2014高考数学难题集锦(一)含详细答案及评分标准
2014年高考数学(文)难题专项训练(1)推理与证明(含答案)

【冲击高分系列】2014年高考数学(文)难题专项训练:推理与证明1.(2013北京海淀区5月模拟卷,8,5分) 若数列满足:存在正整数,对于任意正整数都有成立,则称数列为周期数列,周期为. 已知数列满足,则下列结论中错误的是()A. 若m=,则B. 若,则m可以取3个不同的值C. 若,则数列是周期为3的数列D. 且,数列是周期数列2.(2013年山东省高三4月巩固性练习,12,5分) 已知函数若函数的零点按从小到大的顺序排列成一个数列,则该数列的通项公式为()A.B.C.D.3.(2012宁夏高三三模,12, 5分)已知有穷数列A: a1, a2, …, a n(n≥2, n∈N) . 定义如下操作过程T: 从A中任取两项a i, a j, 将的值添在A的最后, 然后删除a i, a j, 这样得到一系列n-1项的新数列A1(约定: 一个数也视作数列) ; 对A1的所有可能结果重复操作过程T, 又得到一系列n-2项的新数列A2; 如此经过k次操作后得到的新数列记作A k. 设A: -, 则A3的可能结果是()A. 0B.C.D.4.(2012大纲全国, 12, 5分) 正方形ABCD的边长为1, 点E在边AB上, 点F在边BC上, AE=BF=. 动点P从E出发沿直线向F运动, 每当碰到正方形的边时反弹, 反弹时反射角等于入射角. 当点P第一次碰到E时, P与正方形的边碰撞的次数为()A. 8B. 6C. 4D. 35. (2007上海, 15, 4分)设f(x)是定义在正整数集上的函数, 且f(x)满足:“当f(k)≥k2成立时, 总可推出f(k+1)≥(k+1)2成立”. 那么, 下列命题总成立的是()A. 若f(1)<1成立, 则f(10)<100成立B. 若f(2)<4成立, 则f(1)≥1成立C. 若f(3)≥9成立, 则当k≥1时, 均有f(k)≥k2成立D. 若f(4)≥25成立, 则当k≥4时, 均有f(k)≥k2成立6.(2013年广东省广州市高三4月综合测试,13,5分) 数列的项是由1或2构成,且首项为1,在第个1和第个1之间有个2,即数列为:1,2,1,2,2,2,1,2,2,2,2,2,1,…,记数列的前项和为,则;.7.(2013年山东省高三4月巩固性练习,16,5分) 对大于或等于的自然数的次方幂有如下分解方式:根据上述分解规律,若的分解中最小的数是73,则的值为.8.(2013年湖北七市高三4月联合考试,16,5分) 挪威数学家阿贝尔,曾经根据阶梯形图形的两种不同分割(如下图) ,利用它们的面积关系发现了一个重要的恒等式——阿贝尔公式:a1b1+a2b2+a3b3+…+a n b n=a1(b1-b2) +L2(b2-b3) +L3(b3-b4) +…+L n-1(b n-1-b n) +L n b n,则其中:(I) L3=;(Ⅱ) L n=.9.(2013湖北黄冈市高三三月质量检测,17,5分)如图所示,将数以斜线作如下分群:(1) ,(2,3) ,(4,6,5) ,(8,12,10,7),(16,24,20,14,9),…,并顺次称其为第1群,第2群,第3群,第4群,…,则第7群中的第2项是;第群中个数的和是.…10.(2013山东青岛高三三月质量检测,16,5分) 给出以下命题:①双曲线的渐近线方程为;②命题“,” 是真命题;③已知线性回归方程为,当变量增加个单位,其预报值平均增加个单位;④已知,,,,依照以上各式的规律,得到一般性的等式为,()则正确命题的序号为(写出所有正确命题的序号).11.(2012江西省临川一中,师大附中高三联考,14,5分)若是等比数列,是互不相等的正整数,则有正确的结论:.类比上述性质,相应地,若是等差数列,是互不相等的正整数,则有正确的结论:_______.12.(2012山东省济南市第二次模拟,16,5分)观察下列等式1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49……照此规律,第n个等式为__________.13. (2013高考仿真卷四, 16, 5分)如图所示的三角形数阵叫“莱布尼兹调和三角形”, 它们是由整数的倒数组成的, 第n行有n个数且两端的数均为(n≥2) , 每个数是它下一行左右相邻两数的和, 如=+=+=+, …, 则第10行第3个数(从左往右数) 为.…………14.(2012湖南, 16, 5分) 对于n∈N*, 将n表示为n=a k×2k+a k-1×2k-1+…+a1×21+a0×20, 当i=k时, a i=1, 当0≤i≤k-1时, a i为0或1. 定义b n如下: 在n的上述表示中, 当a0, a1, a2, …, a k中等于1的个数为奇数时, b n=1; 否则b n=0.(1) b2+b4+b6+b8=;(2) 记c m为数列{b n}中第m个为0的项与第m+1个为0的项之间的项数, 则c m的最大值是.15. (2012湖北, 17, 5分) 传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3, 6, 10, …记为数列{a n}, 将可被5整除的三角形数按从小到大的顺序组成一个新数列{b n},可以推测:(1) b2 012是数列{a n}中的第项;(2) b2k-1=. (用k表示)16.(2010上海, 12, 4分)在n行n列矩阵中, 记位于第i行第j列的数为a ij(i, j=1, 2, …, n). 当n=9时,a11+a22+a33+…+a99=.17.(2010福建, 16, 5分)观察下列等式:①cos 2α=2cos2α-1;②cos 4α=8cos4α-8cos2α+1;③cos 6α=32cos6α-48cos4α+18cos2α-1;④cos 8α=128cos8α-256cos6α+160cos4α-32cos2α+1;⑤cos 10α=mcos10α-1 280cos8α+1 120cos6α+ncos4α+pcos2α-1.可以推测, m-n+p=.18.(2013北京海淀区5月模拟卷,20,13分)设是由个实数组成的行列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.(Ⅰ) 数表如表1所示,若经过两次“操作” ,使得到的数表每行的各数之和与每列的各数之和均为非负实数,请写出每次“操作” 后所得的数表(写出一种方法即可);(Ⅱ) 数表如表2所示,若必须经过两次“操作” ,才可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数的所有可能值;(Ⅲ) 对由个实数组成的行列的任意一个数表,能否经过有限次“操作” 以后,使得到的数表每行的各数之和与每列的各数之和均为非负整数?请说明理由.19.(2013北京西城区高三三月模拟,20,13分)已知集合.对于,,定义;;与之间的距离为.(Ⅰ)当时,设,,求;(Ⅱ)证明:若,且,使,则;(Ⅲ)记.若,,且,求的最大值.20.21.22. 已知△ABC的三边长为有理数.(Ⅰ)求证:cos A是有理数;(Ⅱ)求证:对任意正整数n, cos nA是有理数.23.(2012北京西城区第二次模拟,20,14分)若正整数,则称为的一个“分解积”.(Ⅰ)当分别等于时,写出的一个分解积,使其值最大;(Ⅱ)当正整数的分解积最大时,证明:中的个数不超过;(Ⅲ)对任意给定的正整数,求出,使得的分解积最大.24. (2012北京海淀区期末卷,20,14分)将一个正整数表示为a1+a2+…+a p(p∈N*)的形式,其中a i ∈N*,,且,记所有这样的表示法的种数为(如4=4,4=1+3,4=2+2,4=1+1+2,4=1+1+1+1,故).(Ⅰ)写出的值,并说明理由;(Ⅱ)证明:f(n-1)-f(n)≧1();(Ⅲ)对任意正整数,比较与的大小,并给出证明.25.(2012山东, 22, 13分) 已知函数f(x) =(k为常数, e=2. 718 28…是自然对数的底数) , 曲线y=f(x) 在点(1,f(1) ) 处的切线与x轴平行.(1) 求k的值;(2) 求f(x) 的单调区间;(3) 设g(x) =xf '(x) , 其中f '(x) 为f(x) 的导函数. 证明: 对任意x>0, g(x) <1+e-2.26.(2012陕西, 21, 14分) 设函数f(x) =x n+bx+c(n∈N+, b, c∈R) .(1) 设n≥2, b=1, c=-1, 证明:f(x) 在区间内存在唯一零点;(2) 设n为偶数, |f(-1) |≤1, |f(1) |≤1, 求b+3c的最小值和最大值;(3) 设n=2, 若对任意x1, x2∈[-1, 1], 有|f(x1) -f(x2) |≤4, 求b的取值范围.27. (2008上海, 21, 18分)已知数列{a n}∶a1=1, a2=2, a3=r, a n+3=a n+2(n是正整数), 与数列{b n}∶b1=1,b2=0, b3=-1, b4=0, b n+4=b n(n是正整数). 记T n=b1a1+b2a2+b3a3+…+b n a n.(Ⅰ)若a1+a2+a3+…+a12=64, 求r的值;(Ⅱ)求证:当n是正整数时, T12n=-4n;(Ⅲ)已知r>0, 且存在正整数m, 使得在T12m+1, T12m+2, …, T12m+12中有4项为100. 求r的值, 并指出哪4项为100.答案1.D2.C3.B4.B5. D6.36;39817.98.(Ⅰ);(Ⅱ)9.,10. ①③④11.12.13.14.(1) 3(2) 215.(1) 5 030(2)16. 4517. 96218.(I)每一列所有数之和分别为-1,3,3,-6,每一行所有数之和分别为,0. 方法1:方法2:方法3:(写出一种即可)……………………3分(II) 每一列所有数之和分别为2,0,,0,每一行所有数之和分别为,1.因为必须经过两次“操作” ,所以要操作第三列和第一行.①如果操作第三列,则有:所以第一行之和为,第二行之和为,所以解得,又是整数,所以.②如果操作第一行,则有:所以每一列之和分别为,,,,所以解得.综上所得,.…………………10分(III) 能,理由如下:按要求对某行(或某列)操作一次时,则该行的行和(或该列的列和)由负整数变为正整数,都会引起该行的行和(或该列的列和)增大,从而也就使得数阵中个数之和增加,且增加的幅度大于等于,但是每次操作都只是改变数表中某行(或某列)各数的符号,而不改变其绝对值,显然,数表中个数之和必然小于等于,可见其增加的趋势必在有限次之后终止, 终止之时必然所有的行和与所有的列和均为非负整数,故结论成立.…………………13分19.(Ⅰ)由于,则,即.…………3分(Ⅱ)设,,.因为,使,所以,使得,所以,使得,其中.所以与同为非负数或同为负数.所以,所以.………8分(Ⅲ)解法一.设中有项为非负数,项为负数.不妨设时,;时,.所以因为,所以,整理得.所以.因为;又,所以.即.对于,,有,,且,.综上所得,的最大值为.………13分解法二首先证明如下引理:设,则有.证明:因为,,所以,即.所以.上式等号成立的条件为,或,所以.对于,,有,,且,.综上所得,的最大值为.………13分20.