 点为原点,1,,DA DC DD 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系, 如图设DA 2=,易得()1,0,1EF=-,设()()()12,2,20122,2,2CM CA BM λλλλλλλλ==-≤≤=--,, 则cos θcos ,?BM EF =, 即())222201122321222823()33cos θλλλλλλ===≤≤-+-+-+.当13λ=时,cos θ31λ=时,cos θ取到最小值12,所以θ的取值范围为,63ππ⎡⎤⎢⎥⎣⎦. 故选:A.点睛:本题主要考查异面直线所成的角,属于难题.求异面直线所成的角主要方法有两种:一是向量法,根据几何体的特殊性质建立空间直角坐标系后,分别求出两直线的方向向量,再利用空间向量夹角的余弦公式求解;二是传统法,利用平行四边形、三角形中位线等方法找出两直线成的角,再利用平面几何性质求解.6.A解析:A 【分析】连接AC BD 、交点为O ,根据根据向量加法运算法则1122PO PA PC =+,1122PO PD PB =+,求得PD ,然后由BE BP PE =+求解.【详解】 如图所示:连接AC BD 、交点为O ,则1122PO a c =+, 又1122PO PD PB =+, 所以PD a c b =+-, 又11112222PE PD a c b ==+-, 所以131222BE BP PE a b c =+=-+. 故选:A. 【点睛】本题主要考查空间向量基本定理,还考查了数形结合的思想和运算求解的能力,属于中档题.7.D解析:D 【分析】画出图形,作,AC CD BD CD ⊥⊥,则6,8,4AC BD CD ===,可得0,0AC CD BD CD ⋅=⋅=,沿x 轴将坐标平面折成60︒的二面角,故两异面直线,CA DB所成的角为60︒,结合已知,即可求得答案. 【详解】如图为折叠后的图形,其中作,AC CD BD CD ⊥⊥则6,8,4AC BD CD ===,∴0,0AC CD BD CD ⋅=⋅=沿x 轴将坐标平面折成60︒的二面角∴两异面直线,CA DB 所成的角为60︒.可得:.cos6024CA DB CA DB ︒⋅=⋅= 故由AB AC CD DB =++ 得22||||AB AC CD DB =++2222+22AC CD DB AC CD CD DB AC DB +++⋅⋅+⋅=2222+22AC CD DB AC CD CD DB CA DB +++⋅⋅-⋅=36166448=++-68=||AB ∴=故选:D. 【点睛】本题考查了立体几何体中求线段长度,解题的关键是作图和掌握空间向量的距离求解公式,考查了分析能力和空间想象能力,属于中档题.8.A解析:A 【分析】以B 为原点,,,BA BC BP 坐标轴建立空间直角坐标系,设BQ BA λ=,由异面直线PM 与CQ 可列式22234343244PM CQ PMCQ,求出λ即可. 【详解】如图,在三棱锥P ABC -中,2AB BC ==,AC =BA BC ∴⊥,PB ⊥平面ABC ,以B 为原点,,,BA BC BP 坐标轴建立空间直角坐标系,可知()0,0,0B ,()0,2,0C ,()1,1,0M ,2,6BM MN,222BN MN BM ,4PB ∴=,则()0,0,4P ,设BQBAλ=,且01λ<<,则2,0,0Q ,可知1,1,4,2,2,0PM CQ, 12124022PM CQ , 22211432PM,244CQ,异面直线PM 与CQ 34, 22234343244PM CQ PM CQ ,解得14λ=或4λ=(舍去), 14BQ BA∴=. 故选:A. 【点睛】本题考查向量法求空间线段的比例分点,属于中档题.9.B解析:B 【分析】在平行六面体中1111ABCD A B C D -中,利用空间向量的加法运算得到11BD BA BB BC =++,再根据模的求法,结合各条棱长均为1,共顶点A 的三条棱两两所成的角为60°,由()()2211BD BA BB BC =++222111222BA BB BC BA BB BC BA BB BC =+++⋅+⋅+⋅求解.【详解】在平行六面体中1111ABCD A B C D -中,因为各条棱长均为1,共顶点A 的三条棱两两所成的角为60°,所以111111cos120,11cos6022BA BB BA BC BC BB ⋅=⋅=⨯⨯=-⋅=⨯⨯=, 所以11BD BA BB BC =++, 所以()()2211BD BA BB BC =++,222111222BA BB BC BA BB BC BA BB BC =+++⋅+⋅+⋅,113+22+2222⎛⎫=⨯-⨯⨯= ⎪⎝⎭,所以12BD =故选:B 【点睛】本题主要考查空间向量的运算以及向量模的求法,还考查了运算求解的能力,属于中档题.10.A解析:A 【分析】过E 作EH BD ⊥,交BD 于H 点,设二面角A BD C --的大小为α,设BE 与CF 的夹角为θ,则0,2π⎡⎤θ∈⎢⎥⎣⎦,由向量数量积的运算律得出CF BE CF HE ⋅=⋅,由题意可得出12HE BE =,利用数量积的定义可求出cos ,CF BE <>的值,即可求出cos θ的值,进而利用同角三角函数的平方关系可求出sin θ的值. 【详解】如下图所示,过E 作EH BD ⊥,交BD 于H 点,设BE 与CF 的夹角为θ,则0,2π⎡⎤θ∈⎢⎥⎣⎦, 记二面角A BD C --的大小为α,()CF BE CF BH HE CF HE ⋅=⋅+=⋅, 即()cos CF BE CF HE πα⋅=⋅-,即11cos ,23CF BE CF BE CF BE ⎛⎫⋅<>=⋅⋅- ⎪⎝⎭,1cos ,6CF BE ∴<>=-,所以1cos 6θ=,即35sin 6θ=,故选:A .【点睛】本题考查异面直线所成角的计算,同时也考查了二面角的定义,涉及利用空间向量数量积的计算,考查计算能力,属于中等题.11.B解析:B 【分析】利用向量运算得到131442MN AB AC AD =--+得到答案. 【详解】()3113142442MN MB BA AN AB AC AB AD AB AC AD =++=--+=--+ 故12x y z ++=- 故选:B 【点睛】本题考查了空间向量的运算,意在考查学生的计算能力.12.B解析:B 【分析】由CD CA AB BD =++,两边平方后展开整理,即可求得2CD ,则CD 的长可求. 【详解】 解:CD CA AB BD =++,∴2222222CD CA AB BD CA AB CA BD AB BD =+++++,CA AB ⊥,BD AB ⊥,∴0CA AB =,0BD AB =,()1||||cos 1801201212CA BD CA BD =︒-︒=⨯⨯=.∴2124219CD =+++⨯=,||3CD ∴=,故选:B . 【点睛】本题考查了向量的多边形法则、数量积的运算性质、向量垂直与数量积的关系,考查了空间想象能力,考查了推理能力与计算能力,属于中档题.13.D解析:D 【分析】首先利用坐标法,排除错误选项,然后对符合的选项验证存在,λμ使得AM AB AC λμ=+,由此得出正确选项.【详解】不妨设()()()()0,0,0,1,0,1,0,0,1,0,1,1O A B C .对于A 选项,()1,1,3OM OA OB OC =++=,由于M 的竖坐标31>,故M 不在平面ABC 上,故A 选项错误.对于B 选项,()231,3,6OM OA OB OC =++=,由于M 的竖坐标61>,故M 不在平面ABC 上,故B 选项错误. 对于C 选项,111113,,222222OM OA OB OC ⎛⎫=++= ⎪⎝⎭,由于M 的竖坐标312>,故M 不在平面ABC 上,故C 选项错误.对于D 选项,11111,,133333OM OA OB OC ⎛⎫=++= ⎪⎝⎭,由于M 的竖坐标为1,故M 在平面ABC 上,也即,,,A B C M 四点共面.下面证明结论一定成立: 由111333OM OA OB OC =++,得()()1133OM OA OB OA OC OA -=-+-, 即1133AM AB AC =+,故存在13λμ==,使得AM AB AC λμ=+成立,也即,,,A B C M 四点共面.故选:D.【点睛】本小题主要考查空间四点共面的证明方法,考查空间向量的线性运算,考查数形结合的数学思想方法,考查化归与转化的数学思想方法,属于中档题.二、填空题14.【分析】设平面的夹角为利用空间向量夹角公式得:由已知知建立关于的方程解方程即可得到答案【详解】设平面的夹角为又面的法向量面的法向量则利用空间向量夹角公式得:由已知得故故即解得:故答案为:【点睛】结论 解析:2±【分析】设平面,αβ的夹角为θ,利用空间向量夹角公式得:2cos 32⋅==+m n m nλθλ,由已知34sin 6=θ,知21cos 18=θ,建立关于λ的方程,解方程即可得到答案.【详解】设平面,αβ的夹角为θ,又面α的法向量(1,,1)n λ=,面β的法向量(2,1,2)m =--, 则利用空间向量夹角公式得:2222cos 1141432⋅--===+++++m n m nλλθλλ由已知得sin 6=θ,故22221cos 1sin 1118=-=-=-=⎝⎭⎝⎭θθ故2118=,即2222119(2)1822=⇒=++λλλλ,解得:λ=故答案为: 【点睛】结论点睛:本题考查利用空间向量求立体几何常考查的夹角:设直线,l m 的方向向量分别为,a b ,平面,αβ的法向量分别为,u v ,则 ①两直线,l m 所成的角为θ(02πθ<≤),cos a b a bθ⋅=;②直线l 与平面α所成的角为θ(02πθ≤≤),sin a u a uθ⋅=;③二面角l αβ--的大小为θ(0θπ≤≤),cos .u v u vθ⋅=15.【分析】以点为坐标原点所在直线分别为轴建立空间直角坐标系写出向量的坐标利用空间向量法可求得直线与直线所成角的余弦值【详解】如下图所示以点为坐标原点所在直线分别为轴建立空间直角坐标系则点因此直线与直线 【分析】以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系,写出向量1A E 、1B F 的坐标,利用空间向量法可求得直线1A E 与直线1B F 所成角的余弦值. 【详解】如下图所示,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系D xyz -,则点()12,0,4A 、()12,2,4B、()0,2,2E 、()1,1,0F , ()12,2,2A E =--,()11,1,4B F =---,11111126cos ,2332A EB F A E B F A E B F⋅<>===⨯⋅, 因此,直线1A E 与直线1B F 26. 故答案为:269. 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.16.3【分析】以为原点以分别为轴轴轴正方向建立空间直角坐标系设根据则可得从而点在底面内的轨迹为一条线段从而可得答案【详解】以为原点以分别为轴轴轴正方向建立空间直角坐标系则设则由则即则当时设所以点在底面内解析:3 【分析】以D 为原点,以,,DA DC DD '分别为x 轴,y 轴,z 轴正方向建立空间直角坐标系,设(),,0P x y ,根据11B P D E ⊥,则110PB ED ⋅=,可得220x y +-=,从而点P 在底面ABCD 内的轨迹为一条线段AF ,从而可得答案.【详解】以D 为原点,以,,DA DC DD '分别为x 轴,y 轴,z 轴正方向建立空间直角坐标系, 则()()()112,2,2,1,2,0,0,0,2B E D ,设(),,0P x y ,则02,02x y ≤≤≤≤()12,2,2PB x y =--,()11,2,2ED =--由11B P D E ⊥,则110PB ED ⋅=,即()22240x y -+⨯-+=,则220x y +-= 当0x =时,1y =,设()0,1,0F所以点P 在底面ABCD 内的轨迹为一条线段AF , 所以()()2221224548B P x y y y =-+-+=-+,则01y ≤≤又二次函数2548t y y =-+的对称轴为25,当01y ≤≤时,当1y =时,1B P 有最大值3. 故答案为:3【点睛】关键点睛:本题考查根据垂直关系得出动点的轨迹从而求线段的长度的最值,解答的关键是建立坐标系,利用向量根据11B P D E ⊥,则110PB ED ⋅=,可得220x y +-=,从而点P 在底面ABCD 内的轨迹为一条线段AF ,可得01y ≤≤,从而可出答案,属于中档题.17.②④【分析】由题意知abAC 三条直线两两相互垂直构建如图所示的长方体|AC|=1|AB|=2斜边AB 以直线AC 为旋转轴则A 点保持不变B 点的运动轨迹是以C 为圆心为半径的圆以C 坐标原点以CD 为x 轴CB 为解析:②④ 【分析】由题意知,a 、b 、AC 三条直线两两相互垂直,构建如图所示的长方体,|AC |=1,|AB |=2,斜边AB 以直线AC 为旋转轴,则A 点保持不变,B 点的运动轨迹是以C 为圆心,3为半径的圆,以C 坐标原点,以CD 为x 轴,CB 为y 轴,CA 为z 轴,建立空间直角坐标系,利用向量法求出结果.