4二次函数与代数的综合(2014-2015)

合集下载

二次函数与一元二次方程和不等式教学提纲

二次函数与一元二次方程和不等式教学提纲

怀文中学2014—2015学年度第一学期随堂练习初 三 数 学(5.3二次函数与一元二次方程和不等式(1))设计:吴兵 审校:蔡应桃 班级__________ 学号___________ 姓名____________一、知识点1.二次函数与一元二次方程之间的关系是通过 与 的交点来体现的:若抛物线0(2≠++=a c bx ax y )与x 轴的交点为(m ,0)、(n ,0),则对应的一元二次方程02=++c bx ax 的两根为 .一元二次方程根的情况对应决定着抛物线与x 轴的交点个数.(1)抛物线2(0)y ax bx c a =++≠与x 轴有两个交点,02=++c bxaxac b 42- 0;(2)抛物线2(0)y ax bx c a =++≠与x 轴只有一个交点,02=++c bx ax ac b 42- 0;(3)抛物线2(0)y ax bx c a =++≠与x 轴没有交点,02=++c bx ax ac b 42- 0.2.抛物线与直线的交点:①二次函数图象与x 轴及平行于x 轴的直线; ②二次函数图象与y 轴及平行于y 轴的直线;③二次函数图象与其它直线(不平行于坐标轴,即一次函数图象). 3.根据示意图求一元二次不等式的解集. 二、典型例题不画图象,你能判断函数 的图象与x 轴是否有公共点吗?请说明理由。

三、适应练习1、方程 的根是 ;则函数 的图象与x 轴的交点有 个,其坐标是 .2、方程 的根是 ;则函数 的图象与x 轴的交点有 个,其坐标是 .3、下列函数的图象中,与x 轴没有公共点的是( )62-+=x x y 0542=-+x x 025102=-+-x x 25102-+-=x x y 542-+=x x y 2)(2-=x y A x x y B -=2)(96)(2-+-=x x y C 2)(2+-=x x y D4、已知二次函数y=x 2-4x+k+2与x 轴有公共点,求k 的取值范围.5、已知抛物线的解析式为y=x 2-(2m-1)x+m 2-m ①求证:此抛物线与x 轴必有两个不同的交点.②若此抛物线与直线y=x-3m+4的一个交点在y 轴上,求m 的值.6、打高尔夫时 ,球的飞行路线可以看成是一条抛物线,如果不考虑空气的阻力,球的飞行高度y (单位:米)与飞行距离x (单位:百米)之间具有关系:y=-5x 2+20x ,这个球飞行的水平距离最远是多少米?想一想:球的飞行高度能否达到40m ?7、已知抛物线c bx ax y ++=21(a≠0,a≠c )过点A(1,0),顶点为B ,且抛物线不经过第三象限。

厦门市2014-2015学年第一学期高一质量检测-数学试题参考答案以及评分标准

厦门市2014-2015学年第一学期高一质量检测-数学试题参考答案以及评分标准

厦门市2014-2015学年第一学期高一质量检测数学试题参考答案以及评分标准题号 1 2 3 4 5 6 7 8 9 10 答案ADBCBDDCCB10.解: (1)2f -=28=+--⇔c b a ----①设m c b a m f =++⇔=38)3(----②① +②得:m c b +=+222,又Z c b ∈,,所以m 一定是偶数. 二、填空题11. 36 (题目引导有误,答案46也对) 12.19 13.5614.23π 15.0 16.(2,0)-16.解:如图,根据xy 2=与x y 2log =关于y x =对称,而2+-=x y 与y x =垂直所以,两交点的中点为y x =与2y x =--的交点(-1,-1), 即12-=+qp 所以,函数()()()f x x p x q =++的对称轴为12=+-=qp x 所以2(22)(0)f x x f ++<⇔<++⇔)2()22(2f x x f …⇔02<<-x . 三、解答题17.解:(Ⅰ)}2|{≥=x x B -----------------------------------------------------------------2分{|23}A B x x =≤< ---------------------------------------------------4分()U C A B 3}x 2|{≥<=或x x ---------------------------------------------------6分(Ⅱ)}|{a x x C >= ---------------------------------------------------8分∵B C C =,∴C B ⊆ ---------------------------------------------------10分所以2<a ---------------------------------------------------12分18.解:记甲选动车、汽车、飞机来厦门分别为事件,,A B C .则事件,,A B C 是互斥的.---------------------------------------------------1分(Ⅰ)()()()0.6P A B P A P B +=+= ---------------------------------------------------3分又()0.3P B =∴()0.3P A = ---------------------------------------------------5分 ∴不乘动车来的概率1()0.7P P A =-= ---------------------------------------------------7分 (Ⅱ)又()()()1P A P B P C ++= ---------------------------------------------------9分∴()0.4P C = ---------------------------------------------------11分 所以()(),()()P C P A P C P B >>所以他乘飞机来的可能性最大 ---------------------------------------------------12分19.解:(Ⅰ)分数在[50,60)的频率为0.008100.08⨯=,由茎叶图知:分数在[50,60)之间的频数为4,所以全班人数为4500.08=(人),--2分 则分数落在[80,90)的学生共有50(414204)8-+++=(人), ----------------------3分 所以分数落在[80,90)的频率为80.1650= 答:分数落在[80,90)的频率为0.16. ---------------------------------------------------4分 (Ⅱ)分数在[50,70) 的试卷共有18份,其中[)50,60 的有4份, ------------------6分现需抽取容量为9的样本,根据分层抽样原理,在[)50,60中应抽取的份数为49218⨯= 答:在[)50,60中,应抽取2份; --------------------------------------------------8分 (Ⅲ)分数分布在[]90,100的学生一共有4人,现从中抽取2人,可能的分数的组合为{}{}{}{}{}{}95,96,95,97,95,99,96,97,96,99,97,99故基本事件总数为6n = -------------------------------------------------10分 设事件A 表示“成绩99分的同学被选中”,则事件A 包含的基本事件为{}{}{}95,99,96,99,97,99 ,3A n =-------------------------------------------------11分根据古典概型概率公式有:31()62A n P A n ===. 答:成绩为99分的同学被选中的概率为12-------------------------------------------------12分20.(Ⅰ)证明:连结1EDM 是1DD 的中点,114DD AA ==12BE MD ∴==又1//BE MD ---------------------------------------------2分∴四边形1D MBE 是平行四边形 --------------------------------------------3分1//BM ED ∴-----------------------------4分 又1ED ⊂平面11A EFD ,BM ⊄平面11A EFD ----------------------------------------5分∴BM ∥平面11A EFD -------------6分(Ⅱ)解:依题意,得此多面体11ABEA DCFD -是一个四棱柱, 底面1ABEA 是梯形 ---------------------9分底面积1(24)6182S =+⋅=高4h AD ==118472ABEA V Sh ==⋅=四棱柱 -----------12分21.解:(Ⅰ)依题意,得25(1415%)10⨯-⨯=此人得到的卖车款是10万元 --------------------------------------4分(Ⅱ)421.25,(01)17.5,(12)13.75,(23)10,(34)210(),(410,)3x x x y x x x x N -⎧⎪<≤⎪<≤⎪⎪=<≤⎨⎪<≤⎪⎪⋅<≤∈⎪⎩-------------------------------------9分(Ⅲ)依题意,得4210()43x -⋅≥2344log ()10x ∴-≤ 234lg 4120.31log ()210lg 2lg 30.30.5-⋅-=≈=--6x ∴≤ -------------------------------------12分2014+6=2020因为,超过n 年不到1n +年的按1n +年计算所以,最迟应该在2020年元旦前(或2019年)卖车 --------------------------------14分D 1MA 1EDFC BA22.解:(Ⅰ)函数2()1x nf x x +=+为定义在R 上的奇函数,(0)0f n ∴==--------------2分2(),1x f x x ∴=+22(),11x xf x x x --==-++满足()()0,f x f x +-=故当且仅当0.n =时2()1xf x x =+为奇函数 -------------------------------------3分(Ⅱ)依题意,即满足对任意]1,0[1∈x ,“21()()g x f x >在]1,0[2∈x 上有解”即满足2max 1()()g x f x >在]1,0[1∈x 上恒成立 即满足2max 1max()()g x f x >-------------------------------------5分对于函数2()1xf x x =+, 不妨设1201x x ≤<≤1212211222221212(1)()()()11(1)(1)x x x x x x f x f x x x x x ---=-=++++ ∵1201x x ≤<,210x x ->, ∴12()()0f x f x -<,∴2()1xf x x =+在[0,1]x ∈上单调递增,1max 1()(1)2f x f == ------------------------------------7分对于二次函数2()22g x x x λλ=--,对称轴为x λ= ⑴当12λ≥时,2max ()(0)2g x g λ==- 令122λ->得14λ<-,与12λ≥不合,舍去; ⑵当12λ<时,2max ()(1)14g x g λ==- 令1142λ->得18λ<.综上所述,符合要求的λ范围是18λ<------------------------------------9分(Ⅲ)方程12|()|log ||f x x = 只有1个实数解。