解法一:(Ⅰ)因为动点点到定点的距离与到定直线的距离相等,所以点的轨迹是以为焦点,为准线的抛物线,方程为即曲线的方程为.………4分(Ⅱ)假设是直角三角形,不妨设,则,则.设,,,必有,,则,,所以.又,则所以,所以,又,,所以,所以,整理得……………………………8分又,所以.又,所以.所以,所以,即.所以,①又,] 所以,整理得即.②由①②得,所以.③设,则有,则.所以无解,所以方程③无解,所以假设不成立,所以△ABC不可能是直角三角形.…………………12分解法二:(Ⅰ)同解法一(Ⅱ)设,,,由,得,.当轴时,,,从而,,即点的坐标为.由于点在上,所以,即,此时,,,所以,很明显此时△ABC不可能是直角三角形.…………8分当与轴不垂直时,设直线的方程为:,代入,整理得:,则.假设,则直线的斜率为,同理可得:.由,得,,.由,可得.从而,整理得:,即,①设,则,则.所以方程无解,所以方程①无解,所以假设不成立,不可能是直角.同理可证和也不可能是直角,综合得可知不可能是直角三角形.…………………12分21.(1)对任意正整数,有,.所以数列是首项,公差为等差数列;数列是首项,公比为的等比数列.所以对任意正整数,有,.所以数列的通项公式为:或…………………………3分对任意正整数,..所以数列的前项和为:.或.7分(2) 由(1)得,,则有:所以必有,又,则①当时, ,即;②当时,,令,解得,则有;③当时, 则,假设存在,使得从而,得,所以,所以,所以,所以,此时.综上可知, 存在正整数,使得,并且正整数对只有两对:与…………………14分:22. .(Ⅰ)由AB、BC、AC为有理数及余弦定理知cos A=是有理数.(Ⅱ)用数学归纳法证明cos nA和sin A·sin nA都是有理数.①当n=1时, 由(Ⅰ)知cos A是有理数, 从而有sin A·sin A=1-cos2A也是有理数.②假设当n=k(k≥1)时, cos kA和sin A·sin kA都是有理数.当n=k+1时, 由cos(k+1)A=cos A·cos kA-sin A·sin kA,sin A·sin(k+1)A=sin A·(sin A·cos kA+cos A·sin kA)=(sin A·sin A)·cos kA+(sin A·sin kA)·cos A, 及①和归纳假设, 知cos(k+1)A与sin A·sin(k+1)A都是有理数. 即当n=k+1时, 结论成立.综合①、②可知, 对任意正整数n, cos nA是有理数.23.(Ⅰ)则当6=3+3时,6的分解积取最大值;………………1分同理可得,当时,7的分解积取最大值;………………2分当时,8的分解积取最大值.………………3分(Ⅱ)由(Ⅰ)可知,当7的分解积最大时,.所以中可以有个.………………4分假设有个或个以上的时,因为,且,所以,此时分解积不是最大的.所以假设不成立,因此,中至多有个.………………7分(Ⅲ)①当中有时,因为,且,所以,此时分解积不是最大,可以将加到其他加数中,使得分解积变大.………………8分②由(Ⅱ)可知,中至多有个.③当中有时,若将分解为,由①可知分解积不会最大;若将分解为,则分解积相同;若有两个,因为,且,所以将改写为,使得分解积更大.因此,中至多有个,而且可以写成.………………10分④当中有大于的数时,不妨设,则有,所以将分解为会使得分解积更大.………………11分综上所述,中只能出现或或,且不能超过个,不能超过个.于是,当时,使得分解积最大;…………12分当时,使得分解积最大;………………13分当时,使得分解积最大.………………14分24.(Ⅰ)解:因为3=3,3=1+2,3=1+1+1,所以.因为5=5,5=2+3,5=1+4,5=1+1+3,5=1+2+2,5=1+1+1+2,5=1+1+1+1+1,所以.……………………………………3分(Ⅱ)证明:因为,把的一个表示法中的去掉,就可得到一个的表示法;反之,在的一个表示法前面添加一个“1+”,就得到一个的表示法,即的表示法中的表示法种数等于的表示法种数,所以表示的是的表示法中的表示法数.即.……………………………………8分(Ⅲ)结论是.证明如下:由结论知,只需证由(Ⅱ)知:表示的是的表示法中的表示法数,表示的是的表示法中的表示法数.考虑到,把一个的的表示法中的加上1,就可变为一个的的表示法,这样就构造了从的的表示法到的的表示法的一个对应,所以有即……………………………………14分25.(1) 由f(x) =,得f '(x) =, x∈(0, +∞) ,由于曲线y=f(x) 在(1,f(1) ) 处的切线与x轴平行,所以f '(1) =0, 因此k=1.(2) 由(1) 得f '(x) =(1-x-xln x) , x∈(0, +∞) ,令h(x) =1-x-xln x, x∈(0, +∞) ,当x∈(0, 1) 时, h(x) >0;当x∈(1, +∞) 时, h(x) <0.又e x>0,所以x∈(0, 1) 时, f '(x) >0;x∈(1, +∞) 时, f '(x) <0.因此f(x) 的单调递增区间为(0, 1) , 单调递减区间为(1, +∞) .(3) 证明: 因为g(x) =xf '(x) ,所以g(x) =(1-x-xln x) , x∈(0, +∞) .由(2) h(x) =1-x-xln x,求导得h'(x) =-ln x-2=-(ln x-ln e-2) ,所以当x∈(0, e-2) 时, h'(x) >0, 函数h(x) 单调递增;当x∈(e-2, +∞) 时, h'(x) <0, 函数h(x) 单调递减.所以当x∈(0, +∞) 时, h(x) ≤h(e-2) =1+e-2.又当x∈(0, +∞) 时, 0<<1,所以当x∈(0, +∞) 时, h(x) <1+e-2, 即g(x) <1+e-2.综上所述结论成立.26.(1) 当b=1, c=-1, n≥2时,f(x) =x n+x-1.∵f f(1) =×1<0,∴f(x) 在内存在零点.又当x∈时, f '(x) =nx n-1+1>0,∴f(x) 在上是单调递增的,∴f(x) 在内存在唯一零点.(2) 解法一: 由题意知即由图象知, b+3c在点(0, -2) 取到最小值-6, 在点(0, 0) 取到最大值0,∴b+3c的最小值为-6, 最大值为0.解法二: 由题意知-1≤f(1) =1+b+c≤1, 即-2≤b+c≤0, ①-1≤f(-1) =1-b+c≤1, 即-2≤-b+c≤0, ②①×2+②得-6≤2(b+c) +(-b+c) =b+3c≤0,当b=0, c=-2时, b+3c=-6;当b=c=0时, b+3c=0,所以b+3c的最小值为-6, 最大值为0.解法三: 由题意知解得b=,c=,∴b+3c=2f(1) +f(-1) -3.又∵-1≤f(-1) ≤1, -1≤f(1) ≤1,∴-6≤b+3c≤0,当b=0, c=-2时, b+3c=-6;当b=c=0时, b+3c=0,所以b+3c的最小值为-6, 最大值为0.(3) 当n=2时,f(x) =x2+bx+c.对任意x1, x2∈[-1, 1]都有|f(x1) -f(x2) |≤4等价于f(x) 在[-1, 1]上的最大值与最小值之差M≤4. 据此分类讨论如下:(i) 当>1, 即|b|>2时, M=|f(1) -f(-1) |=2|b|>4, 与题设矛盾.(ii) 当-1≤-<0, 即0时,M=f(1) -f=≤4恒成立.(iii) 当0≤-≤1, 即-2≤b≤0时,M=f(-1) -f=≤4恒成立.综上可知, -2≤b≤2.注: (ii) (iii) 也可合并证明如下:用max{a, b}表示a, b中的较大者.当-1≤-≤1, 即-2≤b≤2时,M=max{f(1) ,f(-1) }-f=+-f=1+c+|b|-=≤4恒成立.27.(Ⅰ)a1+a2+a3+…+a12=1+2+r+3+4+(r+2)+5+6+(r+4)+7+8+(r+6)=48+4r.∵48+4r=64, ∴r=4.(Ⅱ)证明:用数学归纳法证明:当n∈Z+时, T12n=-4n.①当n=1时, T12=a1-a3+a5-a7+a9-a11=-4, 等式成立.②假设n=k时等式成立, 即T12k=-4k,那么当n=k+1时,T12(k+1)=T12k+a12k+1-a12k+3+a12k+5-a12k+7+a12k+9-a12k+11 =-4k+(8k+1)-(8k+r)+(8k+4)-(8k+5)+(8k+r+4)-(8k+8) =-4k-4=-4(k+1), 等式也成立.根据①和②可以断定:当n∈Z+时, T12n=-4n. (Ⅲ)T12m=-4m(m≥1).当n=12m+1, 12m+2时, T n=4m+1;当n=12m+3, 12m+4时, T n=-4m+1-r;当n=12m+5, 12m+6时, T n=4m+5-r;当n=12m+7, 12m+8时, T n=-4m-r;当n=12m+9, 12m+10时, T n=4m+4;当n=12m+11, 12m+12时, T n=-4m-4.∵4m+1是奇数, -4m+1-r, -4m-r, -4m-4均为负数, ∴这些项均不可能取到100.∴4m+5-r=4m+4=100, 解得m=24, r=1,此时T293, T294, T297, T298为100.。
2014年全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版)(附详细答案)

2014年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题(共12小题,每小题5分)1.(5分)=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i2.(5分)已知集合A={x|x2﹣2x﹣3≥0},B={x|﹣2≤x<2},则A∩B=()A.[1,2)B.[﹣1,1]C.[﹣1,2)D.[﹣2,﹣1] 3.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是()A.f(x)?g(x)是偶函数B.|f(x)|?g(x)是奇函数C.f(x)?|g(x)|是奇函数D.|f(x)?g(x)|是奇函数4.(5分)已知F为双曲线C:x2﹣my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为()A.B.3C.m D.3m5.(5分)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为()A.B.C.D.6.(5分)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P作直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在[0,π]的图象大致为()A.B.C.D.7.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.8.(5分)设α∈(0,),β∈(0,),且tanα=,则()A.3α﹣β=B.3α+β=C.2α﹣β=D.2α+β=9.(5分)不等式组的解集记为D,有下列四个命题:p1:?(x,y)∈D,x+2y≥﹣2 p2:?(x,y)∈D,x+2y≥2p3:?(x,y)∈D,x+2y≤3p4:?