【详解】由题意知,a 、b 、AC 三条直线两两相互垂直,画出图形如图,不妨设图中所示的长方体高为13 故|AC |=1,|AB |=2,斜边AB 以直线AC 为旋转轴,则A 点保持不变, B 点的运动轨迹是以C 3为半径的圆,以C 坐标原点,以CD 为x 轴,CB 为y 轴,CA 为z 轴,建立空间直角坐标系,则D 3,0,0),A (0,0,1),直线a 的方向单位向量a =(0,1,0),|a |=1, 直线b 的方向单位向量b =(1,0,0),|b |=1,设B 点在运动过程中的坐标中的坐标B ′3θ3θ,0),其中θ为B ′C 与CD 的夹角,[02θπ∈,),∴AB ′在运动过程中的向量,'AB =3θ3θ,﹣1),|'AB |=2, 设'AB 与a 所成夹角为α∈[0,2π], 则()()10103cos 233,,,,θθα--⋅=='⋅cos sin a AB |sin θ|∈[03, ∴α∈[6π,2π],∴③错误,④正确. 设'AB 与b 所成夹角为β∈[0,2π], ()()11003c 33os ,-,,,θθβ-⋅'⋅===''⋅⋅cos sin AB b AB bb AB θ|,当'AB 与a 夹角为60°时,即α3π=,|sin θ|3πα===,∵cos 2θ+sin 2θ=1,∴cos β=|cos θ|=,∵β∈[0,2π],∴4πβ=,此时'AB 与b 的夹角为45°,∴②正确,①错误. 故答案为:②④. 【点睛】本题考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,涉及空间向量的知识点,属于中档题.18.①③④【分析】由三垂直可采用以为轴建立空间直角坐标系①中通过异面直线的夹角公式和不等式性质即可判断正确;②中结合向量数量积公式可判断错误;③采用补形法将四棱锥还原为长方体再结合等体积法即可求解三棱锥解析:①③④ 【分析】由,,AB AD AP 三垂直,可采用以,,AB AD AP 为,,x y z 轴建立空间直角坐标系,①中通过异面直线的夹角公式和不等式性质即可判断正确;②中结合向量数量积公式可判断错误;③采用补形法将四棱锥还原为长方体,再结合等体积法即可求解三棱锥E BCO -的体积为定值;④中将平面ABCD 以AD 为轴旋转到平面PAD 内形成平面''AB C D ,结合两点间直线最短即可判断正确 【详解】如图所示:以,,AB AD AP 为,,x y z 轴建立空间直角坐标系,则(0,0,1)P ,()1,0,0B ,(1,2,0)C ,设(0,,0)E y ,[]0,2y ∈,则(1,0,1)BP =-,(1,2,0)CE y =--,||cos ,||||2BP CE BP CE BP CE ⋅〈〉==≤⋅2y =时等号成立, 此时,4BP CE π〈〉=,故直线PB 与直线CE 所成的角中最小的角为45︒,①正确;(1,,0)(1,2,1)21BE PC y y ⋅=-⋅-=-,当12y =时,BE PC ⊥,②错误; 将四棱锥放入对应的长方体中,则球心为体对角线交点, 1111112323226BCE E BCO O BCE AP V V S --==⨯⨯=⨯⨯⨯⨯=△,③正确;如图所示:将平面ABCD 以AD 为轴旋转到平面PAD 内形成平面''AB C D ,则22''2222CE PE C E PE PC +=+≥=+=,当'PEC 共线时等号成立,④正确.故答案为:①③④.【点睛】本题考查向量法在立体几何中的实际应用,合理建系,学会将所求问题有效转化是解决问题的关键,如本题求线线角的最小值转化为求线线夹角的余弦值,求两直线垂直转化为数量积为0,求三棱锥体积的补形法和等体积法,利用旋转将异面直线的距离转化为共面直线的距离,属于中档题19.【分析】通过用向量的数量积转化求解距离即可【详解】解:在直角坐标系中已知现沿轴将坐标平面折成的二面角后在平面上的射影为作轴交轴于点所以所以所以故答案为:【点睛】此题考查与二面角有关的立体几何综合题考 解析:17【分析】通过用向量的数量积转化求解距离即可 【详解】解:在直角坐标系中,已知()1,6A -,()3,8B -,现沿x 轴将坐标平面折成60︒的二面角后,()1,6A -在平面xOy 上的射影为C ,作BD x ⊥轴,交x 轴于点D , 所以AB AC CD DB =++,所以2222222AB AC CD DB AC CD CD DB AC DB =+++⋅+⋅+⋅2221648268682=++-⨯⨯⨯=, 所以217AB =, 故答案为:17【点睛】此题考查与二面角有关的立体几何综合题,考查了数形结合的思想,属于中档题.20.4【分析】以为坐标原点所在直线分别为轴轴轴建立空间直角坐标系设求出平面的一个法向量则则可以得到答案【详解】解:以为坐标原点所在直线分别为轴轴轴建立如图所示的空间直角坐标系设则故设平面的一个法向量为则解析:4 【分析】以D 为坐标原点,1,,DA DC DD 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系, 设1DD a =,求出平面1ACD 的一个法向量n ,则11cos ,3n CC <>=,则可以得到答案. 【详解】解:以D 为坐标原点,1,,DA DC DD 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,设1DD a =,则(2,0,0)A ,(0,2,0)C ,1(0,0,)D a ,故(2,2,0)=-AC ,1(2,0,)AD a =-,1(0,0, )CC a =,设平面1ACD 的一个法向量为(,,)n x y z =,则122020n AC x y n AD x az ⎧⋅=-+=⎨⋅=-+=⎩,可取21,1,n a ⎛⎫= ⎪⎝⎭,故112122cos ,||||4242n CC n CC n CC a a a⋅<>===+⋅+, 又直线1CC 与平面1ACD 所成角的正弦值为13,21324a ∴=+,解得4a =.故答案为:4.【点睛】本题考查根据线面角,利用向量法求柱体的高,属于中档题.21.【分析】由题知:再给式子平方即可求出的长度【详解】如图由题意可知所以所以故答案为:【点睛】本题主要考查利用向量法求线段长度解题时要认真审题注意向量法的合理应用属于中档题 6【分析】由题知:11AC AB AD AA =++,再给式子平方即可求出1AC 的长度 【详解】如图,由题意可知,111AC AB AD CC AB AD AA =++=++,所以1221())(AC AB AD AA =++ 222111222AB AD AA AB AD AB AA AD AA +=++++1112(cos 60cos 60cos 60)6+++++==.所以16AC =6 【点睛】本题主要考查利用向量法求线段长度,解题时要认真审题,注意向量法的合理应用.属于中档题.22.2【分析】由题意知向量所以由空间向量的坐标运算即可求解【详解】由题意知向量所以又由解得【点睛】本题主要考查了空间向量的坐标运算及空间向量的数量积的运算其中解答中熟记空间向量的数量积的运算公式准确运算解析:2【分析】由题意知,向量()a a b λ⊥-,所以()0a a b λ⋅-=,由空间向量的坐标运算,即可求解. 【详解】由题意知,向量()a ab λ⊥-,所以()0a a b λ⋅-=, 又由()()()()222222132112311470a a b a a b λλλλ⎛⎫⎡⎤⋅-=-⋅=-++--⨯-+⨯+⨯=-=⎪⎣⎦⎝⎭,解得2λ=. 【点睛】本题主要考查了空间向量的坐标运算,及空间向量的数量积的运算,其中解答中熟记空间向量的数量积的运算公式,准确运算是解答的关键,着重考查了运算与求解能力,属于基础题.23.【分析】以点为坐标原点所在直线分别为轴建立空间直角坐标系利用空间向量法可求得直线与平面所成角的正弦值【详解】以点为坐标原点所在直线分别为轴建立如下图所示的空间直角坐标系则设平面的法向量为由可得令则可 解析:63【分析】以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系D xyz -,利用空间向量法可求得直线BM 与平面11B D M 所成角的正弦值.【详解】以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系D xyz -,则()2,2,0B、(12,2,B、(10,0,D、(M ,设平面11B D M 的法向量为(),,n x y z =,()112,2,0D B =,(12,0,D M =,由111100n D B n D M ⎧⋅=⎪⎨⋅=⎪⎩,可得22020x y x +=⎧⎪⎨=⎪⎩,令1x =,则1y =-,z =()1,1,n =-,(0,2,2BM =-,cos ,32n BM n BM n BM⋅<>===⨯⋅, 因此,BM 与平面11B D M 所成角的正弦值是3. . 【点睛】方法点睛:计算线面角,一般有如下几种方法:(1)利用面面垂直的性质定理,得到线面垂直,进而确定线面角的垂足,明确斜线在平面内的射影,即可确定线面角;(2)在构成线面角的直角三角形中,可利用等体积法求解垂线段的长度h ,从而不必作出线面角,则线面角θ满足sin hlθ=(l 为斜线段长),进而可求得线面角; (3)建立空间直角坐标系,利用向量法求解,设a 为直线l 的方向向量,n 为平面的法向量,则线面角θ的正弦值为sin cos ,a n θ=<>.24.【分析】建立如图所示的空间直角坐标系设由向量法求两异面直线所成角的余弦表示为的函数求出最大值和最小值后得的范围这里需引入函数用导数求出函数的最小值从而得出的最大值【详解】以为轴为轴建立如图所示的空间解析:,62ππ⎡⎤⎢⎥⎣⎦【分析】建立如图所示的空间直角坐标系,设CM kCB =,由向量法求两异面直线所成角的余弦cos θ表示为k 的函数,求出最大值和最小值后得θ的范围.这里需引入函数()f x 用导数求出函数的最小值,从而得出cos θ的最大值. 【详解】以AB 为x 轴,AA '为z 轴建立如图所示的空间直角坐标系A xyz -,则(2,0,B ',(2,0,0)B ,(1,3,0)C,(1,3,2C ',设CM kCB =,则k ∈R ,(1,CB =,(0,0,(1,(,,C M C C CM k k ''=+=-+=-.又(2,0,AB '=, 设直线AB '与C M '所成角为θ, 则cos 2AB C M AB C M θ''⋅==''=, 4k =时,min (cos )0θ=,设()f x =,则32224()(2)x f x x +'==+,12x <-时,()0f x '<,()f x 递减,12x >-时,()0f x '>,()f x 递增,∴12x =-时,()f x 取得极小值也是最小值132f ⎛⎫-=- ⎪⎝⎭,4x <时,()0f x <,4x >时,222(4)8162x x x x -=-+<+1<,∴max ()3f x =,max (cos )2θ==, 即0cos 2θ≤≤,∴,62ππθ⎡⎤∈⎢⎥⎣⎦.故答案为:,62ππ⎡⎤⎢⎥⎣⎦.【点睛】方法点睛:本题考查求异面直线所成的角.解题方法是空间向量法.求异面直线所成角的方法:(1)几何法(定义法):作出异面直线所成的角并证明,然后解三角形得解;(2)向量法:建立空间直角坐标系,求出两直线的方向向量的夹角余弦的绝对值得异面直线所成角的余弦值,从而得角.25.168【分析】根据向量设列出方程组求得得到再利用向量的数量积的运算公式即可求解【详解】由题意向量设又因为所以即解得所以所以故答案为:【点睛】本题主要考查了向量的共线的坐标运算以及向量的数量积的运算其解析:168 【分析】根据向量//a b ,设λab ,列出方程组,求得12λ=,得到(2,4,8),(4,8,16)a b ==,再利用向量的数量积的运算公式,即可求解. 【详解】由题意,向量//a b ,设λab ,又因为(2,23,2),(4,21,32)a m n b m n =-+=+-, 所以(2,23,2)(4,21,32)m n m n λ-+=+-,即2423(21)2(32)m m n n λλλ=⨯⎧⎪-=+⎨⎪+=-⎩,解得17,,622m n λ===,所以(2,4,8),(4,8,16)a b ==, 所以2448816168a b ⋅=⨯+⨯+⨯=.故答案为:168. 【点睛】本题主要考查了向量的共线的坐标运算,以及向量的数量积的运算,其中解答中熟记向量的共线条件,熟练应用向量的数量积的运算公式求解是解答的关键,着重考查了推理与运算能力,属于基础题.26.【分析】直接利用空间向量的数量积求解两个平面的二面角的大小即可【详解】解:两个平面的法向量分别为则这两个平面所成的锐二面角的大小是这两个平面所成的锐二面角的余弦值为故答案为:【点睛】本题考查空间二面解析:5【分析】直接利用空间向量的数量积求解两个平面的二面角的大小即可. 【详解】解:两个平面α,β的法向量分别为(4,0,3)u →=,(1,1,0)v →=-, 则这两个平面所成的锐二面角的大小是θ,2cos 4a ba bθ→→→→+===这两个平面所成的锐二面角的余弦值为5.故答案为:5. 【点睛】本题考查空间二面角的求法,空间向量的数量积的应用,考查计算能力.。