4.二次函数与代数的综合

4.二次函数与代数的综合

2014年中考解决方案二次函数与代数的综合内容 基本要求 略高要求较高要求 二次函数 能结合实际问题情境了解二次函数的意义;会用描点法画出二次函数的图象能通过分析实际问题的情境确定二次函数的表达式;能从图象上认识二次函数的性质;会根据二次函数的解析式求其图象与坐标轴的交点坐标,会确定图象的顶点、开口方向和对称轴;会利用二次函数的图象求一元二次方程的近似解能用二次函数解决简单的实际问题;能解决二次函数与其他知识综结合的有关问题一、与一次函数只有一个交点☞考点说明:二次函数一与次函数有交点问题,解法是联系解析式,组成关于x 的二次方程,然后求解.如果只有一个交点,说明△=0,一次函数与二次函数相切;但是如果题目中给出的是直线,一定要注意是否有x a =的直线.【例1】 (2013年朝阳二模)已知关于x 的一元二次方程2(4)10x m x m --+-=. (1)求证:无论m 取何值,此方程总有两个不相等的实数根;(2)此方程有一个根是3,在平面直角坐标系xOy 中,将抛物线2(4)1y x m x m =--+-向右平移3个单位,得到一个新的抛物线,当直线y x b =+与这个新抛物线有且只有一个公共点时,求b 的值.例题精讲二次函数与代数的综合中考说明二、与x 轴的交点为整数☞考点说明:二次函数与x 轴的交点问题是令0y =,解关于x 的二次方程,用含参量的未知数表示x ,然后用变量分离表示出x ,最后用整除解决问题.【例2】 (2013年顺义区一模)已知关于x 的方程2(32)220mx m x m -+++=(1)求证:无论m 取任何实数时,方程恒有实数根.(2)若关于x 的二次函数2(32)22y mx m x m =-+++的图象与x 轴两个交点的横坐标均为正整数,且m 为整数,求抛物线的解析式.【巩固】(2011年昌平一模)已知二次函数22(1)(31)2y k x k x =---+.⑴二次函数的顶点在x 轴上,求k 的值;⑵若二次函数与x 轴的两个交点A 、B 均为整数点(坐标为整数的点),当k 为整数时,求A 、B 两点的坐标.【巩固】(2013年密云二模)已知:关于x 的一元二次方程01)2()1(2=--+-x m x m (m 为实数)(1)若方程有两个不相等的实数根,求m 的取值范围;(2)在(1)的条件下,求证:无论m 取何值,抛物线1)2()1(2--+-=x m x m y 总过x 轴上的一个固定点;(3)若m 是整数,且关于x 的一元二次方程01)2()1(2=--+-x m x m 有两个不相等的整数根,把抛物线1)2()1(2--+-=x m x m y 向右平移3个单位长度,求平移后的解析式.三、整体带入☞考点说明:当题目中含有的未知量大于方程的个数或计算出来较复杂时,可以考虑整体带入. 【例3】 (2013西城区一模)已知关于x 的一元二次方程22(4)0x a x a +++=. (1) 求证:无论a 为任何实数,此方程总有两个不相等的实数根;(2) 抛物线21:2(4)C y x a x a =+++与x 轴的一个交点的横坐标为2a,其中0a ≠,将抛物线1C 向右平移14个单位,再向上平移18个单位,得到抛物线2C .求抛物线2C 的解析式;(3) 点A (m ,n )和B (n ,m )都在(2)中抛物线C 2上,且A 、B 两点不重合,求代数式33222m mn n -+的值.【巩固】(2012年海淀区一模)已知关于x 的方程()03132=+++x m mx .(1)求证:不论为m 任意实数,此方程总有实数根;(2)若抛物线()3132+++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定此抛物线的解析式;(3)若点P (1x ,1y )与点Q (n x +1,2y )在(2)中抛物线上,(点P 、Q 不重合),且21y y =,求代数式81651242121++++n n n x x 的值.四、二次函数与反比例函数的综合☞考点说明:当二次函数与其他函数综合时,要多考虑题目中出现的函数的性质.yxO【例4】 (2013年密云一模)在平面直角坐标系内,反比例函数和二次函数y=k (x 2+x-1)的图象交于点 A (1,k )和点B (-1,-k ).(1)当k=-2时,求反比例函数的解析式;(2)要使反比例函数和二次函数都是y 随着x 的增大而增大,求k 应满足的条件以及x 的取值范围;(3)设二次函数的图象的顶点为Q ,当△ABQ 是以AB 为斜边的直角三角形时,求k 的值.【巩固】(2013年石景山二模)如图,抛物线2y x ax b =-++过点A (-1,0),B (3,0),其对称轴与x 轴的交点为C , 反比例函数ky x=(x >0,k 是常数)的图象经过抛物线的顶点D . (1)求抛物线和反比例函数的解析式.(2)在线段DC 上任取一点E ,过点E 作x 轴平行线,交y 轴于点F 、交双曲线于点G ,联结DF 、DG 、FC 、GC .①若△DFG 的面积为4,求点G 的坐标; ②判断直线FC 和DG 的位置关系,请说明理由; ③当DF =GC 时,求直线DG 的函数解析式.五、用函数的思想解方程☞考点说明:当通过解方程不能解决问题本身时,可以用函数的概念和性质,去分析问题、转化问题和解决问题.【例5】 (2012年密云一模)已知:1x 、2x 分别为关于x 的一元二次方程2220mx x m ++-=的两个实数根.(1)设1x 、2x 均为两个不相等的非零整数根,求m 的整数值; (2)利用图象求关于m 的方程1210x x m ++-=的解.【例6】 (2013年平谷区一模)已知关于m 的一元二次方程221x mx +-=0.(1)判定方程根的情况;(2)设m 为整数,方程的两个根都大于1-且小于32,当方程的两个根均为有理数时,求m 的值.六、沿某条直线翻折二次函数的部分图像☞考点说明:此类问题,要多应用数形结合的思想,找到临界点从而解决问题.沿x轴翻折有交点的问题【例7】二次函数2y x bx c=++的图象如图所示,其顶点坐标为M(1,-4).(1)求二次函数的解析式;(2)将二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合新图象回答:当直线y x n=+与这个新图象有两个公共点时,求n的取值范围.【巩固】(2012年丰台一模)已知:关于x的一元二次方程:22240x mx m-+-=.(1)求证:这个方程有两个不相等的实数根;(2)当抛物线2224y x mx m=-+-与x轴的交点位于原点的两侧,且到原点的距离相等时,求此抛物线的解析式;(3)将(2)中的抛物线在x轴下方的部分沿x轴翻折,其余部分保持能够不变,得到图形C1,将图形C1向右平移一个单位,得到图形C2,当直线y=x b+(b<0)与图形C2恰有两个公共点时,写出b的取值范围.【巩固】已知抛物线22y x kx k =-+-+.(1)求证:无论k 为任何实数,该抛物线与x 轴都有两个交点; (2)在抛物线上有一点P (m ,n ),n <0,OP =103,且线段OP 与x 轴正半轴所夹锐角的正弦值为45,求该抛物线的解析式;(3)将(2)中的抛物线x 轴上方的部分沿x 轴翻折,与原图象的另一部分组成一个新的图形M ,当直线y x b =-+与图形M 有四个交点时,求b 的取值范围.沿平行于x 轴的直线翻折【例8】 (2013年海淀区一模)在平面直角坐标系xOy 中,抛物线22y mx mx n =-+与x 轴交于A 、B两点,点A 的坐标为(2,0)-. (1)求B 点坐标; (2)直线y =12x +4m +n 经过点B .①求直线和抛物线的解析式;②点P 在抛物线上,过点P 作y 轴的垂线l ,垂足为(0,)D d .将抛物线在直线l 上方的部分沿直线l 翻折,图象的其余部分保持不变,得到一个新图象G .请结合图象回答:当图象G 与直线y =12x +4m +n 只有两个公共点时,d 的取值范围是______________.【巩固】(2013海淀区二模).已知:抛物线2(2)2y ax a x =+--过点(3,4)A .(1)求抛物线的解析式;(2)将抛物线2(2)2y ax a x =+--在直线1y =-下方的部分沿直线1y =-翻折,图象其余的部分保持不变,得到的新函数图象记为G .点()1,M m y 在图象G 上,且10y ≤. ①求m 的取值范围;②若点()2,N m k y +也在图象G 上,且满足24y ≥恒成立,则k 的取值范围为_______.【巩固】己知二次函数)12(221-+-=t tx x y (t >1)的图象为抛物线1C .(1)求证:无论t 取何值,抛物线1C 与x 轴总有两个交点;(2)已知抛物线1C 与x 轴交于A 、B 两点(A 在B 的左侧),将抛物线1C 作适当的平移,得抛物线2C :22)(t x y -=,平移后A 、B 的对应点分别为D (m ,n ),E (m +2,n ),求n 的值. (3)在⑵的条件下,将抛物线2C 位于直线DE 下方的部分沿直线DE 向上翻折后,连同2C 在DE上方的部分组成一个新图形,记为图形G ,若直线b x y +-=21(b <3)与图形G 有且只有两个公共点,请结合图象求b 的取值范围.沿y 翻折【例9】 (2013年门头沟一模)已知关于x 的一元二次方程21(2)2602x m x m +-+-=. (1)求证:无论m 取任何实数,方程都有两个实数根; (2) 当<3m 时,关于x 的二次函数21(2)262y x m x m =+-+-的图象与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,且2AB =3OC ,求m 的值;(3)在(2)的条件下,过点C 作直线l ∥x 轴,将二次函数图象在y 轴左侧的部分沿直线l 翻折,二次函数图象的其余部分保持不变,得到一个新的图象,记为G .请你结合图象回答:当直线13y x b =+与图象G 只有一个公共点时,b 的取值范围.七、其他类型的代数综合【例10】 (2012房山一模)已知:关于x 的方程()0322=-+-+k x k x(1)求证:方程()0322=-+-+k x k x 总有实数根;(2)若方程()0322=-+-+k x k x 有一根大于5且小于7,求k 的整数值;(3)在(2)的条件下,对于一次函数b x y +=1和二次函数2y =()322-+-+k x k x ,当71<<-x 时,有21y y >,求b 的取值范围.【例11】 (2013年昌平二模)已知点A (a ,1y )、B (2a ,y 2)、C (3a ,y 3)都在抛物线21122y x x=-上.(1)求抛物线与x 轴的交点坐标; (2)当a =1时,求△ABC 的面积;(3)是否存在含有1y 、y 2、y 3,且与a 无关的等式?如果存在,试给出一个,并加以证明;如果不存在,请说明理由.【例12】 (2013年大兴二模)已知:如图,抛物线21:43L y x x =-+与x 轴交于A 、B 两点(点A 在点B左侧),与y 轴交于点C .(1)直接写出点A 和抛物线L 1的顶点坐标; (2)研究二次函数22:43L y kx kx k =-+(0)k ≠.①写出二次函数2L 与二次函数1L 有关图象的两条相同的性质;②若直线8y k =与抛物线2L 交于E 、F 两点,问线段EF 的长度是否会因k 值的变化而发生变化?如果不会,请求出EF 的长度;如果会,请说明理由.1. (2011年门头沟)已知关于x 的一元二次方程2(2)210m x x +--=.(1)若此一元二次方程有实数根,求m 的取值范围;(2)若关于x 的二次函数21(2)21y m x x =+--和22(2)1y m x mx m =++++的图象都经过x 轴上的点(n ,0),求m 的值;(3)在(2)的条件下,将二次函数21(2)21y m x x =+--的图象先沿x 轴翻折,再向下平移3个单位,得到一个新的二次函数3y 的图象.请你直接写出二次函数3的解析式,象回答:当x 取何值时,这个新的二次函数3y 的值大于二次函数2y 的值.课后作业1 2 3 4 4321xy O -1 -2 -3 -4 -12. (2011年平谷)已知二次函数23(0)2y ax bx a =+-≠的图象经过点(10),,和(30)-,,反比例函数1ky x=(x >0)的图象经过点(1,2).(1)求这两个二次函数的解析式,并在给定的直角坐标系中作出这两个函数的图象; (2)若反比例函数1k y x =(0x >)的图象与二次函数23(0)2y ax bx a =+-≠)的图象在第一象限内交于点00()A x y ,,0x 落在两个相邻的正整数之间.请你观察图象写出这两个相邻的正整数;(3)若反比例函数2k y x =(00k x >>,)的图象与二次函数23(0)2y ax bx a =+-≠的图象在第一象限内的交点为A ,点A 的横坐标0x 满足023x <<,试求实数k 的取值范围.3. (2011年房山二模)已知:二次函数y=22(2)x n m x m mn +-+-.(1)求证:此二次函数与x 轴有交点;(2)若m -1=0,求证方程22(2)0x n m x m mn +-+-=有一个实数根为1;(3)在(2)的条件下,设方程22(2)0x n m x m mn +-+-=的另一根为a ,当x =2时,关于n 的函数1y nx am =+与222(2)y x n m ax m mn =+-+-的图象交于点A 、B (点A 在点B 的左侧),平行于y 轴的直线L 与1y nx am =+、222(2)y x n m ax m mn =+-+-的图象分别交于点C 、D ,若CD =6,求点C 、D 的坐标.4.(2012年石景山一模)已知:关于x 的方程()()01342=---+m x m x 有两个不相等的实数根.(1)求m 的取值范围;(2)抛物线C :()()1342-+---=m x m x y 与x 轴交于A 、B 两点.若1-≤m 且直线1l :12--=x my 经过点A ,求抛物线C 的函数解析式; (3)在(2)的条件下,直线1l :12--=x my 绕着点A 旋转得到直线2l :b kx y +=,设直线2l 与y轴交于点D ,与抛物线C 交于点M (M 不与点A 重合),当23≤AD MA 时,求k 的取值范围.。