(x,y)∈D,x+2y≤﹣1其中真命题是()A.p2,p3B.p1,p4C.p1,p2D.p1,p310.(5分)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=()A.B.3C.D.211.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)12.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.6B.6C.4D.4二、填空题(共4小题,每小题5分)13.(5分)(x﹣y)(x+y)8的展开式中x2y7的系数为.(用数字填写答案)14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为.15.(5分)已知A,B,C为圆O上的三点,若=(+),则与的夹角为.16.(5分)已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2且(2+b)(sinA﹣sinB)=(c﹣b)sinC,则△ABC面积的最大值为.三、解答题17.(12分)已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λSn﹣1,其中λ为常数.(Ⅰ)证明:a n+2﹣a n=λ(Ⅱ)是否存在λ,使得{a n}为等差数列?并说明理由.18.(12分)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.(i)利用该正态分布,求P(187.8<Z<212.2);(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX.附:≈12.2.若Z~N(μ,σ2)则P(μ﹣σ<Z<μ+σ)=0.6826,P(μ﹣2σ<Z<μ+2σ)=0.9544.19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(Ⅰ)证明:AC=AB1;(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.20.(12分)已知点A(0,﹣2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆的右焦点,直线AF的斜率为,O为坐标原点.(Ⅰ)求E的方程;(Ⅱ)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l 的方程.21.(12分)设函数f(x)=ae x lnx+,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x﹣1)+2.(Ⅰ)求a、b;(Ⅱ)证明:f(x)>1.选修4-1:几何证明选讲22.(10分)如图,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE.(Ⅰ)证明:∠D=∠E;(Ⅱ)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.选修4-4:坐标系与参数方程23.已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.选修4-5:不等式选讲24.若a>0,b>0,且+=.(Ⅰ)求a3+b3的最小值;(Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由.2014年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分)1.(5分)=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i【考点】A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】由条件利用两个复数代数形式的乘除法,虚数单位i的幂运算性质,计算求得结果.【解答】解:==﹣(1+i)=﹣1﹣i,故选:D.【点评】本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题.2.(5分)已知集合A={x|x2﹣2x﹣3≥0},B={x|﹣2≤x<2},则A∩B=()A.[1,2)B.[﹣1,1]C.[﹣1,2)D.[﹣2,﹣1]【考点】1E:交集及其运算.【专题】5J:集合.【分析】求出A中不等式的解集确定出A,找出A与B的交集即可.【解答】解:由A中不等式变形得:(x﹣3)(x+1)≥0,解得:x≥3或x≤﹣1,即A=(﹣∞,﹣1]∪[3,+∞),∵B=[﹣2,2),∴A∩B=[﹣2,﹣1].故选:D.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.3.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是()A.f(x)?g(x)是偶函数B.|f(x)|?g(x)是奇函数C.f(x)?|g(x)|是奇函数D.|f(x)?g(x)|是奇函数【考点】3K:函数奇偶性的性质与判断.【专题】51:函数的性质及应用.【分析】根据函数奇偶性的性质即可得到结论.【解答】解:∵f(x)是奇函数,g(x)是偶函数,∴f(﹣x)=﹣f(x),g(﹣x)=g(x),f(﹣x)?g(﹣x)=﹣f(x)?g(x),故函数是奇函数,故A错误,|f(﹣x)|?g(﹣x)=|f(x)|?g(x)为偶函数,故B错误,f(﹣x)?|g(﹣x)|=﹣f(x)?|g(x)|是奇函数,故C正确.|f(﹣x)?g(﹣x)|=|f(x)?g(x)|为偶函数,故D错误,故选:C.【点评】本题主要考查函数奇偶性的判断,根据函数奇偶性的定义是解决本题的关键.4.(5分)已知F为双曲线C:x2﹣my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为()A.B.3C.m D.3m【考点】KC:双曲线的性质.【专题】11:计算题;5D:圆锥曲线的定义、性质与方程.【分析】双曲线方程化为标准方程,求出焦点坐标,一条渐近线方程,利用点到直线的距离公式,可得结论.【解答】解:双曲线C:x2﹣my2=3m(m>0)可化为,∴一个焦点为(,0),一条渐近线方程为=0,∴点F到C的一条渐近线的距离为=.故选:A.【点评】本题考查双曲线的方程与性质,考查点到直线的距离公式,属于基础题.5.(5分)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为()A.B.C.D.【考点】C6:等可能事件和等可能事件的概率.【专题】11:计算题;5I:概率与统计.【分析】求得4位同学各自在周六、周日两天中任选一天参加公益活动、周六、周日都有同学参加公益活动的情况,利用古典概型概率公式求解即可.【解答】解:4位同学各自在周六、周日两天中任选一天参加公益活动,共有24=16种情况,周六、周日都有同学参加公益活动,共有24﹣2=16﹣2=14种情况,∴所求概率为=.故选:D.【点评】本题考查古典概型,是一个古典概型与排列组合结合的问题,解题时先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数.6.(5分)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P作直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在[0,π]的图象大致为()A.B.C.D.【考点】3P:抽象函数及其应用.【专题】57:三角函数的图像与性质.【分析】在直角三角形OMP中,求出OM,注意长度、距离为正,再根据直角三角形的锐角三角函数的定义即可得到f(x)的表达式,然后化简,分析周期和最值,结合图象正确选择.【解答】解:在直角三角形OMP中,OP=1,∠POM=x,则OM=|cosx|,∴点M到直线OP的距离表示为x的函数f(x)=OM|sinx|=|cosx|?|sinx|=|sin2x|,其周期为T=,最大值为,最小值为0,故选:C.【点评】本题主要考查三角函数的图象与性质,正确表示函数的表达式是解题的关键,同时考查二倍角公式的运用.7.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.【考点】EF:程序框图.【专题】5I:概率与统计.【分析】根据框图的流程模拟运行程序,直到不满足条件,计算输出M的值.【解答】解:由程序框图知:第一次循环M=1+=,a=2,b=,n=2;第二次循环M=2+=,a=,b=,n=3;第三次循环M=+=,a=,b=,n=4.不满足条件n≤3,跳出循环体,输出M=.故选:D.【点评】本题考查了当型循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.8.(5分)设α∈(0,),β∈(0,),且tanα=,则()A.3α﹣β=B.3α+β=C.2α﹣β=D.2α+β=【考点】GF:三角函数的恒等变换及化简求值.【专题】56:三角函数的求值.【分析】化切为弦,整理后得到sin(α﹣β)=cosα,由该等式左右两边角的关系可排除选项A,B,然后验证C满足等式sin(α﹣β)=cosα,则答案可求.【解答】解:由tanα=,得:,+cosα,即sinαcosβ=cosαsinβsin(α﹣β)=cosα=sin(),∵α∈(0,),β∈(0,),∴当时,sin(α﹣β)=sin()=cosα成立.故选:C.【点评】本题考查三角函数的化简求值,训练了利用排除法及验证法求解选择题,是基础题.9.(5分)不等式组的解集记为D,有下列四个命题:p1:?(x,y)∈D,x+2y≥﹣2 p2:?(x,y)∈D,x+2y≥2p3:?(x,y)∈D,x+2y≤3p4:?(x,y)∈D,x+2y≤﹣1其中真命题是()A.p2,p3B.p1,p4C.p1,p2D.p1,p3【考点】2K:命题的真假判断与应用;7A:二元一次不等式的几何意义.【专题】59:不等式的解法及应用;5L:简易逻辑.【分析】作出不等式组的表示的区域D,对四个选项逐一分析即可.【解答】解:作出图形如下:由图知,区域D为直线x+y=1与x﹣2y=4相交的上部角型区域,p1:区域D在x+2y≥﹣2 区域的上方,故:?(x,y)∈D,x+2y≥﹣2成立;p2:在直线x+2y=2的右上方和区域D重叠的区域内,?(x,y)∈D,x+2y≥2,故p2:?(x,y)∈D,x+2y≥2正确;p3:由图知,区域D有部分在直线x+2y=3的上方,因此p3:?(x,y)∈D,x+2y ≤3错误;p4:x+2y≤﹣1的区域(左下方的虚线区域)恒在区域D下方,故p4:?(x,y)∈D,x+2y≤﹣1错误;综上所述,p1、p2正确;故选:C.【点评】本题考查命题的真假判断与应用,着重考查作图能力,熟练作图,正确分析是关键,属于难题.10.(5分)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=()A.B.3C.D.2【考点】K8:抛物线的性质.【专题】11:计算题;5D:圆锥曲线的定义、性质与方程.