高一数学 立体几何初步章节测试题

高一数学 立体几何初步章节测试题

高一数学 立体几何初步章节测试题一、选择题(每小题5分,共60分)1、已知b a ,是直线,α,β,γ是平面,给出下列命题:①b a b a ⊥⊥⊥,,βα,则α⊥β;②,,γβγα⊥⊥则α//β;③αβα⊥⊥,b ,则β//b ;④b a ==γβγαβα ,,//,则β//a ,其中正确的命题序号是 ( )A 、①④B 、①③C 、①②④D 、③④2、一个长方体共一顶点的三个面的面积分别是6,3,2,则这个长方体的对角线的长为 ( )A 、32B 、23C 、6D 、63、相交成60°角的两条直线与平面α所成的角是45°,则这两条直线在平面α内射影的夹角是 ( )A 、90°B 、60°C 、45°D 、30°4、已知棱锥的顶点为P ,P 在底面上的射影为O ,PO=a ,现用平行于底面的平面去截这个棱锥,截面交PO 于M ,并使截得的两部分侧面积相等,设OM=b ,则b a ,的关系是 ( )A 、a b )12(-=B 、a b )12(+=C 、a b 222-=D 、a b 222+= 5、一个与球心距离为1的平面截球所得的圆面积为π,则球的表面积为 ( ) A 、π28 B 、8π C 、π24 D 、4π6、设三棱柱ABC —A 1B 1C 1的体积为V ,P 、Q 分别是侧棱AA 1,CC 1上的点,且PA=QC 1,则四棱锥B —APQC 的体积为 ( )A 、V 61B 、V 41C 、V 31D 、V 217、如图,四棱锥S —ABCD 的底面是边长为1的正方形, SD ⊥底面ABCD ,SB=3,则平面ASD 与平面BSC 所成的二面 角大小为 ( )A 、30°B 、45°C 、60°D 、90°8、下列图形中,不是三棱柱的展开图的是 ( )ABCDSA B C D9、如图所示的直观图,其平面图形的面积为 ) A 、3 B 、C 、6D 、 10、如图所示,在正方体ABCD —A 1B 1C 1D 1的侧面AB 1内有一动点P 到直线A 1B 1与直线BC 的距离相等,则动点P 所在曲线的形状为图中的()A B C D 11、四面体PABC 中,PA 、PB 、PC 两两垂直,则P 在平面ABC 的正投影是△ABC 的( ) A 、内心 B 、外心 C 、重心 D 、垂心12、△ABC 的边AB=5,BC=3,AC=4,设分别以此三边为轴,把△ABC 旋转一周,所得旋转体的体积为V AB ,V BC ,V AC ,则它们的大小关系是 ( )A 、V AB > V AC > V BC B 、V AB > V BC > V AC C 、V AB > V BC > V ACD 、V BC > V AC > V AB 二、填空(每小题5分,共20分)13、已知正四棱锥P —ABCD 的五个顶点都在同一球面上,若该正四棱锥的底面边长为4,侧棱长为62,则此球的表面积为 。