【成才之路】2014-2015学年高中数学 3.2.2 函数模型的应用实例课件 新人教A版必修1

【成才之路】2014-2015学年高中数学 3.2.2 函数模型的应用实例课件 新人教A版必修1

当该顾客购买茶杯 40 个时,采用优惠办法 (1) 应付款 y1 =
5×40+60=260元;采用优惠办法(2)应付款y2=4.6×40+73.6 =257.6元,由于y2<y1,因此应选择优惠办法(2).
2
2
二次函数模型问题与函数的图象
西部山区的某种特产由于运输原因,长期只能
在当地销售,当地政府对该项特产的销售投资收益为:每年投 1 入 x 万元,可获得利润 P=-160(x-40)2+100(万元).当地政 府拟在新的十年发展规划中加快发展此特产的销售,其规划方 案为: 在规划前后对该项目每年都投入 60 万元的销售投资, 在 未来 10 年的前 5 年中, 每年都从 60 万元中拨出 30 万元用于修 建一条公路,5 年修成,通车前该特产只能在当地销售;
●温故知新
旧知再现 1.常见的函数模型 kx k为常数,k≠0); (1)正比例函数模型:f(x)=____(
k (2)反比例函数模型:f(x)=____( x k为常数,k≠0);
(3)一次函数模型:f(x)=________( kx+b k,b为常数,k≠0); ax2+bx+c a , b , c 为常数, (4) 二次函数模型: f(x) = ____________(
(1)分别求出通话费y1、y2与通话时间x之间的函数关系式; (2)请帮助用户计算,在一个月内使用哪种卡便宜.
[分析]
由题目可获取以下主要信息: (1)通过图象给出函
数关系, (2) 函数模型为直线型, (3) 比较两种函数的增长差 异.解答本题可先用待定系数法求出解析式,然后再进行函数 值大小的比较.
1 又由题设 P=-160(x-40)2+100 知, 每年投入 30 万元时, 795 利润 P= 8 (万元). 前 5 年的利润和为 795 2 775 8 ×5-150= 8 (万元).