【分析】求得直线PF的方程,与y2=8x联立可得x=1,利用|QF|=d可求.【解答】解:设Q到l的距离为d,则|QF|=d,∵=4,∴|PQ|=3d,∴不妨设直线PF的斜率为﹣=﹣2,∵F(2,0),∴直线PF的方程为y=﹣2(x﹣2),与y2=8x联立可得x=1,∴|QF|=d=1+2=3,故选:B.【点评】本题考查抛物线的简单性质,考查直线与抛物线的位置关系,属于基础题.11.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)【考点】53:函数的零点与方程根的关系.【专题】11:计算题;51:函数的性质及应用;53:导数的综合应用.【分析】由题意可得f′(x)=3ax2﹣6x=3x(ax﹣2),f(0)=1;分类讨论确定函数的零点的个数及位置即可.【解答】解:∵f(x)=ax3﹣3x2+1,∴f′(x)=3ax2﹣6x=3x(ax﹣2),f(0)=1;①当a=0时,f(x)=﹣3x2+1有两个零点,不成立;②当a>0时,f(x)=ax3﹣3x2+1在(﹣∞,0)上有零点,故不成立;③当a<0时,f(x)=ax3﹣3x2+1在(0,+∞)上有且只有一个零点;故f(x)=ax3﹣3x2+1在(﹣∞,0)上没有零点;而当x=时,f(x)=ax3﹣3x2+1在(﹣∞,0)上取得最小值;故f()=﹣3?+1>0;故a<﹣2;综上所述,实数a的取值范围是(﹣∞,﹣2);故选:D.【点评】本题考查了导数的综合应用及分类讨论的思想应用,同时考查了函数的零点的判定的应用,属于基础题.12.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.6B.6C.4D.4【考点】L!:由三视图求面积、体积.【专题】5F:空间位置关系与距离.【分析】画出图形,结合三视图的数据求出棱长,推出结果即可.【解答】解:几何体的直观图如图:AB=4,BD=4,C到BD的中点的距离为:4,∴.AC==6,AD=4,显然AC最长.长为6.故选:B.【点评】本题考查三视图求解几何体的棱长,考查计算能力.二、填空题(共4小题,每小题5分)13.(5分)(x﹣y)(x+y)8的展开式中x2y7的系数为﹣20 .(用数字填写答案)【考点】DA:二项式定理.【专题】11:计算题;5P:二项式定理.【分析】由题意依次求出(x+y)8中xy7,x2y6,项的系数,求和即可.【解答】解:(x+y)8的展开式中,含xy7的系数是:8.含x2y6的系数是28,∴(x﹣y)(x+y)8的展开式中x2y7的系数为:8﹣28=﹣20.故答案为:﹣20【点评】本题考查二项式定理系数的性质,二项式定理的应用,考查计算能力.14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为 A .【考点】F4:进行简单的合情推理.【专题】5M:推理和证明.【分析】可先由乙推出,可能去过A城市或B城市,再由甲推出只能是A,B中的一个,再由丙即可推出结论.【解答】解:由乙说:我没去过C城市,则乙可能去过A城市或B城市,但甲说:我去过的城市比乙多,但没去过B城市,则乙只能是去过A,B中的任一个,再由丙说:我们三人去过同一城市,则由此可判断乙去过的城市为A.故答案为:A.【点评】本题主要考查简单的合情推理,要抓住关键,逐步推断,是一道基础题.15.(5分)已知A,B,C为圆O上的三点,若=(+),则与的夹角为90°.【考点】9S:数量积表示两个向量的夹角.【专题】5A:平面向量及应用.【分析】根据向量之间的关系,利用圆直径的性质,即可得到结论.【解答】解:在圆中若=(+),即2=+,即+的和向量是过A,O的直径,则以AB,AC为邻边的四边形是矩形,则⊥,即与的夹角为90°,故答案为:90°【点评】本题主要考查平面向量的夹角的计算,利用圆直径的性质是解决本题的关键,比较基础.16.(5分)已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2且(2+b)(sinA﹣sinB)=(c﹣b)sinC,则△ABC面积的最大值为.【考点】HP:正弦定理;HR:余弦定理.【专题】11:计算题;35:转化思想;48:分析法;58:解三角形.【分析】由正弦定理化简已知可得2a﹣b2=c2﹣bc,结合余弦定理可求A的值,由基本不等式可求bc≤4,再利用三角形面积公式即可计算得解.【解答】解:因为:(2+b)(sinA﹣sinB)=(c﹣b)sinC?(2+b)(a﹣b)=(c﹣b)c?2a﹣2b+ab﹣b2=c2﹣bc,又因为:a=2,所以:,△ABC面积,而b2+c2﹣a2=bc?b2+c2﹣bc=a2?b2+c2﹣bc=4?bc≤4所以:,即△ABC面积的最大值为.故答案为:.【点评】本题主要考查了正弦定理,余弦定理,基本不等式,三角形面积公式在解三角形中的应用,考查了计算能力和转化思想,属于中档题.三、解答题17.(12分)已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λSn﹣1,其中λ为常数.(Ⅰ)证明:a n+2﹣a n=λ(Ⅱ)是否存在λ,使得{a n}为等差数列?并说明理由.【考点】83:等差数列的性质;8H:数列递推式.【专题】54:等差数列与等比数列.【分析】(Ⅰ)利用a n a n+1=λSn﹣1,a n+1a n+2=λSn+1﹣1,相减即可得出;(Ⅱ)假设存在λ,使得{a n}为等差数列,设公差为d.可得λ=a n+2﹣a n=(a n+2﹣a n+1)+(a n+1﹣a n)=2d,.得到λSn=,根据{a n}为等差数列的充要条件是,解得λ即可.【解答】(Ⅰ)证明:∵a n a n+1=λSn﹣1,a n+1a n+2=λSn+1﹣1,∴a n+1(a n+2﹣a n)=λan+1∵a n+1≠0,∴a n+2﹣a n=λ.(Ⅱ)解:假设存在λ,使得{a n}为等差数列,设公差为d.则λ=a n+2﹣a n=(a n+2﹣a n+1)+(a n+1﹣a n)=2d,∴.∴,,∴λSn=1+=,根据{a n}为等差数列的充要条件是,解得λ=4.此时可得,a n=2n﹣1.因此存在λ=4,使得{a n}为等差数列.【点评】本题考查了递推式的意义、等差数列的通项公式及其前n项和公式、等差数列的充要条件等基础知识与基本技能方法,考查了推理能力和计算能力、分类讨论的思想方法,属于难题.18.(12分)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.(i)利用该正态分布,求P(187.8<Z<212.2);(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX.附:≈12.2.若Z~N(μ,σ2)则P(μ﹣σ<Z<μ+σ)=0.6826,P(μ﹣2σ<Z<μ+2σ)=0.9544.【考点】CH:离散型随机变量的期望与方差;CP:正态分布曲线的特点及曲线所表示的意义.【专题】11:计算题;5I:概率与统计.【分析】(Ⅰ)运用离散型随机变量的期望和方差公式,即可求出;(Ⅱ)(i)由(Ⅰ)知Z~N(200,150),从而求出P(187.8<Z<212.2),注意运用所给数据;(ii)由(i)知X~B(100,0.6826),运用EX=np即可求得.【解答】解:(Ⅰ)抽取产品的质量指标值的样本平均数和样本方差s2分别为:=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200,s2=(﹣30)2×0.02+(﹣20)2×0.09+(﹣10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.(Ⅱ)(i)由(Ⅰ)知Z~N(200,150),从而P(187.8<Z<212.2)=P(200﹣12.2<Z<200+12.2)=0.6826;(ii)由(i)知一件产品的质量指标值位于区间(187.8,212.2)的概率为0.6826,依题意知X~B(100,0.6826),所以EX=100×0.6826=68.26.【点评】本题主要考查离散型随机变量的期望和方差,以及正态分布的特点及概率求解,考查运算能力.19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(Ⅰ)证明:AC=AB1;(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.【考点】M7:空间向量的夹角与距离求解公式;MJ:二面角的平面角及求法.【专题】5H:空间向量及应用.【分析】(1)连结BC1,交B1C于点O,连结AO,可证B1C⊥平面ABO,可得B1C ⊥AO,B10=CO,进而可得AC=AB1;(2)以O为坐标原点,的方向为x轴的正方向,||为单位长度,的方向为y轴的正方向,的方向为z轴的正方向建立空间直角坐标系,分别可得两平面的法向量,可得所求余弦值.【解答】解:(1)连结BC1,交B1C于点O,连结AO,∵侧面BB1C1C为菱形,∴BC1⊥B1C,且O为BC1和B1C的中点,又∵AB⊥B1C,∴B1C⊥平面ABO,∵AO?平面ABO,∴B1C⊥AO,又B10=CO,∴AC=AB1,(2)∵AC⊥AB1,且O为B1C的中点,∴AO=CO,又∵AB=BC,∴△BOA≌△BOC,∴OA⊥OB,∴OA,OB,OB1两两垂直,以O为坐标原点,的方向为x轴的正方向,||为单位长度,的方向为y轴的正方向,的方向为z轴的正方向建立空间直角坐标系,∵∠CBB1=60°,∴△CBB1为正三角形,又AB=BC,∴A(0,0,),B(1,0,0,),B1(0,,0),C(0,,0)∴=(0,,),==(1,0,),==(﹣1,,0),设向量=(x,y,z)是平面AA1B1的法向量,则,可取=(1,,),同理可得平面A1B1C1的一个法向量=(1,﹣,),∴cos<,>==,∴二面角A﹣A1B1﹣C1的余弦值为【点评】本题考查空间向量法解决立体几何问题,建立坐标系是解决问题的关键,属中档题.20.(12分)已知点A(0,﹣2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆的右焦点,直线AF的斜率为,O为坐标原点.(Ⅰ)求E的方程;(Ⅱ)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l 的方程.【考点】K4:椭圆的性质;KH:直线与圆锥曲线的综合.【专题】5D:圆锥曲线的定义、性质与方程.【分析】(Ⅰ)通过离心率得到a、c关系,通过A求出a,即可求E的方程;(Ⅱ)设直线l:y=kx﹣2,设P(x1,y1),Q(x2,y2)将y=kx﹣2代入,利用△>0,求出k的范围,利用弦长公式求出|PQ|,然后求出△OPQ的面积表达式,利用换元法以及基本不等式求出最值,然后求解直线方程.【解答】解:(Ⅰ)设F(c,0),由条件知,得又,所以,b2=a2﹣c2=1,故E的方程.….(5分)(Ⅱ)依题意当l⊥x轴不合题意,故设直线l:y=kx﹣2,设P(x1,y1),Q(x2,y2)将y=kx﹣2代入,得(1+4k2)x2﹣16kx+12=0,当△=16(4k2﹣3)>0,即时,从而又点O到直线PQ的距离,所以△OPQ的面积=,设,则t>0,,当且仅当t=2,k=±等号成立,且满足△>0,所以当△OPQ的面积最大时,l的方程为:y=x﹣2或y=﹣x﹣2.