高一数学立体几何单元测试及答案

高一数学立体几何单元测试及答案

立体几何综合测评(满分:150分时间:120分钟)一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.给出下列命题,其中是真命题的为()(1)若两个平面平行,那么其中一个平面内的直线一定平行于另一个平面;(2)若两个平面平行,那么垂直于其中一个平面的直线一定垂直于另一个平面;(3)若两个平面垂直,那么垂直于其中一个平面的直线一定平行于另一个平面;(4)若两个平面垂直,那么其中一个平面内的直线一定垂直于另一个平面.A.(1)(2)B.(1)(3)C.(2)(4) D.(3)(4)A[(1)因为两个平面平行,所以两个平面没有公共点,即其中一个平面内的直线与另一个平面也没有公共点,所以(1)正确.(2)因为该直线与其中一个平面垂直,那么该直线必与其中两条相交直线垂直,又两个平面平行,故另一个平面也必定存在两条相交直线与该直线垂直,所以该直线与另一个平面也垂直,故(2)正确.(3)错,反例:该直线可以在另一个平面内.(4)错,反例:其中一个平面内也存在直线与另一个平面平行.综上:(1)(2)为真命题.]2.给出以下四个命题:①不共面的四点中,其中任意三点不共线;②若点A,B,C,D共面,点A,B,C,E共面,则点A,B,C,D,E共面;③若直线a,b共面,直线a,c共面,则直线b,c共面;④依次首尾相接的四条线段必共面.其中正确命题的个数是()A.0 B.1C.2 D.3B[①假设其中有三点共线,则该直线和直线外的另一点确定一个平面,这与四点不共面矛盾,故其中任意三点不共线,所以①正确;②如图,两个相交平面有三个公共点A,B,C,但A,B,C,D,E不共面;③显然不正确;④不正确.因为此时所得的四边形的四条边可以不在一个平面上,如空间四边形.]3.在正方体ABCD-A1B1C1D1中,棱所在直线与直线BA1是异面直线的条数为()A.4 B.5C.6 D.7C[如图,在正方体ABCD-A1B1C1D1中,与直线BA1异面的直线有CD,C1D1,C1C,D1D,B1C1,AD,共6条,故选C.]4.设l为直线,α,β是两个不同的平面.下列命题中正确的是()A.若l∥α,l∥β,则α∥βB.若l⊥α,l⊥β,则α∥βC.若l⊥α,l∥β,则α∥βD.若α⊥β,l∥α,则l⊥βB[对于A,若l∥α,l∥β,则α和β可能平行也可能相交,故错误;对于B,若l⊥α,l⊥β,则α∥β,故正确;对于C,若l⊥α,l∥β,则α⊥β,故错误;对于D,若α⊥β,l∥α,则l与β的位置关系有三种可能:l⊥β,l∥β,lβ,故错误.故选B.] 5.如图,已知P A⊥矩形ABCD所在的平面,则图中互相垂直的平面有()A.1对B.2对C.3对D.5对D[∵DA⊥AB,DA⊥P A,∴DA⊥平面P AB.同理BC⊥平面P AB,又AB⊥平面P AD,∴DC⊥平面P AD,∴平面P AD⊥平面AC,平面P AB⊥平面AC,平面PBC⊥平面P AB,平面P AB⊥平面P AD,平面PDC⊥平面P AD,共5对.]6.如图,α∩β=l,点A,C∈α,点B∈β,且BA⊥α,BC⊥β,那么直线l与直线AC的关系是()A.异面B.平行C.垂直D.不确定C[∵BA⊥α,α∩β=l,lα,∴BA⊥l.同理BC⊥l.又BA∩BC=B,∴l⊥平面ABC.∵AC平面ABC,∴l⊥AC.]7.下列命题中正确的是()A.将正方形旋转不可能形成圆柱B.以直角梯形的一腰为轴旋转所得的旋转体是圆台C.圆柱、圆锥、圆台的底面都是圆面D.通过圆台侧面上一点,有无数条母线C[将正方形绕其一边所在直线旋转可以形成圆柱,所以A错误;B中必须以垂直于底边的腰为轴旋转才能得到圆台,所以B错误;通过圆台侧面上一点,只有一条母线,所以D错误,故选C.] 8.如图所示的组合体,其构成形式是()A.左边是三棱台,右边是圆柱B.左边是三棱柱,右边是圆柱C.左边是三棱台,右边是长方体D.左边是三棱柱,右边是长方体D[根据三棱柱和长方体的结构特征,可知此组合体左边是三棱柱,右边是长方体.]9.设长方体的长,宽,高分别为2a,a,a,其顶点都在一个球面上,则该球的表面积为() A.3πa2B.6πa2C.12πa2D.24πa2B[由题可知,球的直径等于长方体的体对角线的长度,故2R=4a2+a2+a2,解得R=62a,所求球的表面积S=4πR2=6πa2.]10.设三棱柱的侧棱垂直于底面,所有棱的长都为a,顶点都在一个球面上,则该球的表面积为()A.πa2 B.73πa2C.113πa2D.5πa2B[由题意知,该三棱柱为正三棱柱,且侧棱与底面边长相等,均为a.如图,P为三棱柱上底面的中心,O为球心,易知AP=23×32a=33a,OP=12a,所以球的半径R=OA满足R2=⎝⎛⎭⎪⎫33a2+⎝⎛⎭⎪⎫12a2=7 12a 2,故S球=4πR2=73πa2.]11.已知直三棱柱ABC-A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为()A.3172B.210C.132D.310C[如图所示,由球心作平面ABC 的垂线,则垂足为BC 的中点M .又AM =12BC =52,OM =12AA 1=6,所以球O 的半径为R =OA =62+⎝ ⎛⎭⎪⎫522=132.]12.已知l ,m 表示两条不同的直线,α表示平面,则下列说法正确的是( ) A .若l ⊥α,m α,则l ⊥mB .若l ⊥m ,m α,则l ⊥αC .若l ∥m ,m α,则l ∥αD .若l ∥α,m α,则l ∥m A [对于A ,若l ⊥α,m α,则根据直线与平面垂直的性质,知l ⊥m ,故A 正确;对于B ,若l ⊥m ,m α,则l 可能在α内,故B 不正确;对于C ,若l ∥m ,m α,则l ∥α或l α,故C 不正确;对于D ,若l ∥α,m α,则l 与m 可能平行,也可能异面,故D 不正确.故选A.]二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 13.已知正六棱柱的侧面积为72 cm 2,高为6 cm ,那么它的体积为__________cm 3. 363 [设正六棱柱的底面边长为x cm ,由题意得6x ·6=72,所以x =2 cm , 于是其体积V =34×22×6×6=36 3 cm 3.]14.圆锥的表面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角的度数为________. 180° [S 底+S 侧=3S 底,2S 底=S 侧,即2πr 2=πrl ,得2r =l . 设侧面展开图的圆心角为θ,则θπl 180°=2πr ,∴θ=180°.]15.如图所示,在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是棱AA 1和AB 上的点,若∠B 1MN 是直角,则∠C1MN等于________.90°[∵B1C1⊥平面A1ABB1,MN平面A1ABB1,∴B1C1⊥MN.又∠B1MN为直角,∴B1M⊥MN.而B1M∩B1C1=B1,∴MN⊥平面MB1C1.又MC1平面MB1C1,∴MN⊥MC1,∴∠C1MN=90°.]16.棱长为1的正四面体内有一点P,由点P向各个面引垂线,垂线段分别为d1,d2,d3,d4,则d 1+d 2+d 3+d 4的值为________.63 [设四面体的高为h ,则h =12-⎝ ⎛⎭⎪⎫23×32×12=63,13Sh =13S (d 1+d 2+d 3+d 4),∴d 1+d 2+d 3+d 4=h =63.]B三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)如图,正方体ABCD -A ′B ′C ′D ′的棱长为a ,连结A ′C ′,A ′D ,A ′B ,BD ,BC ′,C ′D ,得到一个三棱锥.求:(1)三棱锥A ′­BC ′D 的表面积与正方体表面积的比值; (2)三棱锥A ′­BC ′D 的体积.[解] (1)∵ABCD -A ′B ′C ′D ′是正方体, ∴六个面是互相全等的正方形,∴A ′C ′=A ′B =A ′D =BC ′=BD =C ′D =2a ,∴S 三棱锥=4×34×(2a )2=23a 2,S 正方体=6a 2, ∴S 三棱锥S 正方体=33. (2)显然,三棱锥A ′­ABD ,C ′­BCD ,D ­A ′D ′C ′, B ­A ′B ′C ′是完全一样的, ∴V 三棱锥A ′­BC ′D =V 正方体-4V 三棱锥A ′­ABD =a 3-4×13×12a 2×a =13a 3.18.(本小题满分12分)如图,在三棱锥A -BCD 中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E ,F (E 与A ,D 不重合)分别在棱AD ,BD上,且EF ⊥AD .求证:(1)EF ∥平面ABC ; (2)AD ⊥AC .[证明] (1)在平面ABD 内,因为AB ⊥AD ,EF ⊥AD , 所以EF ∥AB .又因为EF 平面ABC ,AB 平面ABC , 所以EF ∥平面ABC .(2)因为平面ABD ⊥平面BCD , 平面ABD ∩平面BCD =BD , BC 平面BCD ,BC ⊥BD , 所以BC ⊥平面ABD .因为AD 平面ABD ,所以BC ⊥AD .又AB ⊥AD ,BC ∩AB =B ,AB 平面ABC ,BC 平面ABC , 所以AD ⊥平面ABC . 又因为AC 平面ABC , 所以AD ⊥AC .19.(本小题满分12分)如图,圆锥的轴截面SAB 为等腰直角三角形,Q 为底面圆周上一点.(1)若QB的中点为C,求证:平面SOC⊥平面SBQ;(2)若∠AOQ=120°,QB=3,求圆锥的表面积.[解](1)证明:∵SQ=SB,OQ=OB,C为QB的中点,∴QB⊥SC,QB⊥OC.∵SC∩OC=C,∴QB⊥平面SOC.又∵QB平面SBQ,∴平面SOC⊥平面SBQ.(2)∵∠AOQ=120°,QB=3,∴∠BOQ=60°,即△OBQ为等边三角形,∴OB= 3.∵△SAB为等腰直角三角形,∴SB=6,∴S侧=3·6π=32π,∴S表=S侧+S底=32π+3π=(3+32)π.20.(本小题满分12分)如图所示,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,底面边长为a,E是PC的中点.(1)求证:P A∥平面BDE;(2)求证:平面P AC⊥平面BDE;(3)若二面角E-BD-C为30°,求四棱锥P-ABCD的体积.[解](1)证明:连结OE,如图所示.∵O,E分别为AC,PC的中点,∴OE∥P A.∵OE平面BDE,P A平面BDE,∴P A∥平面BDE. (2)证明:∵PO⊥平面ABCD,∴PO⊥BD.在正方形ABCD中,BD⊥AC.又∵PO∩AC=O,∴BD⊥平面P AC.又∵BD平面BDE,∴平面P AC⊥平面BDE.(3)取OC 中点F ,连结EF .∵E 为PC 中点,∴EF 为△POC 的中位线,∴EF ∥PO .又∵PO ⊥平面ABCD ,∴EF ⊥平面ABCD ,∴EF ⊥BD .∵OF ⊥BD ,OF ∩EF =F ,∴BD ⊥平面EFO ,∴OE ⊥BD ,∴∠EOF 为二面角E -BD -C 的平面角,∴∠EOF =30°.在Rt △OEF 中,OF =12OC =14AC =24a ,∴EF =OF ·tan 30°=612a ,∴OP =2EF =66a .∴V P ­ABCD =13×a 2×66a =618a 3.21.(本小题满分12分)如图,三棱锥P -ABC 中,P A ⊥平面ABC ,P A =1,AB =1,AC =2,∠BAC =60°.(1)求三棱锥P -ABC 的体积;(2)证明:在线段PC 上存在点M ,使得AC ⊥BM ,并求PM MC 的值.[解] (1)由题设AB =1,AC =2,∠BAC =60°,可得S △ABC =12·AB ·AC ·sin 60°=32.由P A ⊥平面ABC ,可知P A 是三棱锥P -ABC 的高.又P A =1,所以三棱锥P -ABC 的体积V =13·S △ABC ·P A =36.(2)证明:在平面ABC 内,过点B 作BN ⊥AC ,垂足为N .在平面P AC 内,过点N 作MN ∥P A 交PC 于点M ,连接BM . 由P A ⊥平面ABC 知P A ⊥AC ,所以MN ⊥AC .由于BN ∩MN =N ,故AC ⊥平面MBN .又BM 平面MBN ,所以AC ⊥BM . 在直角△BAN 中,AN =AB ·cos ∠BAC =12,从而NC =AC -AN =32.由MN ∥P A ,得PM MC =AN NC =13.22.(本小题满分12分)如图(1),在Rt △ABC 中,∠C =90°,D ,E 分别为AC ,AB 的中点,点F 为线段CD 上的一点,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1F ⊥CD ,如图(2).(1) (2)(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ.说明理由.这样的设问该怎么回答?[解](1)证明:∵D,E分别为AC,AB的中点,∴DE∥BC.又∵DE平面A1CB,BC平面A1CB,∴DE∥平面A1CB.(2)证明:由已知得AC⊥BC且DE∥BC,∴DE⊥AC,∴DE⊥A1D,DE⊥CD,A1D∩CD=D,∴DE⊥平面A1DC,而A1F平面A1DC,∴DE⊥A1F.又∵A1F⊥CD,DE∩CD=D,∴A1F⊥平面BCDE,∵BE平面BCDE,∴A1F⊥BE.(3)线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如图,分别取A1C,A1B的中点P,Q,连接PQ,QE,则PQ∥BC.又∵DE∥BC,∴DE∥PQ,∴平面DEQ即为平面DEP.由(2)知,DE⊥平面A1DC,A1C平面A1DC,∴DE⊥A1C.又∵P是等腰三角形DA1C底边A1C的中点,∴A1C⊥DP.又DE∩DP=D,∴A1C⊥平面DEP.从而A1C⊥平面DEQ.故线段A1B上存在点Q(A1B的中点),使得A1C⊥平面DEQ.。