二次函数与代数

二次函数与代数

二次函数与代数一、引言代数学是数学的一个分支,研究各种数学对象及其运算规则。

而二次函数则是代数学中的一种重要函数形式,具有广泛的应用。

本文将探讨二次函数与代数的关系,并介绍二次函数的基本性质和应用。

二、二次函数的定义和性质1. 二次函数的定义二次函数是指形如f(x)=ax^2+bx+c的函数,其中a、b、c为常数且a≠0。

其中x为自变量,f(x)为因变量。

2. 二次函数的图像根据二次函数的定义,我们可以绘制出其图像。

二次函数的图像呈现出抛物线的形状,开口方向由二次项系数a的正负决定。

当a>0时,抛物线开口朝上;当a<0时,抛物线开口朝下。

3. 二次函数的顶点二次函数的图像在平面直角坐标系中有一个最高或最低点,称为顶点。

顶点的横坐标为-x轴对称点的横坐标,纵坐标为函数值最大或最小的值。

4. 二次函数的对称轴二次函数的图像关于一条直线对称,该直线称为二次函数的对称轴。

对称轴的方程为x=-b/(2a)。

5. 二次函数的零点二次函数的零点是指函数图像与x轴相交的点,即函数值为0的点。

根据二次函数的定义,零点可以通过求解二次方程ax^2+bx+c=0得到。

三、二次函数的应用1. 物体的抛体运动在物理学中,抛体运动是指物体在重力作用下,沿着抛物线轨迹运动的现象。

二次函数可以描述抛体运动的轨迹,通过调整函数的参数,可以分析物体的抛体运动轨迹、最高点、飞行时间等。

2. 金融领域中的应用在金融学中,二次函数被广泛应用于衡量风险和收益的关系。

例如,投资组合的效用函数可以用二次函数表示,通过优化该函数可以得到最佳的投资组合。

3. 工程中的应用在工程领域,二次函数也有各种应用。

例如,根据地形的测量数据可以使用二次函数拟合地表曲线,便于工程设计和规划;在控制系统中,二次函数可以用来描述系统的响应特性,从而设计出合适的控制策略。

四、总结通过本文的介绍,我们了解了二次函数的定义和性质,包括图像、顶点、对称轴和零点等重要概念。

【成才之路】2014-2015学年高中数学 2.4.1 二次函数的图像课件 北师大版必修1

【成才之路】2014-2015学年高中数学 2.4.1 二次函数的图像课件 北师大版必修1
设 f(x) = ax2 + bx + c(a≠0) , 依 题 意 得
a+b+c=-1, 9a+3b+c=3, 4a-2b+c=8, 解得 a=1,b=-2,c=0. 故解析式为 f(x)=x2-2x.
1 2 5 1 2 5.二次函数 y=2x +3x+2的图像是由函数 y=2x 的图像 先向______(左,右)平移________个单位,再向______(上、下) 平移________个单位得到.
[规律总结] (1)函数y=ax2(a≠0)的图像向左平移|h|个单位 长度(h正左移,h负右移)得函数y=a(x+h)2的图像,再向上或 向下平移|k|个单位长度(k正上移,k负下移)得y=a(x+h)2+k的 图像.(2)要得到y=ax2+bx+c的图像,先把函数配方成y=a(x
+h)2+k的形式再由(1)变换得到.
1 2 在同一直角坐标系内,画出函数 y=-2x ; 1 2 1 y=-2x -1;y=-2(x+1)2-1 的图像,并说明图像之间 的关系.
[解析]
x 1 y=-2x2 1 y=-2x2-1
列表如下:
-4 -8 -9 -5.5 -3 -4.5 -5.5 -3 -2 -2 -3 -1.5 -1 -0.5 -1.5 -1 0 0 -1 -1.5 1 -0.5 -1.5 -3 2 -2 -3 -5.5 3 -4.5 -5.5 -9
a-2<0, 只需 2 Δ=[2a-2] -4a-2×-4<0,
解得-2<a<2. 综上所述,实数 a 的取值范围是(-2,2].
[规律总结]函数y=ax2+bx+c为二次函数的条件是a≠0, 如果二次项系数是字母或式子时,不能确定是否为0,也就是 不能确定函数y=ax2+bx+c是否为二次函数时,此时一定要

2014-2015东北师大附属中学高三第一轮复习导学案--二次函数(3)

二次函数(3) 二次函数在高考中占有重要地位,函数的很多题型都与二次函数有关,函数的单调性,奇偶性,周期性,三次函数求导,图象讨论等等,所以二次函数的有关问题必须过关。

五.课时作业三个二次问题(二次函数、不等式、方程)典题:【2014高考江苏卷第10题】已知函数2()1f x x mx =+-,若对于任意的[],1x m m ∈+都有()0f x <,则实数m 的取值范围为 .1. 解关于的不等式:(1) x 2-(a +1)x +a <0,(2) .2 设集合A={x |x 2+3k 2≥2k (2x -1)},B={x |x 2-(2x -1)k +k 2≥0},且A B ,试求k的取值范围.3.不等式(m 2-2m -3)x 2-(m -3)x -1<0的解集为R ,求实数m 的取值范围.4.已知二次函数y =x 2+px +q ,当y <0时,有-<x <,解关于x 的不等式qx2x 0222>++mx x ⊆2131+px +1>0.5.若不等式的解集为,求实数p 与q 的值.6. 设,若,,, 试证明:对于任意,有.7.【尖刀班】 设二次函数,方程的两个根满足. 当时,证明.8. 已知关于x 的二次方程x 2+2mx +2m +1=0.(1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的范围.(2)若方程两根均在区间(0,1)内,求m 的范围.012>++p qx x p{}42|<<x x ()()f x ax bx c a =++≠20()f 01≤()f 11≤()f -11≤-≤≤11x ()f x ≤54()()02>++=a c bx ax x f ()f x x -=0x x 12,ax x 1021<<<()1,0x x ∈()1x x f x <<9. 已知二次函数f (x )=ax 2+bx +c 和一次函数g (x )=-bx ,其中a 、b 、c 满足a >b >c ,a +b +c =0,(a ,b ,c ∈R ).(1)求证:两函数的图象交于不同的两点A 、B ; (2)求线段AB 在x 轴上的射影A 1B 1的长的取值范围.10.已知实数t 满足关系式 (a >0且a ≠1) (1)令t=a x ,求y =f (x )的表达式;(2)若x ∈(0,2时,y 有最小值8,求a 和x 的值.11.如果二次函数y =mx 2+(m -3)x +1的图象与x 轴的交点至少有一个在原点的右侧,试求m 的取值范围.12.二次函数f (x )=px 2+qx +r 中实数p 、q 、r 满足=0,其中m >0,求证:(1)pf ()<0; (2)方程f (x )=0在(0,1)内恒有解.33log log a y a t a a=]mrm q m p ++++121+m m13.一个小服装厂生产某种风衣,月销售量x (件)与售价P (元/件)之间的关系为P =160-2x ,生产x 件的成本R =500+30x 元.(1)该厂的月产量多大时,月获得的利润不少于1300元?(2)当月产量为多少时,可获得最大利润?最大利润是多少元?14. 已知a 、b 、c 是实数,函数f(x)=ax 2+bx +c ,g(x)=ax +b ,当-1≤x ≤1时,|f(x)|≤1.(1)证明:|c|≤1;(2)证明:当-1≤x ≤1时,|g(x)|≤2;15. 设二次函数,方程的两个根满足. 且函数的图像关于直线对称,证明:.()()f x ax bx c a =++>20()f x x -=0x x 12,0112<<<x x a ()f x x x =0x x 012<16. 已知二次函数,设方程的两个实数根为和.(1)如果,设函数的对称轴为,求证:; (2)如果,,求的取值范围. 17. 设,,,求证:(Ⅰ) a >0且-2<<-1; (Ⅱ)方程在(0,1)内有两个实根.18. 已知二次函数的图象如图所示:(1)试判断及的符号;(2)若|OA|=|OB|,试证明。