…(12分)【点评】本题考查直线与椭圆的位置关系的应用,椭圆的求法,基本不等式的应用,考查转化思想以及计算能力.21.(12分)设函数f(x)=ae x lnx+,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x﹣1)+2.(Ⅰ)求a、b;(Ⅱ)证明:f(x)>1.【考点】6E:利用导数研究函数的最值;6H:利用导数研究曲线上某点切线方程.【专题】15:综合题;53:导数的综合应用.【分析】(Ⅰ)求出定义域,导数f′(x),根据题意有f(1)=2,f′(1)=e,解出即可;(Ⅱ)由(Ⅰ)知,f(x)>1等价于xlnx>xe﹣x﹣,设函数g(x)=xlnx,函数h(x)=,只需证明g(x)min>h(x)max,利用导数可分别求得g (x)min,h(x)max;【解答】解:(Ⅰ)函数f(x)的定义域为(0,+∞),f′(x)=+,由题意可得f(1)=2,f′(1)=e,故a=1,b=2;(Ⅱ)由(Ⅰ)知,f(x)=e x lnx+,∵f(x)>1,∴e x lnx+>1,∴lnx>﹣,∴f(x)>1等价于xlnx>xe﹣x﹣,设函数g(x)=xlnx,则g′(x)=1+lnx,∴当x∈(0,)时,g′(x)<0;当x∈(,+∞)时,g′(x)>0.故g(x)在(0,)上单调递减,在(,+∞)上单调递增,从而g(x)在(0,+∞)上的最小值为g()=﹣.设函数h(x)=xe﹣x﹣,则h′(x)=e﹣x(1﹣x).∴当x∈(0,1)时,h′(x)>0;当x∈(1,+∞)时,h′(x)<0,故h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,从而h(x)在(0,+∞)上的最大值为h(1)=﹣.综上,当x>0时,g(x)>h(x),即f(x)>1.【点评】本题考查导数的几何意义、利用导数求函数的最值、证明不等式等,考查转化思想,考查学生分析解决问题的能力.选修4-1:几何证明选讲22.(10分)如图,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE.(Ⅰ)证明:∠D=∠E;(Ⅱ)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.【考点】NB:弦切角;NC:与圆有关的比例线段.【专题】15:综合题;5M:推理和证明.【分析】(Ⅰ)利用四边形ABCD是⊙O的内接四边形,可得∠D=∠CBE,由CB=CE,可得∠E=∠CBE,即可证明:∠D=∠E;(Ⅱ)设BC的中点为N,连接MN,证明AD∥BC,可得∠A=∠CBE,进而可得∠A=∠E,即可证明△ADE为等边三角形.【解答】证明:(Ⅰ)∵四边形ABCD是⊙O的内接四边形,∴∠D=∠CBE,∵CB=CE,∴∠E=∠CBE,∴∠D=∠E;(Ⅱ)设BC的中点为N,连接MN,则由MB=MC知MN⊥BC,∴O在直线MN上,∵AD不是⊙O的直径,AD的中点为M,∴OM⊥AD,∴AD∥BC,∴∠A=∠CBE,∵∠CBE=∠E,∴∠A=∠E,由(Ⅰ)知,∠D=∠E,∴△ADE为等边三角形.【点评】本题考查圆的内接四边形性质,考查学生分析解决问题的能力,属于中档题.选修4-4:坐标系与参数方程23.已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.【考点】KH:直线与圆锥曲线的综合;QH:参数方程化成普通方程.【专题】5S:坐标系和参数方程.【分析】(Ⅰ)联想三角函数的平方关系可取x=2cosθ、y=3sinθ得曲线C的参数方程,直接消掉参数t得直线l的普通方程;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).由点到直线的距离公式得到P到直线l的距离,除以sin30°进一步得到|PA|,化积后由三角函数的范围求得|PA|的最大值与最小值.【解答】解:(Ⅰ)对于曲线C:+=1,可令x=2cosθ、y=3sinθ,故曲线C的参数方程为,(θ为参数).对于直线l:,由①得:t=x﹣2,代入②并整理得:2x+y﹣6=0;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).P到直线l的距离为.则,其中α为锐角.当sin(θ+α)=﹣1时,|PA|取得最大值,最大值为.当sin(θ+α)=1时,|PA|取得最小值,最小值为.【点评】本题考查普通方程与参数方程的互化,训练了点到直线的距离公式,体现了数学转化思想方法,是中档题.选修4-5:不等式选讲24.若a>0,b>0,且+=.(Ⅰ)求a3+b3的最小值;(Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由.【考点】RI:平均值不等式.【专题】59:不等式的解法及应用.【分析】(Ⅰ)由条件利用基本不等式求得ab≥2,再利用基本不等式求得a3+b3的最小值.(Ⅱ)根据ab≥2及基本不等式求的2a+3b>8,从而可得不存在a,b,使得2a+3b=6.【解答】解:(Ⅰ)∵a>0,b>0,且+=,∴=+≥2,∴ab≥2,当且仅当a=b=时取等号.∵a3+b3 ≥2≥2=4,当且仅当a=b=时取等号,∴a3+b3的最小值为4.(Ⅱ)∵2a+3b≥2=2,当且仅当2a=3b时,取等号.而由(1)可知,2≥2=4>6,故不存在a,b,使得2a+3b=6成立.【点评】本题主要考查基本不等式在最值中的应用,要注意检验等号成立条件是否具备,属于基础题.。
2014年全国各地高考数学试题及解答分类大全(不等式)

2014年全国各地高考数学试题及解答分类大全(不等式)一、选择题:1(2014安徽理)y x ,满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+02202202y x y x y x ,若ax y z -=取得最大值的最优解不唯一,则实数a 的值为()A,121-或 B.212或 C.2或1 D.12-或解析:数形结合求解。
考点:1.线性规划求参数的值.2.(2014福建文)要制作一个容积为34m ,高为1m 的无盖长方体容器,已知该溶器的底面造价是每平方米20元,侧面造价是是每平方米10元,则该容器的最低总造价是().80.120.160.240A B C D 元元元元3.(2014福建文)已知圆()()22:1C x a y b -+-=,设平面区域70,70,0x y x y y +-≤⎧⎪Ω=-+≥⎨⎪≥⎩,若圆心C =Ω,且圆C 与x 轴相切,则22a b +的最大值为().5.29.37.49A B C D 4.(2014北京理)若x 、y 满足20200x y kx y y +-≥⎧⎪-+≥⎨⎪≥⎩,且z y x =-的最小值为4-,则k 的值为()A.2B.2-C.12D.12-【答案】D 【解析】可行域如图所示,当0>k 时,知x y z -=无最小值,当0<k 时,目标函数线过可行域内A点时z 有最小值,联立⎩⎨⎧=+-=020y kx y ,解之得⎪⎭⎫ ⎝⎛-0,2k A ,420min -=+=k z ,即21-=k .5、(2014广东文)若变量,x y 满足约束条件280403x y x y +≤⎧⎪≤≤⎨⎪≤≤⎩,则2z x y =+的最大值等于A.7B.8C .10 D.11答案:C提示:作出可行域(为一个五边形及其内部区域),易知在点(4,2)处目标函数取到最大值10.选C.6.(2014广东理)若变量x 、y 满足约束条件11y x x y y ≤⎧⎪+≤⎨⎪≤-⎩,且2z x y =+的最大值和最小值分别为M和m ,则M m -=()A.8B.7C.6D.5截距最大,此时z 取最大值M ,即()2213M =⨯+-=;()336M m -=--=,故选C.7.(2014湖北文)若变量x ,y+y ≤4,-y ≤2,≥0,y ≥0,则2x +y 的最大值是()A .2B .4C .7D .84.C[解析]+y ≤4,-y ≤2,≥0,y ≥0表示的可行域如下图阴影部分所示.设z =2x +y ,平移直线2x +y =0,易知在直线x +y =4与直线x -y =2的交点A (3,1)处,z =2x2=-+y x 02=+-y kx A=-x y+y 取得最大值7.故选C.8.(2014湖北理)由不等式组x ≤0,y ≥0,y -x -2≤0确定的平面区域记为Ω1,不等式组x +y ≤1,x +y ≥-2确定的平面区域记为Ω2,在Ω1中随机取一点,则该点恰好在Ω2内的概率为()A.18B.14C.34D.787.D [解析]作出Ω1,Ω2表示的平面区域如图所示,S Ω1=S △AOB =12×2×2=2,S △BCE =12×1×12=14,则S 四边形AOEC =S Ω1-S △BCE =2-14=74.故由几何概型得,所求的概率P =S 四边形AOEC S Ω1=742=78.故选D.9.(2014江西理)(不等式选做题)对任意,x y R ∈,111x x y y -++-++的最小值为()A.1 B.2 C.3 D.4【答案】B【解析】()|1||||1||1|1||11|123x x y y x x y y -++-++≥--+--+=+=10.(2014全国大纲文)不等式组(2)0||1x x x +>⎧⎨<⎩的解集为()A .{|21}x x -<<-B .{|10}x x -<<C .{|01}x x <<D .{|1}x x >11.(2014全国新课标Ⅰ文)设x ,y 满足约束条件,1,x y a x y +≥⎧⎨-≤-⎩且z x ay =+的最小值为7,则a =(A )-5(B )3(C )-5或3(D )5或-3【答案】:B 【解析】:画出不等式组对应的平面区域,如图所示.在平面区域内,平移直线0x ay +=,可知在点A 11,22a a -+⎛⎫⎪⎝⎭处,z 取得最值,故117,22a a a -++=解之得a = -5或a = 3.但a = -5时,z取得最大值,故舍去,答案为a = 3.选B.12.(2014全国新课标Ⅰ理)不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x y D x y ∀∈+≥-,2p :(,),22x y D x y ∃∈+≥,3P :(,),23x y D x y ∀∈+≤,4p :(,),21x y D x y ∃∈+≤-.其中真命题是A .2p ,3P B .1p ,4p C.1p ,2p D .1p ,3P 【答案】:C【解析】:作出可行域如图:设2x y z +=,即122zy x =-+,当直线过()2,1A -时,min 220z =-+=,∴0z ≥,∴命题1p 、2p 真命题,选C.13.(2014全国新课标Ⅱ文)设x ,y 满足约束条件0103310x y x y x y ≥⎧⎪--≤⎨⎪-+≥-⎩+,则z =2x +y 的最大值为()A.8B.7C.2D.1【答案解析】A.解析:作图即可.考点:考查二元一次不等式组的应用,中等题.14.(2014全国新课标Ⅱ理)设x ,y 满足约束条件03103507x y x x y y ≤⎧⎪-+≤⎨⎪--≥-⎩+,则z =2x -y 的最大值为()A.10B.8C.3D.2【答案解析】B.解析:作图即可.考点:考查二元一次不等式组的应用,中等题.15.(2014山东理)已知实数,x y 满足xya a <(01a <<),则下列关系式恒成立的是(A )221111x y >++(B )22ln(1)ln(1)x y +>+(C )sin sin x y >(D )22x y>15.【答案】D【解析】y x a a a yx>∴<<<10, 但不能判断22y x >(如1,0-==y x )∴排除A,B;x y sin = 是周期函数,∴排除C;3x y = 是单调递增函数,∴D 正确.16.(2014山东文)已知实数,x y 满足(01)x ya a a <<<,则下列关系式恒成立的是(A)33x y>(B)sin sin x y >(C)22ln(1)ln(1)x y +>+(D)221111x y >++16.【答案】A【解析】由)10(<<<a a a yx得,y x >,但是不可以确定2x 与2y 的大小关系,故C 、D 排除,而x y sin =本身是一个周期函数,故B 也不对,33y x >正确。