立体几何单元检测

立体几何单元检测

立体几何单元检测(一)一、填空题:1.下列命题正确的是 .①若两条直线和同一个平面所成的角相等,则这两条直线平行.②若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行. ③若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行. ④若两个平面都垂直于第三个平面,则这两个平面平行.【答案】③2.设四面体的六条棱的长分别为1,1,1,1和a ,且长为a的棱异面,则a 的取值范围是 .【答案】【解析】因为22211)22(12=-=-=BE 则BE BF <,222=<=BE BF AB ,3.如图,在正方体1111ABCD A B C D -中,M 、N 分别是CD 、1CC 的中点,则异面直线1A M 与DN 所成角的大小是____________.【答案】2π4.若一个圆锥的侧面展开图是面积为π2的半圆面,则该圆锥的体积为 . 【答案】π33 5.如图,在长方体1111ABCD A B C D -中,3cm AB AD ==,12cm AA =,则四棱锥11A BB D D -的N A 1体积为 cm 3.【答案】6。

【解析】∵长方体底面ABCD 是正方形,∴△ABD 中BD ,BD (它也是11A BB D D -中11BB D D 上的高)。

∴四棱锥11A BB D D -的体积为123⨯。

三棱锥P -ABC 中,P A ⊥底面ABC ,P A =3,底面ABC 是边长为2的正三角形,则三棱锥P -ABC 的体积等于________.课标理数12.G1[2011·福建卷] 【答案】 3l 1,l 2,l 3是空间三条不同的直线,则下列命题正确的是( ) A .l 1⊥l 2,l 2⊥l 3⇒l 1∥l 3 B .l 1⊥l 2,l 2∥l 3⇒l 1⊥l 3C .l 1∥l 2∥l 3⇒l 1,l 2,l 3共面D .l 1,l 2,l 3共点⇒l 1,l 2,l 3共面 大纲理数3.G3[2011·四川卷] B 【解析】 对于A ,直线l 1与l 3可能异面;对于C ,直线l 1、l 2、l 3可能构成三棱柱三条侧棱所在直线时而不共面;对于D ,直线l 1、l 2、l 3相交于同一个点时不一定共面. 所以选B.图1-3课标文数15.G4[2011·福建卷] 如图1-3,正方体ABCD -A 1B 1C 1D 1中,AB =2,点E 为AD 的中点,点F 在CD 上,若EF ∥平面AB 1C ,则线段EF 的长度等于________.课标文数15.G4[2011·福建卷] 2 【解析】 ∵ EF ∥平面AB 1C ,EF ⊂平面ABCD ,平面ABCD ∩平面AB 1C =AC ,∴EF ∥AC ,又∵E 是AD 的中点,∴F 是CD 的中点,即EF 是△ACD 的中位线,∴EF =12AC =12×22= 2.二、解答题:【2012高考真题广东理18】(本小题满分13分)如图5所示,在四棱锥P -ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,点 E 在线段PC 上,PC ⊥平面BDE .(1) 证明:BD ⊥平面PAC ;(2) 若PH=1,AD=2,求二面角B -PC -A 的正切值;【答案】本题考查空间直线与平面的位置关系,考查直线与平面垂直的证明、二面角的求解等问题,考查了学生的空间想象能力以及推理论证能力.【2012高考江苏16】(14分)如图,在直三棱柱111ABC A B C -中,1111A B AC =,D E ,分别是棱1BC CC ,上的点(点D 不同于点C ),且AD DE F ⊥,为11B C 的中点.求证:(1)平面ADE ⊥平面11BCC B ;(2)直线1//A F 平面ADE .【答案】证明:(1)∵111ABC A B C -是直三棱柱,∴1CC ⊥平面ABC 。