2014—2015学年第一学期初三年级数学期末考试试卷含答案

2014—2015学年第一学期初三年级期末质量抽测数学试卷2014.12学校姓名考试编号考生须知1.本试卷共6页,共五道大题,25个小题,满分120分.考试时间120分钟.2.在试卷和答题卡上认真填写学校名称、姓名和考试编号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.考试结束,请将答题卡交回.一、选择题(共8道小题,每小题4分,共32分)下列各题均有四个选项,其中只有一个..是符合题意的.1.已知⊙O 1和⊙O 2的半径分别为3和5,如果O 1O 2= 8,那么⊙O 1和⊙O 2的位置关系是A .外切B.相交C.内切D.内含2.在不透明的布袋中装有2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出一个球,摸出的球是白球..的概率是A .15B.13C.25D.233.如图,⊙O 的直径AB=4,点C 在⊙O 上,如果∠ABC =30°,那么AC 的长是A .1B .2C .3D .24. 在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,使它与图中阴影部分组成的新图形构成中心对称图形,该小正方形的序号是A .①B .②C .③D .④5.如图,在△ABC 中,点D E 、分别在AB AC 、边上,DE ∥BC ,若:3:4AD AB,6AE,则AC 等于A. 3B. 4C . 6D. 86.当二次函数249y xx 取最小值时,x 的值为A .2B .1C .2D .9来源学|科|网ABC30°④③②①ABCODC BAO7.课外活动小组测量学校旗杆的高度.如图,当太阳光线与地面成30°角时,测得旗杆AB 在地面上的影长BC 为24米,那么旗杆AB 的高度约是A .12米B .83米C .24米D .243米[来源:]8.已知:如图,在半径为4的⊙O 中,AB 为直径,以弦AC (非直径)为对称轴将AC折叠后与AB 相交于点D ,如果3ADDB ,那么AC 的长为A .214B .27C .42D .6二、填空题(共4道小题,每小题4分,共16分)9.如果3cos 2A,那么锐角A 的度数为.10.如果一个圆锥的母线长为4,底面半径为1,那么这个圆锥的侧面积为.11.在1×2的正方形网格格点上放三枚棋子,按图所示的位置已放置了两枚棋子,如果第三枚棋子随机放在其它格点上,那么以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率为.12.在平面直角坐标系xoy 中,直线2x 和抛物线2yax 在第一象限交于点A,过A 作ABx 轴于点B .如果a 取1,2,3,,,n 时对应的△AOB 的面积为123S S S ,,,,n S ,那么1S _____;123nS S S S _____.三、解答题(共6道小题,第13题4分,第14 -18题各5分,共29分)13.如图1,正方形ABCD 是一个 6 × 6网格的示意图,其中每个小正方形的边长为1,位于AD 中点处的点P 按图2的程序移动.(1)请在图中画出点P 经过的路径;(2)求点P 经过的路径总长.绕点A 顺时针旋转90°绕点B 顺时针旋转90°绕点C 顺时针旋转90°输入点P输出点ADPxOy[来源:.Com]14.计算:3tan302cos452sin 60.15.现有三个自愿献血者,两人血型为O 型,一人血型为A 型.若在三人中随意挑选一人献血,两年以后又从此三人中随意挑选一人献血,试求两次所献血的血型均为O 型的概率(要求:用列表或画树状图的方法解答).[来源:]16. 如图,从热气球C 处测得地面A 、B 两处的俯角分别为30°、45°,如果此时热气球C处的高度CD 为100米,点A 、D 、B 在同一直线上,求AB 两处的距离.17. 已知抛物线与x 轴相交于两点A(1,0),B(-3,0),与y 轴相交于点C (0,3).(1)求此抛物线的函数表达式;(2)如果点3,2Dm 是抛物线上的一点,求△ABD 的面积.18.如图,在△ABC 中,∠AB C =2∠C ,BD 平分∠ABC ,且2AD ,22BD ,求AB 的值.BCDADCBA四、解答题(共4道小题,每小题5分,共20分)19.如图,在平面直角坐标系xoy 中,⊙A 与y 轴相切于点3(0,)2B ,与x 轴相交于M 、N 两点.如果点M 的坐标为1(,0)2,求点N 的坐标.20.(1)已知二次函数223y xx ,请你化成2()y x h k的形式,并在直角坐标系中画出223y xx 的图象;(2)如果11()A x y ,,22()B x y ,是(1)中图象上的两点,且121x x ,请直接写出1y 、2y 的大小关系;(3)利用(1)中的图象表示出方程2210xx 的根来,要求保留画图痕迹,说明结果.21.已知:如图,在△ABC 中,AB =AC ,以AC 为直径的⊙O 与BC 交于点D ,DE ⊥AB ,垂足为E ,ED 的延长线与AC 的延长线交于点F .(1)求证:DE 是⊙O 的切线;(2)若⊙O 的半径为4,BE =2,求∠F 的度数.yxO AB MNyOxEOA22.阅读下面的材料:小明遇到一个问题:如图(1),在□ABCD 中,点E 是边BC 的中点,点F 是线段AE 上一点,BF 的延长线交射线CD 于点G. 如果3AF EF,求CD CG的值.他的做法是:过点E 作EH ∥AB 交BG 于点H ,则可以得到△BAF ∽△HEF .请你回答:(1)AB 和EH 的数量关系为,CG 和EH 的数量关系为,CD CG的值为.(2)如图(2),在原题的其他条件不变的情况下,如果(0)AF a a EF,那么CD CG的值为(用含a 的代数式表示).(3)请你参考小明的方法继续探究:如图(3),在四边形ABCD 中,DC ∥AB ,点E是BC 延长线上一点,AE 和BD 相交于点 F. 如果(00)AB BC m n mnCDBE,,,那么AF EF的值为(用含m ,n 的代数式表示).H(1)ABCDE FG G FE DCBA(2)(3)AB CDEF五、解答题(共3道小题,第23题7分,第24、25题各8分,共23分)23.由于2013年第30号强台风“海燕”的侵袭,致使多个城市受到影响. 如图所示,A 市位于台风中心M 北偏东15°的方向上,距离612千米,B 市位于台风中心M 正东方向603千米处. 台风中心以每小时30千米的速度沿MF 向北偏东60°的方向移动(假设台风在移动的过程中的风速保持不变),距离台风中心60千米的圆形区域内均会受到此次强烈台风的影响.(1)A 市、B 市是否会受到此次台风的影响?说明理由.(2)如果受到此次台风影响,该城市受到台风影响的持续时间为多少小时?备用图24.已知二次函数y = x 2–kx + k – 1(k >2).(1)求证:抛物线y = x 2–kx + k- 1(k >2)与x 轴必有两个交点;(2)抛物线与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,若tan 3OAC,求抛物线的表达式;(3)以(2)中的抛物线上一点P (m,n )为圆心,1为半径作圆,直接写出:当m 取何值时,x 轴与P 相离、相切、相交.25.已知:四边形ABCD 中,AD ∥BC ,AD=AB=CD ,∠BAD =120°,点E 是射线CD 上的一个动点(与C 、D 不重合),将△ADE 绕点A 顺时针旋转120°后,得到△ABE',连接EE'.(1)如图1,∠AEE'= °;(2)如图2,如果将直线AE 绕点A 顺时针旋转30°后交直线BC 于点F ,过点E 作EM∥AD 交直线AF 于点M ,写出线段DE 、BF 、ME 之间的数量关系;(3)如图3,在(2)的条件下,如果CE =2,AE=27,求ME 的长.xyO–1–21234–1–21234E'MFEDC BAE'EDCBA图1图2E'MFEDC BA图32014—2015学年第一学期初三年级期末质量抽测数学试卷参考答案及评分标准2014.12一、选择题(共8个小题,每小题4分,共32分)题号 1 2 3 4 5 6 7 8 答案 ACDBDABA二、填空题(共4个小题,每小题4分,共16分)题号9 10 1112答案304344 ,2n(n+1)(各2分)三、解答题(共6道小题,第13题4分,第14 -18题各5分,共29分)13.解:(1)如图所示:PAB CD,,,,,,,,,,,,,,,,,,,,2分(2)由题意得,点P 经过的路径总长为:270318091802n r .,,,,,,,,,,,4分14.解:原式=323322322,,,,,,,,,,,,,,,,,,,,,,3分=113,,,,,,,,,,,,,,,,,,,,,,4分=23.,,,,,,,,,,,,,,,,,,,,,,,,,,,,5分15.解:列表如下:O 1O 2 A O 1(O 1,O 1)(O 1,O 2)(O 1,A)O 2(O 2,O 1) (O 2,O 2) (O 2,A) A(A ,O 1)(A ,O 2) (A ,A),,,,,,,,,,,,,,,,,,,,,,,4分所以,两次所献血型均为O 型的概率为49.,,,,,,,,,,,,,,,,,,,,,,5分16.解:依题意,可知:30,45,,100,CABCBACD AB D CD 于点,,,,,,,,,,,,,,,1分,CD AB 90.CDACDB ,,,,,,,,,,,,,,,,,,,,,,,,,2分Rt 100BDC BDCD 在中,,,,,,,,,,,,,,,,,,,,,,,,3分Rt tan CDADC AAD在中,.∴31003AD CD .,,,,,,,,,,,,,,,,,,,,,,,,,4分1003100ABADBD.,,,,,,,,,,,,,,,,,,,,,,,5分∴AB 两处的距离为(1003100)米.17.解:(1)∵抛物线与y 轴相交于点C (0,3),∴设抛物线的解析式为23y axbx .,,,,,,,,,,,,,,,,,1分∵抛物线与x 轴相交于两点(1,0),(3,0)A B ,∴30,9330.a b a b ,,,,,,,,,,,,,,,,,,,,,,,,,,,2分解得:1,2.a b∴抛物线的函数表达式为:232yxx .,,,,,,,,,,,,,,,,3分(2)∵点3(,)2D m 是抛物线上一点,∴2(23339)224m . ,,,,,,,,,,,,,,,,,,,,,,4分∴119942242ABDDSAB y . ,,,,,,,,,,,,,,,,,,5分18.解:∵BD 平分∠ABC ,∴∠ABC =2∠1=2∠2.∵∠ABC =2∠C ,∴∠C =∠1=∠2.,,,,,,,,,,,1分∴22CD BD . ,,,,,,,,,,,,2分∴32AC.又∵∠A=∠A,∴△ABD ∽△ACB .,,,,,,,,,,,,,,,,,,,,,,,,,,,3分∴AD AB ABAC.,,,,,,,,,,,,,,,,,,,,,,,,,,,4分∴22326AB AD AC .∴6AB(舍负).,,,,,,,,,,,,,,,,,,,,,,,,,,5分四、解答题(共4道小题,每小题5分,共20分)19.解:连接AB 、AM ,过点A 作AC ⊥MN 于点C .∵⊙A 与y 轴相切于点B(0,32),∴AB ⊥y 轴.又∵AC ⊥MN ,x 轴⊥y 轴,∴四边形BOCA 为矩形.∴AC =OB=32,OC =BA .∵AC ⊥MN ,∴∠ACM=90°,MC=CN .,,,,,,,,,,,,,,,,,,,,2分∵M(12,0),∴OM =12.在Rt △AMC 中,设AM=r.O A B MNCyx21DCBA。