2014高考数学真题汇编(解析几何)部分

2014高考数学真题汇编(解析几何)部分2014解析几何部分:一选择题1(2014全国大纲卷)6.已知椭圆C :22221x y a b+=(0)a b >>的左、右焦点为1F 、2F,离心率为2F 的直线l 交C 于A 、B 两点,若1AF B ?的周长为C 的方程为 A .22132x y += B .2213x y += C .221128x y += D .221124 x y += 2(全国大纲卷)9.已知双曲线C 的离心率为2,焦点为1F 、2F ,点A 在C 上,若122F A F A =,则21cos AF F ∠=() A .14 B .13 CD3(2014课标1)4.已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为AB .3 CD .3m4(2014课标1)10.已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ =,则||QF =A .72 B .52C .3D .2 5(2014新课标2)10.设F 为抛物线C:23y x =的焦点,过F 且倾斜角为30°的直线交C 于A,B 两点,O 为坐标原点,则△OAB 的面积为()A.B.C. 6332D. 946(2014辽宁卷)10.已知点(2,3)A -在抛物线C :22y px =的准线上,学科网过点A 的直线与C在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为() A .12 B .23 C .34 D .437(2014福建卷)10设Q P ,分别为()2622=-+y x 和椭圆11022=+y x 上的点,则Q P ,两点间的最大距离是() A.25 B.246+ C.27+ D.268(2014广东卷)4.若实数k 满足09,k <<则曲线221259x y k -=-与曲线221259x y k -=-的A .离心率相等 B.虚半轴长相等 C. 实半轴长相等 D.焦距相等9(2014四川卷)10、已知F 为抛物线2y x =的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,2OA OB ?=(其中O 为坐标原点),则ABO ?与AFO ?面积之和的最小值是()A 、2B 、3 CD二填空题1(2014全国大纲卷)15.直线1l 和2l 是圆222x y +=的两条切线,若1l 与2l 的交点为()1,3,则1l 与2l 的夹角的正切值等于 .2(2014新课标2)16.设点M (0x ,1),若在圆O:221x y +=上存在点N ,使得∠OMN=45°,则0x 的取值范围是________.3(2014陕西卷)12若圆C 的半径为1,其圆心与点)0,1(关于直线x y =对称,则圆C 的标准方程为_______.4(2014辽宁卷)15.已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN += .5(2014广东卷)14.(坐标与参数方程选做题)在极坐标系中,曲线C 1和C 2的方程分别为2sin cos ρθθ=和sin ρθ=1,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1和C 2的交点的直角坐标为__6(2014湖南卷)15.如图4,正方形ABCD 和正方形DEFG 的边长分别为(),a b a b <,原点O 为AD 的中点,抛物线)0(22>=p px y 经过F C ,两点,则_____=ab.7(2014四川卷)14设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ?的最大值是____________8(2014上海卷)3若抛物线y 2=2px 的焦点与椭圆15922=+y x 的右焦点重合,则该抛物线的准线方程为___________.9(2014上海卷)14.已知曲线C:x =l :x=6。
2014全国统一高考数学真题及逐题详细解析(文科)—江苏卷

2014年普通高等学校招生全国统一考试(江苏卷)解析版数学Ⅰ一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1. 已知集合A ={4,3,1,2--},}3,2,1{-=B ,则=B A I . 2. 已知复数2)i 25(+=z (i 为虚数单位),则z 的实部为 . 3. 右图是一个算法流程图,则输出的n 的值是 .4. 从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是 .5. 已知函数x y cos =与)2sin(ϕ+=x y (0≤πϕ<),它们的图象有一个横坐标为3π的交点,则ϕ的值是 .6. 设抽测的树木的底部周长均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有 株树木的底部周长小于100cm.7. 在各项均为正数的等比数列}{n a 中,,12=a 4682a a a +=,则6a 的值是 . 8. 设甲、乙两个圆柱的底面分别为1S ,2S ,体积分别为1V ,2V ,若它们的侧面积相等,且4921=S S ,则21V V 的值是 .100 80 90 110 120 130 底部周长/cm(第6题)(第3题)9. 在平面直角坐标系xOy 中,直线032=-+y x 被圆4)1()2(22=++-y x 截得的弦长 为 .10. 已知函数2()1f x x mx =+-,若对于任意]1,[+∈m m x ,都有0)(<x f 成立,则实数m 的取值范围是 .11. 在平面直角坐标系xOy 中,若曲线xbax y +=2(a ,b 为常数)过点)5,2(-P ,且该曲线在点P 处的切线与直线0327=++y x 平行,则b a +的值是 .12. 如图,在平行四边形ABCD 中,已知8AB =,5AD =,3CP PD =u u u r u u u r ,2AP BP ⋅=u u u r u u u r ,则AB AD ⋅u u u r u u u r的值是 .13. 已知)(x f 是定义在R 上且周期为3的函数,当)3,0[∈x 时,21()22f x x x =-+. 若函数a x f y -=)(在区间]4,3[-上有10个零点(互不相同),则实数a 的取值范围是 .14. 若△ABC 的内角满足C B A sin 2sin 2sin =+,则C cos 的最小值是 .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15. (本小题满分14分)已知),2(ππα∈,55sin =α.(1)求)4sin(απ+的值; (2)求)265cos(απ-的值.16. (本小题满分14分)如图,在三棱锥ABC P -中,D ,E ,F 分别为棱AB AC PC ,,的中点.已知AC PA ⊥,6PA =,8BC =,5DF =.求证:(1) 直线//PA 平面DEF ;(2) 平面⊥BDE 平面ABC .(第16题)PDCEFBA(第12题)如图,在平面直角坐标系xOy 中,21,F F 分别是椭圆22221(0)x y a b a b +=>>的左、右焦点,顶点B的坐标为),0(b ,连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结C F 1.(1) 若点C 的坐标为)31,34(,且22=BF ,求椭圆的方程;(2) 若1F C AB ⊥,求椭圆离心率e 的值.18. (本小题满分16分)如图,为了保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区. 规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆. 且古桥两端O 和A 到该圆上任意一点的距离均不少于80m. 经测量,点A 位于点O 正北方向60m 处,点C 位于点O 正东方向170m 处(OC 为河岸),34tan =∠BCO . (1) 求新桥BC 的长;(2) 当OM 多长时,圆形保护区的面积最大?19. (本小题满分16分)已知函数x x x f -+=e e )(,其中e 是自然对数的底数. (1) 证明:)(x f 是R 上的偶函数;(2) 若关于x 的不等式)(x mf ≤1e -+-m x 在),0(+∞上恒成立,求实数m 的取值范围;(3) 已知正数a 满足:存在),1[0+∞∈x ,使得)3()(030x x a x f +-<成立. 试比较1e -a 与1e -a 的大小,并证明你的结论.设数列}{n a 的前n 项和为n S .若对任意正整数n ,总存在正整数m ,使得m n a S =,则称}{n a 是“H 数列”.(1) 若数列}{n a 的前n 项和n n S 2=(∈n N *),证明:}{n a 是“H 数列”;(2) 设}{n a 是等差数列,其首项11=a ,公差0<d . 若}{n a 是“H 数列”,求d 的值; (3) 证明:对任意的等差数列}{n a ,总存在两个“H 数列”}{n b 和}{n c ,使得n n n c b a += (∈n N *)成立.数学Ⅱ(附加题)21.[选修4—1:几何证明选讲](本小题满分10分)如图,AB 是圆O 的直径,C 、D 是圆O 上位于AB 异侧的两点. 证明:∠ OCB =∠ D .22.[选修4—2:矩阵与变换](本小题满分10分)已知矩阵A 121x -⎡⎤=⎢⎥⎣⎦,B 1121⎡⎤=⎢⎥-⎣⎦,向量2y ⎡⎤=⎢⎥⎣⎦α,x ,y 为实数.若=A αB α,求x +y 的值. 23.[选修4—4:坐标系与参数方程](本小题满分10分) 在平面直角坐标系xOy 中,已知直线l 的参数方程21,2)(2;xt t y t ⎧=-⎪⎪⎨⎪=+⎪⎩为参数,直线l 与抛物线24y x =相交于A 、B 两点,求线段AB 的长.24.[选修4—4:不等式证明选讲](本小题满分10分) 已知x >0,y >0,证明:22(1)(1)9x y x y xy ++++≥. 25. (本小题满分10分)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同. (1) 从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P ;(2) 从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x 1、x 2、x 3, 随机变量X 表示x 1、x 2、x 3中的最大数,求X 的概率分布和数学期望E (X ). 26. (本小题满分10分)已知函数sin ()(0)xf x x x=>,设()n f x 是1()n f x -的导数,n ∈*N . (1) 求12πππ2()()222f f +的值;(2) 证明:对于任意n ∈*N ,等式1πππ2()()444n n nf f -+=都成立.(第21—A 题)参考答案一、选择题 1.【答案】{1,3}-解析:由题意得{1,3}A B =-I 【考点】交集、并集、补集 (B). 【答案】}3,1{-【解析】根据集合的交集运算,两个集合的交集就是所有既属于集合A 又属于集合B 的元素组成的集合,从所给的两个集合的元素可知,公共的元素为-1和3,所以答案为}3,1{-【点评】本题重点考查的是集合的运算,容易出错的地方是审错题目,把交集运算看成并集运算。