立体几何单元测试及答案

立体几何单元测试及答案

立体几何单元测试·练习题一、选择题(本题满分60分,每小题4分)(1)空间四边形各边中点为顶点的四边形是菱形,则空间四边形的两条对角线 [ ] A.互相垂直且可能长相等B.长相等但不垂直C.长相等且可能互相垂直D.必垂直但长不相等(2)A为直二面角α-l-β的棱l上的一点,两条长度都为a的线段AB,AC分别在α,β内,且都与l成45°角,则BC的长为[ ]A.a(3)四面体ABCD的棱长均为1,M,N分别在一组相对的棱AB和CD上,则线段MN的最小值是 [ ](4)若P为正方体ABCD-A1B1C1D1中棱A1B1的中点,则截面PC1D与面AA1B1B所成二面角的正切值为 [ ](5)平面α内有一个半径为a的圆O,OP⊥α且OP=a,PA是α的一条斜线,PA=2a(A∈α),B为圆O上的任一点,则PA在α内的射影与AB所成的角中最大角的正弦值为 [ ](6)已知三棱台A1B1C1—ABC中,V B—A1B1C1=4,V C1—ABC=16,则V A1B1C1—ABC等于 [ ] A.28B.29C.30D.无法确定(7)半球内有一内接正方体,则这个半球面的面积与正方体表面积的比为 [ ]D.以上答案均不对(8)△ABC中BC长一定,A点在平行于BC的直线l上移动,若△ABC以直线l为轴旋转一周得一旋转体,则无论A点在直线l上的位置如何,正确结论是[ ]A.体积和表面积都为定值B.体积为定值,表面积不为定值C.体积不为定值,表面积为定值D.表面积和体积均不为定值(9)如果一个二面角的两个半平面分别垂直于另一个二面角的两个半平面,那么这两个二面角的平面角的大小关系是[ ]A.相等B.互补C.相等或互补D.无法确定(10)四面体一棱长为x,其余各棱长均为常数a,设四面体的体积函数为V(x),则在定义域内V(x) [ ]A.是增函数但无最大值B.是增函数且有最大值C.不是增函数且无最大值D.不是增函数但有最大值(11)侧面都是直角三角形的正三棱锥,底面边长为a,则这个三棱锥的全面积是 [ ](12)已知三棱台ABC—A1B1C1中,S△A1B1C1=m2,S△ABC=n2(m>n>0),BC到截面AB1C1的距离等于这个棱台的高,那么截面AB1C1的面积为[ ]B.mnD.2mn(13)要挖一个半圆柱形鱼池,其池面为圆柱的轴截面,若池面周长为定值2a,则鱼池的最大容积为 [ ](14)圆锥全面积为π,则它的体积的最大值为 [ ](15)如果过圆锥顶点的面积最大的截面是轴截面,圆锥侧面展开图的圆心角为α,则α的取值范围是[ ]A.(0,2π)B.(0,π)二、填空题(本题满分20分,每小题4分)(16)已知P为Rt△ABC所在平面α外的一点,PA=PB=PC=13,两直角边AC,BC的长分别为8和6,则P到BC的距离为______.(17)已知E,F为△ABC中AB和AC的中点,△AEF和梯形EBCF各绕直线BC旋转一周所得旋转体的体积分别记作V1和V2,则V1∶V2=______.(18)AD是边长为2a的正三角形的边BC的中线,若沿AD把△ABC折成直二面角,则B到AC 的距离为______.(19)圆台两底面半径分别为4和1,轴截面的两条对角线互相垂直,则圆台体积为______.Q的平面中,与球心的最大距离是______.三、解答题(21)(12分)如图25—1所示,在平行四边形ABCD中,已知AB=CD=a,AD=BC=2a,AC∩BD=E,∠A=60°,将其沿对角线BD折成直二面角.(Ⅰ)证明AB⊥平面BCD;(Ⅱ)证明平面ACD⊥平面ABD;(Ⅲ)求二面角A—CE—B的大小.(22)(12分)如图25—2所示,正三棱柱ABC—A'B'C'的底面边长和高都等于a,截面C'AB 与截面CA'B'交于DE,求四面体BB'DE的体积.(23)(14分)如图25—3,正三棱柱ABC—A1B1C1中,D为A1A的中点,E为B1C1的中点.(Ⅰ)求证B1C1∥面DBC;(Ⅱ)若A1A=AB=2a,求二面角B—DC—A的大小(文科求该角的正切值);(Ⅲ)求E到面DBC的距离.(24)(16分)如图25—4,在四棱台ABCD—A1B1C1D1中,底面ABCD是边长为2a的正方形,A1A ⊥底面ABCD,且A1A=A1D1=a.(Ⅰ)求证C1C⊥面AB1D1;(Ⅱ)求面AB1D1和面ABCD所构成的二面角的大小(文科求出其正切函数值);(Ⅲ)求多面体ABCD—B1C1D1的体积.(25)(16分)如图25—5,已知圆锥S—AB的轴截面是Rt△,D为母线SA的中点,C为底面圆内一点,若OC⊥AC,OH⊥SC于H.求证(Ⅰ)OH⊥SA;(Ⅱ)SA⊥面ODH;(Ⅲ)若母线长为2a,求三棱锥S—ODH体积的最大值.答案与提示一、(1)C (2)C (3)B(4)D (5)C(6)A (7)A (8)B(9)D (10)D(11)A (12)B (13)A(14)B (15)C提示(3)M,N为AB和CD中点时,MN取得最小值.(5)PA在α内的射影与AB所成的角中,当AO⊥OB时,其角最大.此(9)只有当两个二面角的棱互相平行时,它们才可能相等或互补,否则可任意作一个平面α与二面的一个面垂直.又可任意作一个平面β与二面角另一个面垂直,则α,β相交所成的二面角的大小是任意的.(10)设四面体ABCD中,AD=x,则当面ABC与面DBC垂直时,其减.三、(21)(Ⅰ)在△ABD中,AB=a,AD=2a,∠A=60°,∴∠ABD=90°.同理∠CDB=90°∵面ABD⊥面BCD,且AB⊥BD,∴AB⊥面BCDACD,∴平面ACD⊥平面ABD设所求二面角为α,则(22)如图答25—1所示,取A′C′中点G,连EG,则EG∥面B′BCC′.将四面体BB′DE 视为以△B′BD为底,E为顶点的三棱锥,则E到面B′BCC′的距离即为锥高,作GH⊥B′C′于H,(Ⅱ)取AC中点F,则BF⊥面ADC过B作BH⊥DC于H,则FH⊥DC∴∠BHF为B—DC—A的平面角(Ⅲ)取BC中点M,易证面A1EMD⊥面DBC过E作EN⊥DM于N,则EN⊥面DBC∴EN即为E到面BDC的距离,(24)(Ⅰ)过D1作D1E⊥AD于E,则D1E⊥面ABCD 且A1AED1为边长是a的正方形,AE=ED=a∴AD1⊥D1D又∵AD⊥DC,∴AD1⊥DC∴AD1⊥面DCC1D1,∴AD1⊥C1C同理AB1⊥C1C,∴C1C⊥面AB1D1(Ⅱ)由A1A⊥面ABCD,可得面A1ACC1⊥面ABCD由C1C⊥面AB1D1知A1ACC1⊥面AB1D1可证明面ABCD和面AB1D1的交线必⊥面A1ACC1∴∠O1AC为面AB1D1和面ABCD所成二面角的平面角显然∠O1AC=∠A1O1A(Ⅲ)V ABCD-B1C1D1+V ABCD-A1B1C1D1-V A-A1B1D1(25)(Ⅰ)由SO⊥底面,OC⊥AC∴SC⊥AC∴AC⊥面SOC,∴AC⊥OH又OH⊥SC,∴OH⊥面SAC,∴OH⊥SA(Ⅱ)∵△SAB为Rt△,显然∠ASB=90°且SA=SB,∴△SAB为等腰直角三角形.∴△SOA也是等腰直角三角形.∴OD⊥SA,又∵SA⊥OH ∴SA⊥面ODH(Ⅲ)由(Ⅱ)SA⊥面ODH又∵OH⊥面SAC。

