第六章实数复习

合集下载

第六章 实数复习题含答案

第六章 实数复习题含答案

第六章 实数复习题含答案一、选择题1.对于实数a ,我们规定,用符号a ⎡⎤⎣⎦表示不大于a 的最大整数,称a ⎡⎤⎣⎦为a 的根整数,例如:93⎡⎤=⎣⎦,103⎡⎤=⎣⎦.我们可以对一个数连续求根整数,如对5连续两次求根整数:5221.若对x 连续求两次根整数后的结果为1,则满足条件的整数x 的最大值为( ) A .5B .10C .15D .162.如图,网格中的每个小正方形的边长为1,则图中正方形ABCD 的边长是( )A .2B .5C .6D .33.有理数a ,b 在数轴上对应的位置如图所示,则下列结论成立的是( )A .a+b> 0B .a -b> 0C .ab>0D .0ab> 4.下列五个命题:①如果两个数的绝对值相等,那么这两个数的平方相等; ②内错角相等;③在同一平面内,垂直于同一条直线的两条直线互相平行; ④两个无理数的和一定是无理数;⑤坐标平面内的点与有序数对是一一对应的. 其中真命题的个数是( ) A .2个B .3个C .4个D .5个5.下列命题是假命题的是( )A .0的平方根是0B .无限小数都是无理数C .算术平方根最小的数是0D .最大的负整数是﹣16.若a 16b 64a+b 的值是( ) A .4B .4或0C .6或2D .67.330x y =,则x 和y 的关系是( )A .0x y ==B .0x y -=C .1xy =D .0x y +=8.2的平方根为( )A .4B .±4CD .9.在实数13-,0.734π )个. A .1B .2C .3D .410.下列运算中,正确的是( )A 3=±B 2=C 2=-D 8=-二、填空题11.a 是不为2的有理数,我们把2称为a 的“文峰数”如:3的“文峰数”是2223=--,-2的“文峰数”是()21222=--,已知a 1=3,a 2是a 1的“文峰数”, a 3是a 2的“文峰数”, a 4是a 3的“文峰数”,……,以此类推,则a 2020=______ 12.若()2320m n ++-=,则m n 的值为 ____.13.与0.5_____0.5.(填“>”、“=”、“<”)14.已知,x 、y 是有理数,且y 4,则2x +3y 的立方根为_____. 15.a※b 是新规定的这样一种运算法则:a※b=a+2b,例如3※(﹣2)=3+2×(﹣2)=﹣1.若(﹣2)※x=2+x,则x 的值是_____.16.若()22110a c --=,则a b c ++=__________. 17.高斯函数[]x ,也称为取整函数,即[]x 表示不超过x 的最大整数. 例如:[]2.32=,[]1.52-=-. 则下列结论:①[][]2.112-+=-;②[][]0x x +-=;③若[]13x +=,则x 的取值范围是23x ≤<;④当11x -≤<时,[][]11x x ++-+的值为0、1、2.其中正确的结论有_____(写出所有正确结论的序号).18. 1.105≈ 5.130≈≈________.19________.20.44.9444≈⋯14.21267≈⋯(精确到0.01)≈__________.三、解答题21.先阅读下面的材料,再解答后面的各题:现代社会会保密要求越来越高,密码正在成为人们生活的一部分,有一种密码的明文(真实文)按计算机键盘字母排列分解,其中,,,,,Q W E N M 这26个字母依次对应1,2,3,,25,26这26个自然数(见下表).给出一个变换公式:(126,3)3217(126,31)318(126,32)3J J J xx x x x x x x x x x x x x x ⎧=≤≤⎪⎪+⎪=+≤≤⎨⎪+⎪=+≤≤⎪⎩是自然数,被整除是自然数,被除余是自然数,被除余 将明文转成密文,如4+24+17=193⇒,即R 变为L :11+111+8=123⇒,即A 变为S .将密文转成成明文,如213(2117)210⇒⨯--=,即X 变为P :133(138)114⇒⨯--=,即D 变为F .(1)按上述方法将明文NET 译为密文.(2)若按上方法将明文译成的密文为DWN ,请找出它的明文. 22.下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,将以上三个等式两边分别相加得:1111111113111223342233444++=-+-+-=-=⨯⨯⨯. (1)观察发现:1n(1)n =+__________1111122334n(1)n ++++=⨯⨯⨯+ .(2)初步应用:利用(1)的结论,解决以下问题“①把112拆成两个分子为1的正的真分数之差,即112= ;②把112拆成两个分子为1的正的真分数之和,即112= ;( 3 )定义“⊗”是一种新的运算,若1112126⊗=+,11113261220⊗=++,111114*********⊗=+++,求193⊗的值.23.