14年高考数学压轴题系列训练含答案及解析详解

14年高考数学压轴题系列训练含答案及解析详解1.(本小题满分14分)如图,设抛物线的焦点为F,动点P在直线上运动,过P 作抛物线C的两条切线PA、PB,且与抛物线C分别相切于A、B两点.(1)求△APB的重心G的轨迹方程.(2)证明∠PFA=∠PFB.解:(1)设切点A、B坐标分别为,∴切线AP的方程为:切线BP的方程为:解得P点的坐标为:所以△APB的重心G的坐标为,所以,由点P在直线l上运动,从而得到重心G的轨迹方程为:(2)方法1:因为由于P点在抛物线外,则∴同理有∴∠AFP=∠PFB.方法2:①当所以P点坐标为,则P点到直线AF的距离为:即所以P点到直线BF的距离为:所以d1=d2,即得∠AFP=∠PFB.②当时,直线AF的方程:直线BF的方程:所以P点到直线AF的距离为:,同理可得到P点到直线BF的距离,因此由d1=d2,可得到∠AFP=∠PFB. 2.(本小题满分12分)设A、B是椭圆上的两点,点N(1,3)是线段AB的中点,线段AB的垂直平分线与椭圆相交于C、D两点.(Ⅰ)确定的取值范围,并求直线AB的方程;(Ⅱ)试判断是否存在这样的,使得A、B、C、D四点在同一个圆上?并说明理由.(此题不要求在答题卡上画图)本小题主要考查直线、圆和椭圆等平面解析几何的基础知识以及推理运算能力和综合解决问题的能力.(Ⅰ)解法1:依题意,可设直线AB的方程为,整理得①设是方程①的两个不同的根,∴②且由N(1,3)是线段AB的中点,得解得k=-1,代入②得,的取值范围是(12,+∞).于是,直线AB的方程为解法2:设则有依题意,∵N(1,3)是AB的中点,∴又由N(1,3)在椭圆内,∴∴的取值范围是(12,+∞).直线AB的方程为y-3=-(x-1),即x+y-4=0.(Ⅱ)解法1:∵CD垂直平分AB,∴直线CD的方程为y-3=x-1,即x-y+2=0,代入椭圆方程,整理得又设CD的中点为是方程③的两根,∴于是由弦长公式可得④将直线AB的方程x+y-4=0,代入椭圆方程得⑤同理可得⑥∵当时,假设存在>12,使得A、B、C、D四点共圆,则CD必为圆的直径,点M为圆心.点M到直线AB的距离为⑦于是,由④、⑥、⑦式和勾股定理可得故当>12时,A、B、C、D四点匀在以M为圆心,为半径的圆上.(注:上述解法中最后一步可按如下解法获得:)A、B、C、D共圆△ACD为直角三角形,A为直角|AN|2=|CN|·|DN|,即⑧由⑥式知,⑧式左边由④和⑦知,⑧式右边∴⑧式成立,即A、B、C、D四点共圆.解法2:由(Ⅱ)解法1及λ>12,∵CD垂直平分AB,∴直线CD方程为,代入椭圆方程,整理得③将直线AB的方程x+y-4=0,代入椭圆方程,整理得⑤解③和⑤式可得不妨设∴计算可得,∴A在以CD为直径的圆上.又B为A关于CD的对称点,∴A、B、C、D四点共圆.(注:也可用勾股定理证明AC⊥AD)3.(本小题满分14分)已知不等式为大于2的整数,表示不超过的最大整数. 设数列的各项为正,且满足(Ⅰ)证明(Ⅱ)猜测数列是否有极限?如果有,写出极限的值(不必证明);(Ⅲ)试确定一个正整数N,使得当时,对任意b>0,都有本小题主要考查数列、极限及不等式的综合应用以及归纳递推的思想.(Ⅰ)证法1:∵当即于是有所有不等式两边相加可得由已知不等式知,当n≥3时有,∵证法2:设,首先利用数学归纳法证不等式(i)当n=3时,由知不等式成立.(ii)假设当n=k(k≥3)时,不等式成立,即则即当n=k+1时,不等式也成立.由(i)、(ii)知,又由已知不等式得(Ⅱ)有极限,且(Ⅲ)∵则有故取N=1024,可使当n>N时,都有4.如图,已知椭圆的中心在坐标原点,焦点F1,F2在x轴上,长轴A1A2的长为4,左准线l与x轴的交点为M,|MA1|∶|A1F1|=2∶1.(Ⅰ)求椭圆的方程;(Ⅱ)若点P为l上的动点,求∠F1PF2最大值.本题主要考查椭圆的几何性质、椭圆方程、两条直线的夹角等基础知识,考查解析几何的基本思想方法和综合解题能力.满分14分.解:(Ⅰ)设椭圆方程为,半焦距为,则(Ⅱ)5.已知函数和的图象关于原点对称,且.(Ⅰ)求函数的解析式;(Ⅱ)解不等式;(Ⅲ)若在上是增函数,求实数的取值范围.本题主要考查函数图象的对称、二次函数的基本性质与不等式的应用等基础知识,以及综合运用所学知识分析和解决问题的能力.满分14分.解:(Ⅰ)设函数的图象上任意一点关于原点的对称点为,则∵点在函数的图象上∴(Ⅱ)由当时,,此时不等式无解.当时,,解得.因此,原不等式的解集为.(Ⅲ)①②ⅰ)ⅱ)6.(本题满分16分)本题共有3个小题,第1小题满分4分, 第2小题满分6分, 第3小题满分6分.对定义域分别是D f、D g的函数y=f(x) 、y=g(x),(1) 若函数f(x)=,g(x)=x2,x∈R,写出函数h(x)的解析式;(2) 求问题(1)中函数h(x)的值域;(3)若g(x)=f(x+α), 其中α是常数,且α∈[0,π],请设计一个定义域为R的函数y=f(x),及一个α的值,使得h(x)=cos4x,并予以证明.[解] (1)h(x)= x∈(-∞,1)∪(1,+∞)1 x=1(2) 当x≠1时, h(x)= =x-1++2,若x>1时, 则h(x)≥4,其中等号当x=2时成立若x<1时, 则h(x)≤ 0,其中等号当x=0时成立∴函数h(x)的值域是(-∞,0] {1}∪[4,+∞)(3)令f(x)=sin2x+cos2x,α=则g(x)=f(x+α)= sin2(x+)+cos2(x+)=cos2x-sin2x,于是h(x)= f(x)·f(x+α)= (sin2x+co2sx)( cos2x-sin2x)=cos4x.另解令f(x)=1+sin2x, α=,g(x)=f(x+α)= 1+sin2(x+π)=1-sin2x,于是h(x)= f(x)·f(x+α)= (1+sin2x)( 1-sin2x)=cos4x.7.(本题满分18分)本题共有3个小题,第1小题满分4分, 第2小题满分8分, 第3小题满分6分.在直角坐标平面中,已知点P1(1,2),P2(2,22),┄,P n(n,2n),其中n是正整数.对平面上任一点A0,记A1为A0关于点P1的对称点, A2为A1关于点P2的对称点, ┄, A N为A N-1关于点P N的对称点.(1)求向量的坐标;(2)当点A0在曲线C上移动时, 点A2的轨迹是函数y=f(x)的图象,其中f(x)是以3为周期的周期函数,且当x∈(0,3]时,f(x)=lgx.求以曲线C为图象的函数在(1,4]上的解析式;(3)对任意偶数n,用n表示向量的坐标.[解](1)设点A0(x,y), A0为P1关于点的对称点A0的坐标为(2-x,4-y),A1为P2关于点的对称点A2的坐标为(2+x,4+y),∴={2,4}.(2) ∵={2,4},∴f(x)的图象由曲线C向右平移2个单位,再向上平移4个单位得到.因此, 曲线C是函数y=g(x)的图象,其中g(x)是以3为周期的周期函数,且当x∈(-2,1]时,g(x)=lg(x+2)-4.于是,当x∈(1,4]时,g(x)=lg(x-1)-4.另解设点A0(x,y), A2(x2,y2),于是x2-x=2,y2-y=4,若3< x2≤6,则0< x2-3≤3,于是f(x2)=f(x2-3)=lg(x2-3).当1< x≤4时, 则3< x2≤6,y+4=lg(x-1).∴当x∈(1,4]时,g(x)=lg(x-1)-4.(3) =,由于,得=2()=2({1,2}+{1,23}+┄+{1,2n-1})=2{,}={n,}。
2014年全国卷高考数学计算题真题解析

2014年全国卷高考数学计算题真题解析一、选择题2014年全国卷高考数学计算题共有十道选择题,涉及到不同的数学知识点和计算方法。
下面将对这些选择题逐一进行解析:1. 题目:已知函数f(x)的定义域为[-1,3],则当x∈[1,2]时,函数f(x)的值的取值范围是()A. [f(1),f(2)]B. [f(2),f(1)]C. [f(1),f(2)]∪[f(2),f(1)]D. [f(2),f(1)]∪[f(1),f(2)]解析:根据题目可知函数f(x)在定义域[-1,3]上,当x∈[1,2]时,函数f(x)的取值范围即为f([1,2])。
因此,答案选项应为A. [f(1),f(2)]。
2. 题目:计算:tan 75°+tan 15°解析:根据三角函数的性质,可以将tan 75°表示为tan (45°+30°),然后利用tan (α+β)的公式进行计算。
类似地,将tan 15°表示为tan (45°-30°),再利用tan (α-β)的公式进行计算。
最后将两个结果相加即可得到答案。
3. 题目:已知集合A={2,4,6,8},集合B={x|x=2n+1,0<n<4},则集合A∩B的元素个数为()A. 0B. 1C. 2D. 3解析:集合A={2,4,6,8},集合B={x|x=2n+1,0<n<4}。
根据集合的交集定义,集合A∩B即为同时属于集合A和集合B的元素。
在集合B中,所有满足条件的x的取值分别为3,5,7。
因此,集合A∩B的元素个数为3,答案选项为D. 3。
......二、解答题2014年全国卷高考数学计算题还包含了解答题部分,涵盖了一些复杂的数学问题和解题思路。
下面将对其中几道解答题进行解析:1. 题目:已知复数z满足|z-3+2i|=2,并且z=a+bi,其中a,b均为实数。
求a^2+b^2的值。
2014全国统一高考数学真题及逐题详细解析汇报理科海南卷