几何立体单元测试题及答案

几何立体单元测试题及答案

几何立体单元测试题及答案一、选择题(每题2分,共20分)1. 一个立方体的体积是27立方厘米,它的边长是()厘米。

A. 3B. 6C. 9D. 122. 一个长方体的长、宽、高分别是5厘米、4厘米和3厘米,它的表面积是()平方厘米。

A. 94B. 104C. 114D. 1243. 一个圆柱的底面半径是2厘米,高是5厘米,它的体积是()立方厘米。

A. 12πB. 20πC. 30πD. 40π4. 一个圆锥的底面半径是3厘米,高是4厘米,它的体积是()立方厘米。

A. 12πB. 15πC. 18πD. 24π5. 一个球的体积是(4/3)πr³,其中r是球的半径。

如果球的体积是100π立方厘米,那么它的半径是()厘米。

A. 3B. 5C. 7D. 96. 一个正四面体的每个面都是等边三角形,且边长为a厘米,那么它的表面积是()平方厘米。

A. a²B. 2a²C. 3a²D. 4a²7. 一个正八面体的每个面都是等边三角形,且边长为a厘米,那么它的表面积是()平方厘米。

A. 2a²B. 3a²C. 4a²D. 6a²8. 一个正十二面体的每个面都是正五边形,且边长为a厘米,那么它的表面积是()平方厘米。

A. 3a²B. 5a²C. 6a²D. 9a²9. 一个正二十面体的每个面都是等边三角形,且边长为a厘米,那么它的表面积是()平方厘米。

A. 5a²B. 10a²C. 15a²D. 20a²10. 一个正六面体(立方体)的对角线长度是√3a厘米,其中a是它的边长。

如果边长是2厘米,那么对角线的长度是()厘米。

A. 2√3B. 3C. 4D. 6二、填空题(每题2分,共20分)11. 一个长方体的长、宽、高分别是l、w、h,它的体积公式是 V =_______ 。

高中数学 第一章 立体几何初步单元质量测评(含解析)新人教B版必修2-新人教B版高一必修2数学试题

高中数学 第一章 立体几何初步单元质量测评(含解析)新人教B版必修2-新人教B版高一必修2数学试题

第一章 单元质量测评对应学生用书P41 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法中正确的是( ) A .棱柱的侧面可以是三角形B .由6个大小一样的正方形所组成的图形是正方体的展开图C .正方体各条棱长都相等D .棱柱的各条棱都相等 答案 C解析 根据棱柱的定义可知,棱柱的侧面都是平行四边形,侧棱长相等,但是侧棱和底面内的棱长不一定相等,而正方体的所有棱长都相等.2.中心角为135°,面积为B 的扇形围成一个圆锥,若圆锥的全面积为A ,则A∶B 等于( )A .11∶8 B.3∶8 C.8∶3 D.13∶8 答案 A解析 设扇形的半径为R ,围成的圆锥的底面圆的半径为r ,则扇形弧长l =135πR 180=34πR,又2πr=34πR,∴r=38R ,S 扇形=135π360R 2=38πR 2,S 圆锥全=S 底+S 侧=πr 2+S 扇形=π⎝ ⎛⎭⎪⎫38R 2+38πR 2=3364πR 2,∴S 扇形S 圆锥全=38πR 23364πR 2=811,∴A B =118, 故选A .3.一个锥体的主视图和左视图如图所示,下面选项中,不可能是该锥体的俯视图的是( )答案 C解析由几何体的俯视图与左视图的宽度一样,可知C不可能是该锥体的俯视图,故选C.4.给出下列四个命题:①三点确定一个平面;②一条直线和一个点确定一个平面;③若四点不共面,则每三点一定不共线;④三条平行线确定三个平面.正确的结论个数有( )A.1 B.2 C.3 D.4答案 A解析①中不共线的三点确定一个平面;②中一条直线和直线外一点确定一个平面;③中若四点不共面,则每三点一定不共线,故③正确;④中不共面的三条平行线确定三个平面.5.设l为直线,α,β是两个不同的平面,下列命题中正确的是( )A.若l∥α,l∥β,则α∥βB.若l⊥α,l⊥β,则α∥βC.若α∥β,l∥α,则l∥βD.若α⊥β,l∥α,则l⊥β答案 B解析若l∥α,l∥β,则α∥β或α∩β=m,l∥m,故A错误.若α∥β,l∥α,则l∥β或l在β内,故C错误.若α⊥β,l∥α,则l∥β或l在β内或l⊥β或l与β相交,故D错误.6.体积为27,全面积为54的长方体( )A.必是正方体 B.不存在C.有无穷多个 D.最多只能有三个答案 A解析 设长、宽、高分别为a ,b ,c ,则abc =27. 2(ab +bc +ac)=54,∴ab+bc +ac =abc . 易知a =b =c ,故应为棱长为3的正方体.7.如图,平行四边形ABCD 中,AB⊥BD,沿BD 将△ABD 折起,使面ABD⊥面BCD ,连接AC ,则在四面体ABCD 的四个面所在平面中,互相垂直的平面的对数为( )A .1B .2C .3D .4 答案 C解析 ①平面ABD⊥平面BCD ,②平面ABC⊥平面BCD ,③平面ACD⊥平面ABD . 8.棱锥被平行于底面的平面所截,当截面分别平分棱锥的侧棱、侧面积、体积时,相应的截面面积分别为S 1,S 2,S 3,则( )A .S 1<S 2<S 3B .S 3<S 2<S 1C .S 2<S 1<S 3D .S 1<S 3<S 2 答案 A解析 由截面性质可知,设底面积为S . S S 1=⎝ ⎛⎭⎪⎫212⇒S 1=14S ; S S 2=21⇒S 2=12S ; S S 3=3212⇒S 3=134S .可知S 1<S 2<S 3,故选A . 9.夹在两个平行平面间的圆柱、圆锥、球,若它们在平行平面上的正投影是等圆,那么它们的体积之比为( )A .3∶1∶4 B.9∶3∶4 C .3∶1∶2 D.1∶2∶3 答案 C解析 它们的高都等于两平行平面间的距离设为h ,圆柱体积V 1,圆锥体积V 2,球体积V 3,正投影的面积为S ,则V 1=Sh ,V 2=13Sh ,V 3=43π⎝⎛⎭⎪⎫S π3=43S Sπ.又因为h =2S π,所以S π=h 2.所以V 3=43S·h 2=23Sh ,所以V 1∶V 2∶V 3=1∶13∶23=3∶1∶2.10.已知集合A ,B ,C ,A ={直线};B ={平面},C =A∪B,若a∈A,b∈B,c∈C,给出下列命题:①⎩⎪⎨⎪⎧a∥b,c∥b⇒a∥c;②⎩⎪⎨⎪⎧a⊥b,c⊥b⇒a∥c;③⎩⎪⎨⎪⎧a⊥b,c∥b⇒a⊥c.其中正确的命题的个数是( )A .0B .1C .2D .3 答案 B解析 ①当c 为直线时,⎩⎪⎨⎪⎧a∥b,c∥b ⇒a∥c 或a ,c 异面或相交,故①错误.②当c 为平面时,⎩⎪⎨⎪⎧a⊥b,c⊥b⇒a∥c 或a ⊂c ,故②错误.经验证得③正确.11.如图所示,在棱长为1的正方体ABCD -A 1B 1C 1D 1的面对角线A 1B 上存在一点P ,使得AP +D 1P 最短,则AP +D 1P 的最小值为( )A .2+ 2B .2+62C .2+ 2D .2 答案 A解析 D 1-A 1B -A 展成平面,如图所示,则AD 1即为AP +D 1P 的最小值.过D 1作D 1M⊥AA 1的延长线于M ,由∠AA 1D 1=∠AA 1B +∠BA 1D 1=45°+90°=135°,可知∠MA 1D 1=45°.所以A 1M =D 1M =22.在Rt△MD 1A 中,AD 1=MA 2+MD 21= 2+2.12.三棱锥P -ABC 的高PO =8,AC =BC =3,∠ACB=30°,M ,N 分别在BC 和PO 上,且CM =x ,PN =2x(x∈[0,3]),下列四个图象大致描绘了三棱锥N -AMC 的体积V 与x 的变化关系,其中正确的是( )答案 A解析 V =13S △AMC ·NO=13⎝ ⎛⎭⎪⎫12×3x×sin30°· (8-2x)=-12(x -2)2+2,x∈[0,3],故选A .第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.直线a ,b 分别是长方体相邻两个面上的对角线所在直线,则a 与b 的位置关系为________.答案 相交或异面解析 画一个长方体,则有两直线交于一顶点或两直线异面.14.设A ,B ,C ,D 为球O 上四点,若AB ,AC ,AD 两两互相垂直,且AB =AC =6,AD =2,则A ,D 两点间的球面距离为________.答案2π3解析 由题意知,球O 的直径为以AB ,AC ,AD 为棱的长方体的体对角线,即2R =AB 2+AC 2+AD 2=4,即R =2,则OA =OD =AD =2,∴△OAD 为正三角形,则∠AOD=π3,∴A,D 球面距离为2π3.15.如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为________.答案 2 3解析由三视图可知该多面体的直观图如图所示,即图中的四棱锥P -ABCD ,所以最长的一条棱的长为PA =PC 2+AC 2=PC 2+AB 2+BC 2=23.16.一个正六棱锥的底面边长为2、高为1,则过两条不相邻侧棱所作的截面中,面积最大值为________.答案6解析 如图先计算截面PAD 的面积,由题知h =PO =1,AD =4,∴S △PAD =12×1×4=2,下面计算截面PAC 的面积,连接OB 交AC 于M 点,连接PM ,则PM⊥AC,AC =23,BM =1,∴OM=1,∴PM=PO 2+OM 2=12+12=2,∴S △PAC =12×AC×PM=12×23×2=6,6>2,∴S △PAC >S △PAD ,∴填6.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)定线段AB所在直线与定平面α相交,P为直线AB外任一点,且P∉α,直线AP,PB与α交于A′,B′.求证:不论P在什么位置,A′B′过一定点.证明设定线段AB所在直线与定平面α相交于定点O.∵AP,AB相交于点A,∴由AP,AB可确定平面β.∵AP∩α=A′,PB∩α=B′,AB∩α=O,∴A′,B′,O为平面α与平面β的公共点.∴A′,B′,O三点共线,即A′B′过定点O.18.(本小题满分12分)如图,已知平面α∥β,O为α,β外一点,三条射线OA,OB,OC分别交β于A,B,C,交α于A1,B1,C1.(1)求证:△ABC∽△A1B1C1;(2)若OA=a,AA1=b,B1C1=c,求BC的长.解(1)证明:因为α∥β,平面AOB∩α=A1B1,平面AOB∩β=AB,所以A1B1∥AB,所以OA1OA=OB1OB=A1B1AB,同理B1C1∥BC,所以OB1OB=OC1OC=B1C1BC.同理,A1C1∥AC,OA1OA=OC1OC=A1C1AC,所以A1B1AB=B1C1BC=C1A1CA.所以△ABC∽△A1B1C1.(2)由(1)知,OA1OA=B1C1BC,又因为OA1=OA-AA1=a-b,∴a-ba=cBC,∴BC=aca-b.19.(本小题满分12分)如图所示的四棱锥P-ABCD中,底面ABCD为菱形,PA⊥平面ABCD,E为PC的中点,求证:(1)PA∥平面BDE;(2)平面PAC⊥平面PBD.证明(1)连接AC交BD于点O,连接OE.∵四边形ABCD是菱形,∴AO=CO.∵E为PC的中点,∴EO∥PA.∵PA⊄平面BDE,EO⊂平面BDE,∴PA∥平面BDE.(2)∵PA⊥平面ABCD,BD⊂平面ABCD,∴PA⊥BD,∵四边形ABCD是菱形,∴BD⊥AC.∵AC∩PA=A,∴BD⊥平面PAC,∵BD⊂平面PBD,∴平面PAC⊥平面PBD.20.(本小题满分12分)如图,平行六面体ABCD-A1B1C1D1的底面是菱形,∠C1CB=∠C1CD =∠BCD=60°.(1)求证:C1C⊥BD;(2)当CDCC1的值为多少时,可使A1C⊥平面C1BD?解(1)证明:连接A1C1,AC,设AC和BD交于点O,连接C1O.∵四边形ABCD是菱形,∴AC⊥BD,BC=CD.又∵∠BCC1=∠DCC1,C1C是公共边,∴△C1BC≌△C1DC,∴C1B=C1D.∵DO=OB,∴C1O⊥BD.又∵AC∩C1O=O,∴BD⊥平面ACC1A1.又∵C1C⊂平面ACC1A1,∴C1C⊥BD.(2)由(1)知BD⊥平面ACC1A1.∵A1C⊂平面ACC1A1,∴BD⊥A1C.当CDCC1=1时,平行六面体的六个面是全等的菱形.同理可证BC1⊥A1C.又∵BD∩BC1=B,∴A1C⊥平面C1BD.21.(本小题满分12分)如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC =2,BC=1,E,F分别是A1C1,BC的中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥E-ABC的体积.解(1)证明:在三棱柱ABC-A1B1C1中,BB1⊥底面ABC,所以BB1⊥AB.又因为AB⊥BC,BB1,BC为平面B1BCC1内两条相交直线,所以AB⊥平面B1BCC1,又AB⊂平面ABE,所以平面ABE⊥平面B1BCC1.(2)证明:取AB中点G,连接EG,FG,如图.因为E,F,G分别是A1C1,BC,AB的中点,所以FG∥AC,且FG =12AC ,EC 1=12A 1C 1.因为AC∥A 1C 1,且AC =A 1C 1, 所以FG∥EC 1,且FG =EC 1. 所以四边形FGEC 1为平行四边形. 所以C 1F∥EG.又因为EG ⊂平面ABE ,C 1F ⊄平面ABE , 所以C 1F∥平面ABE .(3)因为AA 1=AC =2,BC =1,AB⊥BC, 所以AB =AC 2-BC 2=3.所以三棱锥E -ABC 的体积V =13S △ABC ·AA 1=13×12×3×1×2=33.22.(本小题满分12分)已知某几何体的直观图(图1)与它的三视图(图2),其中俯视图为正三角形,主视图及左视图是矩形.(1)求该几何体的体积;(2)D 是棱A 1C 1上的一点,若使直线BC 1∥平面AB 1D ,试确定点D 的位置,并证明你的结论; (3)在(2)成立的条件下,求证:平面AB 1D⊥平面AA 1D .解 由三视图可知该几何为正三棱柱,底面是高为3的正三角形,三棱柱的高h =3,(1)底面是高为3的正三角形,易知底面边长为2,word- 11 - / 11 所以底面面积S =12×2×3=3, 所求体积V =Sh =33.(2)连接A 1B ,且A 1B∩AB 1=O ,因为正三棱柱侧面是矩形,所以点O 是A 1B 的中点, 解法一:若BC 1∥平面AB 1D ,连接DO ,BC 1⊂平面A 1BC 1,平面AB 1D∩平面A 1BC 1=DO ,所以BC 1∥DO,所以DO 是△A 1BC 1的中位线,所以D 为A 1C 1的中点.即D 为A 1C 1的中点时,BC 1∥平面AB 1D .解法二:若D 为棱A 1C 1的中点.连接DO ,所以DO 是△A 1BC 1的中位线.所以BC 1∥DO,又DO ⊂平面AB 1D ,BC 1⊄平面AB 1D ,所以BC 1∥平面AB 1D .即D 为A 1C 1的中点时,BC 1∥平面AB 1D .解法三:在△A 1BC 1中,过O 作OD∥BC 1,交A 1C 1于D ,所以OD 为△A 1BC 1的中位线,所以D 为A 1C 1的中点,又DO ⊂平面AB 1D ,BC 1⊄平面AB 1D ,所以C 1B∥平面AB 1D .即D 为A 1C 1的中点时,BC 1∥平面AB 1D .(3)证法一:在正三棱柱ABC -A 1B 1C 1中,三角形A 1B 1C 1为正三角形,所以B 1D⊥A 1C 1, 又由三棱柱性质知平面A 1B 1C 1⊥平面ACC 1A 1,且平面A 1B 1C 1∩平面ACC 1A 1=A 1C 1, B 1D ⊂平面A 1B 1C 1,所以B 1D⊥平面AA 1D ,又B 1D ⊂平面AB 1D ,所以平面AB 1D⊥平面AA 1D .证法二:在正三棱柱ABC -A 1B 1C 1中,三角形A 1B 1C 1为正三角形,所以B 1D⊥A 1C 1,又因为AA 1⊥平面A 1B 1C 1,所以AA 1⊥B 1D .AA 1∩A 1C 1=A 1,AA 1⊂平面AA 1D ,A 1C 1⊂平面AA 1D ,所以B 1D⊥平面AA 1D ,又B 1D ⊂平面AB 1D ,所以平面AB 1D⊥平面AA 1D .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体几何一
一、选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.从长方体一个顶点出发的三个面的面积分别为6,8,12,则其对角线的长为 (A)3 (B)5
(C)
26 (D)29
2.在空间,下列命题中正确的个数为
①平行于同一直线的两条直线平行;②垂直于同一直线的两条直线平行; ③平行于同一平面的两条直线平行;④垂直于同一平面的两条直线平行; (A )0 (B )1 (C )2 (D )3 3.棱长为a 的正方体外接球的表面积为
22224.3.2..a D a C a B a A ππππ
4. 在正四面体P —ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,下面四个结论中不成立...
是 A .BC//平面PDF B .DF ⊥平面PAE C .平面PDF ⊥平面ABC D .平面PAE ⊥平面ABC 5.已知直线m 、n 、l 与平面βα,,给出下列六个命题: ①若;,,//m n n m ⊥⊥则αα②若.,//,βαβα⊥⊥则m m ③若m l m l //,//,//,//则βαβα
④若不共面与则点m l m A A l m ,,,∉=⋂⊂αα ⑤若m 、l 是异面直线,ααα⊥⊥⊥n m n l n m l 则且,,,//,//;
⑥.//,//,//,,,βαββαα则点m l A m l m l =⊂⊂ 其中假命题有
A.0 B .1 C .2 D .3 6.设γβα、、、为平面,l n m 、、为直线,则β⊥m 的一个充分条件是 A . l m l ⊥=⋂⊥,,βαβα B . γβγαγα⊥⊥=⋂,,m C . αγβγα⊥⊥⊥m ,,
D . αβα⊥⊥
⊥m n n ,,
7.设三棱柱ABC —A 1B 1C 1的体积为V ,P 、Q 分别是侧棱AA 1、CC 1上的点,且PA=QC 1,则四棱锥B —APQC 的体积为
A .16
V
B .14
V
C .13
V
D .12
V
8.对于不重合的两个平面α与β,给定下列条件中,可以判定α与β平行的条件有 ①存在平面γ,使得α、β都垂直于γ;②存在平面γ,使得α、β都平行于γ; ③α内有不共线的三点到β的距离相等;
④存在异面直线l 、m ,使得l //α,l //β,m //α,m //β,
A .1个
B .2个
C .3个
D .4个
二、填空题:
9.三条直线经过同一点,过每两条作一个平面,则可以作______个不同的平面. 10.已知AB ∥PQ ,BC ∥QR ,∠ABC=30O ,则∠PQR 等于_______.
11.已知过球面上A,B,C 三点的截面和球心的距离等于球半径的一半,且AB= BC= CA= 2 , 则球面的面积