【成才之路】14-2015学年高中数学 2.2.2 对数函数及其性质 第2课时 对数函数性质的应用课件 新人教A版必修1


对于形如y=logaf(x)(a>0,且a≠1)的复合函数,其值域的求 解步骤如下: (1)分解成y=logau,u=f(x)两个函数; (2)求f(x)的定义域;
(3)求u的取值范围;
(4)利用y=logau的单调性求解.
【思维拓展】 讨论.
(1) 若对数函数的底数是含字母的代数式
(或单独一个字母 ),要考虑其单调性,就必须对底数进行分类
当0<a<1时,函数y=logax在(0,+∞)上是减函数,
又3.1<5.2,所以loga3.1>loga5.2.
1 1 ③因为 0>log0.23>log0.24,所以log 3<log 4,即 log30.2 0.2 0.2 <log40.2. ④因为函数 y=log3x 是增函数, 且 π>3, 所以 log3π>log33 =1. 同理,1=logππ>logπ3,所以 log3π>logπ3.
(0,+∞) R 增函数
(0,+∞) R
减函数 图象过点(1,0),即loga1=0.
x∈(0,1)⇒y∈________; x∈(0,1)⇒y∈________; (-∞,0) (0,+∞) 函数值 x∈[1,+∞) x∈[1,+∞) 特点 ⇒y∈__________ ⇒y∈__________ (-∞,0] [0,+∞)
(1)y=log2(x2+4);
(2)y=log1 (3+2x-x2).
2
[解析] (1)y=log2(x2+4)的定义域为R. ∵x2+4≥4,∴log2(x2+4)≥log24=2.
∴y=log2(x2+4)的值域为{y|y≥2}.
(2)设 u=3+2x-x2, 则 u=-(x-1)2+4≤4. ∵u>0,∴0<u≤4. 又 y=log1 u 在(0,+∞)上是减函数,