实用文档文案大全2014年普通高等学校招生全国统一考试理科数学(新课标卷Ⅱ)第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合0,1,2M?{},2{|320}Nxxx????,则MN?( )A.{1} B.{2} C.{0,1} D.{1,2}2.设复数12,zz在复平面内的对应点关于虚轴对称,12zi??,则12zz?()A.5? B.5 C.4i?? D.4i??3.设向量,a b满足||10ab??,||6ab??,则ab??( )A.1 B.2 C.3 D 5 4.钝角三角形ABC的面积是12,1AB?,2BC?,则AC?( ) A. 5 B.5 C.2 D.15.某地区空气质量监测资料表明,一天的空气质量为优良的概率是075.,连续两天优良的概率是06.,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.08. B.075. C.06. D.045.6.如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.1727 B.59 C.1027 D.137.执行右图程序框图,如果输入的,xt均为2,则输出的S?()实用文档文案大全A.4 B.5 C.6 D.78.设曲线ln(1)yaxx???在点(0,0)处的切线方程为2yx?,则a?()A.0 B.1 C.2 D.39.设,xy满足约束条件70,310,350.xyxyxy??????????????则2zxy??的最大值为()A.10 B.8 C.3 D.210.设F为抛物线2:3Cyx?的焦点,过F且倾斜角为30的直线交C于,AB两点,O 为坐标原点,则OAB的面积为()338 C6332 D9411.直三棱柱111ABCABC?中,90BCA???,MN,分别是1111ABAC,的中点,1BCCACC??,则BM与AN所成的角的余弦值为()A.110 B.25 C.3010 D.2212.设函数()3sinxfxm??.若存在()fx的极值点0x满足22200[()]xfxm??,则m的取值范围是()结束输出S 1M?,3S?开始输入x1k?kt?MMxk?SMS??1kk??是否实用文档????,66,????? B.????,44,????? C.????,22,?????文案大全A.D.????,14,?????第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生必须做答.第22题~第24题为选考题,考生根据要求做答.二.填空题13.10()xa?的展开式中,7x的系数为15,则a?________..(用数字填写答案) 14.函数()sin(2)2sincos()fxxx???????的最大值为_________..15.已知偶函数()fx在[0,)??单调递减,(2)0f?.若(1)0fx??,则x的取值范围是______..16.设点0(,1)Mx,若在圆22:1Oxy??上存在点N,使得45OMN???,则0x的取值范围是____..三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知数列{}n a满足11a?,131nn aa???.(Ⅰ)证明1{}2n a?是等比数列,并求{}n a的通项公式;(Ⅱ)证明:1211132n aaa????.18.(本小题满分12分)如图,四棱锥P-ABCD中,底面ABCD为矩形,PAABCD?平面,E为PD的中点.(Ⅰ)证明:PBAEC∥平面;(Ⅱ)设二面角DAEC??为60°,1AP?,3AD?,求三棱锥EACD?的体积.实用文档文案大全19.(本小题满分12分)某地区2007年至2013年农村居民家庭纯收入y(单位:(0,3,0) ,2013 年份代号 1 2 3 4 5 6 7 人均纯收入y 2.9 3.33.64.44.85.25.9(Ⅰ)求y关于的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘法估计公式分别为:??????121niiinii ttyybtt?????????,??aybt??20.(本小题满分12分)设12,FF分别是椭圆22221xyab??(0ab??)的左右焦点,M是C上一点且2MF与x轴垂直,直线1MF与C的另一个交点为N.(Ⅰ)若直线MN的斜率为34,求C的离心率;(Ⅱ)若直线MN在y轴上的截距为2,且1||5||MNFN?,求,ab.21.(本小题满分12分)已知函数()2xx fxeex????。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014高考数学难题集锦(一)
1、已知集合,若集合,且对任意的,存在
,使得(其中),则称集合为集合的一个元基底.
(Ⅰ)分别判断下列集合是否为集合的一个二元基底,并说明理由;
①,;
②,.
(Ⅱ)若集合是集合的一个元基底,证明:;
(Ⅲ)若集合为集合的一个元基底,求出的最小可能值,并写出当取最小值时的
一个基底.
2、设函数
(1)若关于x的不等式在有实数解,求实数m的取值范围;
(2)设,若关于x的方程至少有一个解,求p 的最小值.
(3)证明不等式:
3、设,圆:与轴正半轴的交点为,与曲线的交点为,
直线与轴的交点为.
(1)用表示和;
(2)求证:;
(3)设,,求证:.
4、数列,()由下列条件确定:①;②当时,与满足:当
时,,;当时,,.
(Ⅰ)若,,写出,并求数列的通项公式;
(Ⅱ)在数列中,若(,且),试用表示;
(Ⅲ)在(Ⅰ)的条件下,设数列满足,,
(其中为给定的不小于2的整数),求证:当时,恒有.
5、已知函数f(x)是定义在[-e,0)∪(0,e]上的奇函数,当x∈(0,e],f(x)=ax+lnx(其中e是自然对数的底数,a∈R)
(1)求f(x)的解析式;
(2)设g(x)=,x∈[-e,0),求证:当a=-1时,f(x)>g(x)+;
(3)是否存在实数a,使得当x∈[-e,0)时f(x)的最小值是3 如果存在,求出实数a的值;如果不存在,请说明理由.
6、(理)对数列和,若对任意正整数,恒有,则称数列是数列的“下界数列”.
(1)设数列,请写出一个公比不为1的等比数列,使数列是数列的“下界数列”;
(2)设数列,求证数列是数列的“下界数列”;
(3)设数列,构造
,,求使对恒成立的的最小值.
7、已知函数
(1)求在点处的切线方程;
(2)若存在,使成立,求的取值范围;
(3)当时,恒成立,求的取值范围.
8、已知函数.
(I)讨论的单调性;
(II)设,证明:当时,;
(III)若函数的图像与x轴交于A,B两点,线段AB中点的横坐标为x0,
证明:(x0)<0.
9、函数,数列和满足:,,函数的图像在点
处的切线在轴上的截距为.
(1)求数列{}的通项公式;
(2)若数列的项中仅最小,求的取值范围;
(3)若函数,令函数数列满足:且
其中.
证明:.
参考答案
1、解:(Ⅰ)①不是的一个二元基底.
理由是;
②是的一个二元基底.
理由是,
.21世纪教育网
………………………………………3分
(Ⅱ)不妨设,则
形如的正整数共有个;
形如的正整数共有个;
形如的正整数至多有个;
形如的正整数至多有个.
又集合含个不同的正整数,为集合的一个元基底.
故,即. ………………………………………8分
(Ⅲ)由(Ⅱ)可知,所以.
当时,,即用基底中元素表示出的数最多重复一个. *
假设为的一个4元基底,
不妨设,则.
当时,有,这时或.
如果,则由,与结论*矛盾.
如果,则或.易知和都不是的4元基底,矛盾.
当时,有,这时,,易知不是的4元基底,矛盾.
当时,有,这时,,易知不是的4元基底,矛盾.
当时,有,,,易知不是的4元基底,矛盾.
当时,有,,,易知不是的4元基底,矛盾.
当时,有,,,易知不是的4元基底,矛盾.
当时,有,,,易知不是的4元基底,矛盾.
当时,均不可能是的4元基底.
当时,的一个基底;或{3,7,8,9,10};或{4,7,8,9,10}等,只要写出一个即可.
综上,的最小可能值为5. ……………………14分
2、解:(1)依题意得
,而函数的定义域为
∴在上为减函数,在上为增函数,则在上为增函数
即实数m的取值范围为………………………………4分
(2)
则
显然,函数在上为减函数,在上为增函数
则函数的最小值为
所以,要使方程至少有一个解,则,即p的最小值为0 …………8分
(3)由(2)可知:在上恒成立
所以,当且仅当x=0时等号成立
令,则代入上面不等式得:
即,即
所以,,,,…,
将以上n 个等式相加即可得到:
………………………………12分
3、解:(1)由点在曲线上可得, …………1分
又点在圆上,则, ……………2分
从而直线的方程为, ………………4分
由点在直线上得: ,将代入
化简得: . ……………………6分
(2) , …………7分 又,
……………9分
(3)先证:当时,.
事实上, 不等式
后一个不等式显然成立,而前一个不等式.
故当时, 不等式成立.
, ……………………11分
(等号仅在n=1时成立)
求和得:
……………………14分
4、(Ⅰ)解:因为,所以,.
因为,所以,.
因为,所以,.
所以. …………………………………… 2分
由此猜想,当时,,则,.… 3分
下面用数学归纳法证明:
①当时,已证成立.
②假设当(,且)猜想成立,
即,,.
当时,由,得,则,. 综上所述,猜想成立.
所以.
故. ……………………………………………… 6分
(Ⅱ)解:当时,假设,根据已知条件则有,
与矛盾,因此不成立,…………… 7分
所以有,从而有,所以.
当时,,,
所以; …………………… 8分
当时,总有成立.
又,
所以数列()是首项为,公比为的等比数列, ,
,
又因为,所以. …………………………… 10分
(Ⅲ)证明:由题意得
.
因为,所以.
所以数列是单调递增数列. …………………………………… 11分
因此要证,只须证.
由,则<,即.…… 12分
因此
.
所以.
故当,恒有. …………………………………………………14分
5、21.
6、(1)等,答案不唯一;……………4分
(2),当时最小值为9,;……………6分
,则,
因此,时,最大值为6,……………9分
所以,,数列是数列的“下界数列”;……………10分
(3)
,…11分
,……………12分
不等式为,,,…13分
设,则,…………15分
当时,单调递增,时,取得最小值,因此,……………17分
的最小值为……………18分
7、.解(1)
在处的切线方程为
即(3分)
(2)即
令
时,时,
在上减,在上增.
又时,的最大值在区间端点处取到.
,
在上最大值为
故的取值范围是,(8分)
(3)由已知得时,恒成立,
设
由(2)知当且仅当时等号成立,
故,从而当
即时,为增函数,又
于是当时,即,时符合题意. (11分)
由可得从而当时,
故当时,为减函数,又
于是当时,即
故不符合题意.综上可得的取值范围为(14分)
8、(I)
(i)若单调增加.
(ii)若
且当
所以单调增加,在单调减少. ………………4分(II)设函数则
当.
故当,………………8分
(III)由(I)可得,当的图像与x轴至多有一个交点,
故,从而的最大值为
不妨设
由(II)得
从而
由(I)知,………………14分
9、解:(1),得
是以2为首项,1为公差的等差数列,故…………3分
(2),,
在点处的切线方程为
令得
仅当时取得最小值,∴的取值范围为………6分
(3)
所以又因则
显然…………8分
………12分
…………14分。