12.四面体各棱长是 1 或 2 ,且该四面体不是正四面体,则其体积的值是_________.(只需写出一个可能
值) 三、解答题:
13.如图在正方体ABCD-1111D C B A 中,AC 交BD 于点O ,证明:
(1)11BC C A ⊥;(2)MBD O A M CC 平面,使得上是否存在一点棱⊥11
14.如图四棱锥P -ABCD 的底面
是正方形,PB ⊥面ABCD.证明:无论四棱锥的高PB 怎 样变化,面 PAD 与面PCD 不可能垂直。

P
C
D
A
B
1
A
15.如图,在正三棱柱ABC-A 1B 1C 1中,1BB E ∈, F 是AC 的中点,
截面A 1EC ⊥ 侧面AC 1 ,求证:BF//平面A 1EC
16.已知ABCD 是边长为a ,0
60=∠DAB 的菱形,点P 为ABCD 所在平面外一点,面PAD 为正三角形,其所在平面垂直于面ABCD
(1)若G 为AD 边的中点,求证:BG ⊥平面PAD ; (2)求证:AD ⊥PB ;
(3)若E 为BC 的中点,能否在PC 上找到一F 使平面DEF ⊥平面ABCD.
A B
C
D P G
立体几何一参考答案 一、D C C C C D C B
二、9.1或3 10.︒30或0
150 11.9
64π
12.611
三、解答题
13.(略解)(1)连结C B 1,∵111BC B A 平面⊥,∴C B 1是C A 1在平面1BC 上的射影 ∵C B BC 11⊥,∴11BC C A ⊥
(2)存在.事实上,取棱1CC 的中点M ,连结MO ,容易证得BD O A ⊥1,设棱长为a , 则2
2
12
3a O A =
,2243a MO =
,2214
9
a M A =,22121MO O A M A +=,OM O A ⊥1,所以MBD O A 平面⊥1
14.利用空间向量的直角坐标运算,证明两平面的法向量不垂直
15.(略解)F 是正三角形的边AC 的中点,AC BF ⊥,又BF AA ⊥1,所以AC BF 平面⊥;在EC
A 1平面内,做C A ED 1⊥于D ,∵C C AA EC A 111平面平面⊥于C A 1, ∴C C AA ED 11平面⊥,故ED BF //,因此EC A BF 1//平面
16.(1)连结BD ,则在正三角形ABC 中,AD BG ⊥,又ABCD PAD 平面平面⊥于AD ,
PAD BG 平面⊥
(2)连结PG ,与⑴同理,ABCD PG 平面⊥,BG 是BP 在平面ABCD 内的射影,AD BG ⊥,∴AD BP ⊥即PB AD ⊥
(3)能.连结ED 、GC 交于点O ,易得O 为GC 的中点,在平面PGC 内,做OF//GP ,交PC 于点F ,则F 为PC 中点,ABCD FO 平面⊥,∴ABCD DEF 平面平面⊥
(注:文档可能无法思考全面,请浏览后下载,供参考。

可复制、编制,期待你的好评与关注)。

相关文档
最新文档