二次函数与几何综合题


∴P(-4,6),此时△PDE
的周长最小,且
S△PDE
=1×4×6=12. 2
∴点 P 恰为“好点”.
∴△PDE 的周长最小时“好点”的坐标为(-4,6).
6.
解答题突破
(3)设该抛物线的顶点为G,在x轴上是否存在点P,使得PC+PG的 值最小?若存在,求出点P的坐标;若不存在,请说明理由.
思路点拨 点C,G在x轴的同侧,求线段和的最小值时,可以作 点 C关于x轴的对称点C′,然后连接C′G,则直线C′G与x轴的交点即为 所求的点P.
解答题突破
解:存在. ∵y=x 2+2x -3=(x +1)2-4,∴G(-1,-4). ∵C(0,-3), ∴点 C 关于 x 轴的对称点 C′的坐标为(0,3). 设过点 C′,G 的直线解析式为 y=ax+p. 将点 C′(0,3),G(-1,-4)代入,
得 dt+e=t2+2t-3.解得 e=-t-3.
解答题突破
∴直线 AQ 的解析式为 y=(t+3)x-t-3.
当 x=-1 时,yM=-t-3-t-3=-2t-6.
∴DM=0-(-2t-6)=2t+6.
设直线 BQ 的解析式为 y=mx+n.
将 B(-3,0),Q(t,t2+2t-3)代入,
-3m+n=0,
∴抛物线的解析式为 y=-x2+2x+3.
解答题突破
(2)P为直线BC上方抛物线上的一个动点,当点P到直线BC的距离h 最大时,求最大距离和点P的坐标.
解:∵B(3,0),C(0 , 3),
∴直线BC的解析式为y=-x+3.
如答图3,过点P作PH⊥x轴于点H,交BC于点
G,过点P作PF⊥BC于点F,PF=h,连接PB,PC. 设P(m,-m2+2m+3),则G(m,-m+3).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考解决方案二次函数与代数的综合学生姓名:上课时间:内容基本要求略高要求较高要求二次函数能结合实际问题情境了解二次函数的意义;会用描点法画出二次函数的图象能通过分析实际问题的情境确定二次函数的表达式;能从图象上认识二次函数的性质;会根据二次函数的解析式求其图象与坐标轴的交点坐标,会确定图象的顶点、开口方向和对称轴;会利用二次函数的图象求一元二次方程的近似解能用二次函数解决简单的实际问题;能解决二次函数与其他知识综结合的有关问题一、与x轴的交点为整数☞考点说明:二次函数与x轴的交点问题是令0y=,解关于x的二次方程,用含参量的未知数表示x,然后用变量分离表示出x,最后用整除解决问题.【例1】已知关于x的方程2(32)220mx m x m-+++=(1)求证:无论m取任何实数时,方程恒有实数根.(2)若关于x的二次函数2(32)22y mx m x m=-+++的图象与x轴两个交点的横坐标均为正整数,且m为整数,求抛物线的解析式.例题精讲二次函数与代数的综合中考说明【例2】 已知二次函数22(1)(31)2y k x k x =---+.(1)二次函数的顶点在x 轴上,求k 的值;(2)若二次函数与x 轴的两个交点A 、B 均为整数点(坐标为整数的点),当k 为整数时,求A 、B 两点的坐标.【例3】 已知:关于x 的一元二次方程01)2()1(2=--+-x m x m (m 为实数)(1)若方程有两个不相等的实数根,求m 的取值范围;(2)在(1)的条件下,求证:无论m 取何值,抛物线1)2()1(2--+-=x m x m y 总过x 轴上的一个固定点;(3)若m 是整数,且关于x 的一元二次方程01)2()1(2=--+-x m x m 有两个不相等的整数根, 把抛物线1)2()1(2--+-=x m x m y 向右平移3个单位长度,求平移后的解析式.【例4】 已知关于x 的一元二次方程23(1)230mx m x m -+++=.如果该方程有两个不相等的实数根,求m 的取值范围在(1)的条件下,关于x 的二次函数23(1)23y mx m x m =-+++的图像与x 轴交点的横标都是整数,且4x <时,求m 的整数值.【例5】 已知关于x 的一元二次方程032)1(222=--++-k k x k x 有两个不相等的实数根.(1)求k 的取值范围;(2)当k 取最小的整数时,求抛物线 32)1(222--++-=k k x k x y 的顶点坐标以及它与x 轴的交点坐标;(3)将(2)中求得的抛物线在x 轴下方的部分沿x 轴翻折到x 轴上方,图象的其余部分不变,得到一个新图象.请你画出这个新图象,并求出新图象与直线m x y +=有三个不同公共点时m 的值.二、代数式计算☞考点说明:代数式计算主要涉及到消元和降次的思想,简单的题目可以直接整体代入. 【例6】 已知关于x 的一元二次方程22(4)0x a x a +++=.(1) 求证:无论a 为任何实数,此方程总有两个不相等的实数根; (2) 抛物线21:2(4)C y x a x a =+++与x 轴的一个交点的横坐标为2a,其中0a ≠,将抛物线1C 向右平移14个单位,再向上平移18个单位,得到抛物线2C .求抛物线2C 的解析式;(3) 点(,)A m n 和(n ,)B m 都在(2)中抛物线2C 上,且A 、B 两点不重合,求代数式33222m mn n -+的值.【例7】 已知关于x 的方程()03132=+++x m mx .(1)求证:不论为m 任意实数,此方程总有实数根;(2)若抛物线()3132+++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定此抛物线的解析式;(3)若点P (1x ,1y )与点Q (n x +1,2y )在(2)中抛物线上,(点P 、Q 不重合),且21y y =,求代数式81651242121++++n n n x x 的值.【例8】 已知:关于x 的一元二次方程02)13()1(22=+---x k x k .(1)当方程有两个相等的实数根时,求k 的值;(2)若k 是整数,且关于x 的一元二次方程02)13()1(22=+---x k x k 有两个不相等的整数根时,把抛物线2)13()1(22+---=x k x k y 向右平移21个单位长度,求平移后抛物线的顶点坐标.三、与一次函数有交点☞考点说明:二次函数一与次函数有交点问题,解法是联系解析式,组成关于x 的二次方程,然后求解.如果只有一个交点,说明0∆=,一次函数与二次函数相切;但是如果题目中给出的是直线,一定要注意是否有x a =的直线.【例9】 已知关于x 的一元二次方程2(4)10x m x m --+-=.(1)求证:无论m 取何值,此方程总有两个不相等的实数根;(2)此方程有一个根是3-,在平面直角坐标系xOy 中,将抛物线2(4)1y x m x m =--+-向右平移3个单位,得到一个新的抛物线,当直线y x b =+与这个新抛物线有且只有一个公共点时,求b 的值.【例10】 在平面直角坐标系xOy 中,二次函数22y x bx c =++的图象经过10-(,)和302(,)两点.(1)求此二次函数的表达式.(2)直接写出当312x -<<时,y 的取值范围.(3)将一次函数()12y m x =-+的图象向下平移m 个单位后,与二次函数22y x bx c =++图象交点的横坐标分别是a 和b ,其中2a b <<,试求m 的取值范围.【例11】 已知关于x 的方程2(1)0x m x m ---=①和2(9)2(1)3x m x m --++= ②,其中0m >.(1)求证:方程①总有两个不相等的实数根;(2)设二次函数21-(-1)-y x m x m =的图像与x 轴交于A 、B 两点(点A 在点B 的左侧).将A 、B 两点按照相同的方式平移后,点A 落在点(1,3)A '处,点B 落在点B '处.若点B '的横坐标恰好是方程②的一个根,求m 的值;(3)设二次函数22(9)2(1)y x m x m =--++,在(2)的条件下,函数1y ,2y 的图象位于直线3x =左侧的部分与直线(0)y kx k =>交于两点,当向上平移直线y kx =时,交点位置随之改变,若交点间的距离始终不变,则k 的值是_______________.四、沿某条直线翻折二次函数的部分图像☞考点说明:此类问题,要多应用数形结合的思想,找到临界点从而解决问题.沿x 轴翻折有交点的问题【例12】 二次函数2y x bx c =++的图象如图所示,其顶点坐标为(1,4)M .(1)求二次函数的解析式;(2)将二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合新图象回答:当直线y x n =+与这个新图象有两个公共点时,求n 的取值范围.【例13】 已知:关于x 的一元二次方程:22240x mx m -+-=.(1)求证:这个方程有两个不相等的实数根;(2)当抛物线2224y x mx m =-+-与x 轴的交点位于原点的两侧,且到原点的距离相等时, 求此抛物线的解析式;(3)将(2)中的抛物线在x 轴下方的部分沿x 轴翻折,其余部分保持能够不变,得到图形1C ,将图形1C 向右平移一个单位,得到图形2C ,当直线y=x b +(b<1)与图形2C 恰有两个公共点时,写出b 的取值范围.【例14】 已知抛物线22y x kx k =-+-+.(1)求证:无论k 为任何实数,该抛物线与x 轴都有两个交点; (2)在抛物线上有一点(,)p m n ,0n <,103OP =,且线段OP 与x 轴正半轴所夹锐角的正弦值为45,求该抛物线的解析式;(3)将(2)中的抛物线x 轴上方的部分沿x 轴翻折,与原图象的另一部分组成一个新的图形M ,当直线y x b =-+与图形M 有四个交点时,求b 的取值范围.-1-111xO y沿平行于x 轴的直线翻折【例15】 在平面直角坐标系xOy 中,抛物线22y mx mx n =-+与x 轴交于A 、B 两点,点A 的坐标为(2,0)-.(1)求B 点坐标; (2)直线y =12x +4m +n 经过点B . ①求直线和抛物线的解析式;②点P 在抛物线上,过点P 作y 轴的垂线l ,垂足为(0,)D d .将抛物线在直线l 上方的部分沿直线l 翻折,图象的其余部分保持不变,得到一个新图象G .请结合图象回答:当图象G 与直线y =12x +4m +n 只有两个公共点时,d 的取值范围是___________________.【例16】 已知:抛物线2(2)2y ax a x =+--过点(3,4)A .(1)求抛物线的解析式;(2)将抛物线2(2)2y ax a x =+--在直线1y =-下方的部分沿直线1y =-翻折,图象其余的部分保持不变,得到的新函数图象记为G .点()1,M m y 在图象G 上,且10y ≤. ①求m 的取值范围;②若点()2,N m k y +也在图象G 上,且满足24y ≥恒成立,则k 的取值范围为 .【例17】 已知:关于x 的一元二次方程2(41)3301mx m x m m -+++=(>) . (1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为12x x ,(其中12x x >),若y 是关于m 的函数,且123y x x =﹣,求这个函数的解析式;(3)将(2)中所得的函数的图象在直线2m =的左侧部分沿直线2m =翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当关于m 的函数2y m b =+的图象与此图象有两个公共点时,b 的取值范围.【例18】 关于x 的一元二次方程023)1(32=+++-m x m x .(1)求证:无论m 为何值时,方程总有一个根大于0;(2)若函数23)1(32+++-=m x m x y 与x 轴有且只有一个交点,求m 的值;(3)在(2)的条件下,将函数23)1(32+++-=m x m x y 的图象沿直线2=x 翻折,得到新的函数图象G .在x y ,轴上分别有点P (t ,0),Q (0,2t),其中0t >,当线段PQ 与函数图象G 只有一个公共点时,求t 的值.xyO沿y 翻折【例19】 已知关于x 的一元二次方程21(2)2602x m x m +-+-=. (1)求证:无论m 取任何实数,方程都有两个实数根;(2) 当<3m 时,关于x 的二次函数21(2)262y x m x m =+-+-的图象与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,且23AB OC =,求m 的值;(3)在(2)的条件下,过点C 作直线l ∥x 轴,将二次函数图象在y 轴左侧的部分沿直线l 翻折,二次函数图象的其余部分保持不变,得到一个新的图象,记为G .请你结合图象回答:当直线13y x b =+与图象G 只有一个公共点时,b 的取值范围.五、用函数的思想解方程☞考点说明:当通过解方程不能解决问题本身时,可以用函数的概念和性质,去分析问题、转化问题和解决问题.【例20】 已知:1x 、2x 分别为关于x 的一元二次方程2220mx x m ++-=的两个实数根.(1)设1x 、2x 均为两个不相等的非零整数根,求m 的整数值; (2)利用图象求关于m 的方程1210x x m ++-=的解.【例21】 已知关于m 的一元二次方程221x mx +-=0.(1)判定方程根的情况;(2)设m 为整数,方程的两个根都大于1-且小于32,当方程的两个根均为有理数时,求m 的值.六、二次函数与反比例函数的综合☞考点说明:当二次函数与其他函数综合时,要多考虑题目中出现的函数的性质. 【例22】 在平面直角坐标系内,反比例函数和二次函数21y k x x =+-()的图象交于点1Ak (,) 和点1B k --(,).(1)当2k =-时,求反比例函数的解析式;(2)要使反比例函数和二次函数都是y 随着x 的增大而增大,求k 应满足的条件以及x 的取值范围;(3)设二次函数的图象的顶点为Q ,当ABQ △是以AB 为斜边的直角三角形时,求k 的值.【例23】 如图,抛物线2y x ax b =-++过点A (-1,0),B (3,0),其对称轴与x 轴的交点为C,反比例函数ky x=(x>0,k 是常数)的图象经过抛物线的顶点D . (1)求抛物线和反比例函数的解析式.(2)在线段DC 上任取一点E ,过点E 作x 轴平行线,交y 轴于点F 、交双曲线于点G , 联结DF 、DG 、FC 、GC .①若△DFG 的面积为4,求点G 的坐标; ②判断直线FC 和DG 的位置关系,请说明理由; ③当DF=GC 时,求直线DG 的函数解析式.七、其他类型的代数综合【例24】 已知:关于x 的方程()0322=-+-+k x k x(1)求证:方程()0322=-+-+k x k x 总有实数根;(2)若方程()0322=-+-+k x k x 有一根大于5且小于7,求k 的整数值;(3)在(2)的条件下,对于一次函数b x y +=1和二次函数2y =()322-+-+k x k x ,当71<<-x 时,有21y y >,求b 的取值范围.yxO【例25】 (2013年昌平二模)已知点1(,)A a y 、2(2,)B a y 、3(3,)C a y 都在抛物线21122y x x =-上.(1)求抛物线与x 轴的交点坐标; (2)当1a =时,求ABC △的面积;(3)是否存在含有1y 、2y 、3y ,且与a 无关的等式?如果存在,试给出一个,并加以证明;如果不存在,请说明理由.-1-111xOy【例26】 已知:如图,抛物线21:43L y x x =-+与x 轴交于A 、B 两点(点A 在点B 左侧),与y 轴交于点C .(1)直接写出点A 和抛物线1L 的顶点坐标; (2)研究二次函数22:43L y kx kx k =-+(0)k ≠.①写出二次函数2L 与二次函数1L 有关图象的两条相同的性质;②若直线8y k =与抛物线2L 交于E 、F 两点,问线段EF 的长度是否会因k 值的变化而发生变化? 如果不会,请求出EF 的长度;如果会,请说明理由.【题1】 已知关于x 的一元二次方程2(2)210m x x +--=.(1)若此一元二次方程有实数根,求m 的取值范围;(2)若关于x 的二次函数21(2)21y m x x =+--和22(2)1y m x mx m =++++的图象都经过x 轴上的点(n,0),求m 的值;(3)在(2)的条件下,将二次函数21(2)21y m x x =+--的图象先沿x 轴翻折,再向下平移3个单位,得到一个新的二次函数3y 的图象.请你直接写出二次函数3y 的解析式,并结合函数的图象回答:当x 取何值时,这个新的二次函数3y 的值大于二次函数2y 的值.1 2 3 4 4 3 2 1xy O -1 -2 -3 -4 -4-3 -2 -1课后作业【题2】 已知二次函数23(0)2y ax bx a =+-≠的图象经过点(10),,和(30)-,,反比例函数1k y x=(x >0)的图象经过点(1,2).(1)求这两个二次函数的解析式,并在给定的直角坐标系中作出这两个函数的图象; (2)若反比例函数1k y x =(0x >)的图象与二次函数23(0)2y ax bx a =+-≠)的图象在第一象限内交于点00()A x y ,,0x 落在两个相邻的正整数之间.请你观察图象写出这两个相邻的正整数; (3)若反比例函数2k y x=(00k x >>,)的图象与二次函数23(0)2y ax bx a =+-≠的图象在第一象限内的交点为A ,点A 的横坐标0x 满足023x <<,试求实数k 的取值范围.【题3】 已知:二次函数22(2)y x n m x m mn =+-+-.(1)求证:此二次函数与x 轴有交点;(2)若10m -=,求证方程22(2)0x n m x m mn +-+-=有一个实数根为1;(3)在(2)的条件下,设方程22(2)0x n m x m mn +-+-=的另一根为a ,当2x =时,关于n 的函数1y nx am =+与222(2)y x n m ax m mn =+-+-的图象交于点A 、B (点A 在点B 的左侧),平行于y 轴的直线L 与1y nx am =+、222(2)y x n m ax m mn =+-+-的图象分别交于点C 、D ,若6CD =,求点C 、D 的坐标.【题4】 已知:关于x 的方程()()01342=---+m x m x 有两个不相等的实数根.(1)求m 的取值范围;(2)抛物线C :()()1342-+---=m x m x y 与x 轴交于A 、B 两点.若1-≤m 且直线1l :12--=x my 经过点A ,求抛物线C 的函数解析式; (3)在(2)的条件下,直线1l :12--=x my 绕着点A 旋转得到直线2l :b kx y +=,设直线2l 与y 轴交于点D ,与抛物线C 交于点M (M 不与点A 重合),当23≤AD MA 时,求k 的取值范围.【题5】 己知二次函数)12(221-+-=t tx x y ()1t >的图象为抛物线1C .(1)求证:无论t 取何值,抛物线1C 与x 轴总有两个交点;(2)已知抛物线1C 与x 轴交于A 、B 两点(A 在B 的左侧),将抛物线1C 作适当的平移,得抛物线2C :22)(t x y -=,平移后A 、B 的对应点分别为(,)D m n ,(,)E m +2n ,求n 的值. (3)在⑵的条件下,将抛物线2C 位于直线DE 下方的部分沿直线DE 向上翻折后,连同2C 在DE上方的部分组成一个新图形,记为图形G ,若直线b x y +-=21(b<3)与图形G 有且只有两个公共点,请结合图象求b 的取值范围.O xy32-1121-1。

相关文档
最新文档