规律探究,观察下列等式:第1个等式:111111434a ⎛⎫==⨯- ⎪⨯⎝⎭ 第2个等式:2111147347a ⎛⎫==⨯- ⎪⨯⎝⎭ 第3个等式:311117103710a ⎛⎫==⨯- ⎪⨯⎝⎭第4个等式:41111101331013a ⎛⎫==⨯- ⎪⨯⎝⎭请回答下列问题:(1)按以上规律写出第5个等式:= ___________ = ___________(2)用含n 的式子表示第n 个等式:= ___________ = ___________(n 为正整数) (3)求1234100a a a a a +++++24.先阅读内容,然后解答问题: 因为:111111111111,,12223233434910910=-=-=-=-⨯⨯⨯⨯ 所以:1111122334910+++⋯+⨯⨯⨯⨯=1111111122334910⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ (1)111111122334910+-+-+- =1﹣191010= 问题:(1)请你猜想(化为两个数的差):120152016⨯= ;120142016⨯= ;(2)若a 、b 为有理数,且|a ﹣1|+(ab ﹣2)2=0,求111(1)(1)(2)(2)ab a b a b +++++++…+1(2018)(2018)a b ++的值. 25.定义:如果2b n =,那么称b 为n 的布谷数,记为()b g n =. 例如:因为328=,所以()3(8)23g g ==,因为1021024=, 所以()10(1024)210g g ==.(1)根据布谷数的定义填空:g (2)=________________,g (32)=___________________. (2)布谷数有如下运算性质:若m ,n 为正整数,则()()()=+g mn g m g n ,()()m g g m g n n ⎛⎫=- ⎪⎝⎭. 根据运算性质解答下列各题: ①已知(7) 2.807g =,求 (14)g 和74g ⎛⎫⎪⎝⎭的值; ②已知(3)g p =.求(18)g 和316g ⎛⎫⎪⎝⎭的值. 26.观察下列等式:①111122=-⨯, ②1112323=-⨯, ③1113434=-⨯. 将以上三个等式两边分别相加,得1111111113111223342233444++=-+-+-=-=⨯⨯⨯. (1)请写出第④个式子(2)猜想并写出:1n(n 1)+= .(3)探究并计算:111244668+++⨯⨯⨯ (1100102)⨯.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】对各选项中的数分别连续求根整数即可判断得出答案. 【详解】 解:当x=5时,5221,满足条件; 当x=10时,10331,满足条件; 当x=15时,15331,满足条件; 当x=16时,16442,不满足条件;∴满足条件的整数x 的最大值为15, 故答案为:C . 【点睛】本题考查了无理数估算的应用,主要考查学生的阅读能力和理解能力,解题的关键是读懂2.B解析:B【分析】由图可知;正方形面积为5.再由正方形的面积等于边长的平方依据算术平方根定义即可得出答案.【详解】解:由图可知,正方形面积=133-421=52⨯⨯⨯⨯,∴正方形边长故选:B.【点睛】本题考查勾股定理,无理数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.3.B解析:B【解析】根据数轴的意义,由图示可知b<0<a,且|a|<|b|,因此根据有理数的加减乘除的法则,可知a+b<0,a-b>0,ab<0,ab<0.故选B.4.B解析:B【分析】根据平面直角坐标系的概念,在两直线平行的条件下,内错角相等,两个无理数的和可以是无理数也可以是有理数,进行判断即可.【详解】①正确;②在两直线平行的条件下,内错角相等,②错误;③正确;④反例:两个无理数π和-π,和是0,④错误;⑤坐标平面内的点与有序数对是一一对应的,正确;故选:B.【点睛】本题考查实数,平面内直线的位置;牢记概念和性质,能够灵活理解概念性质是解题的关键.5.B解析:B分别根据平方根的定义、无理数的定义、算术平方根的定义、负整数逐一判断即可.【详解】解:A、0的平方根为0,所以A选项为真命题;B、无限不循环小数是无理数,所以B选项为假命题;C、算术平方根最小的数是0,所以C选项为真命题;D、最大的负整数是﹣1,所以D选项为真命题.故选:B.【点睛】本题考查平方根的定义、无理数的定义、算术平方根和负整数,掌握无理数指的是无限不循环小数是解题的关键.6.C解析:C【分析】由a a=±2,由b b=4,由此即可求得a+b的值.【详解】∵a∴a=±2,∵b∴b=4,∴a+b=2+4=6或a+b=-2+4=2.故选C.【点睛】本题考查了平方根及立方根的定义,根据平方根及立方根的定义求得a=±2、 b=4是解决问题的关键.7.D解析:D【分析】根据立方根的性质得出x+y=0即可解答.【详解】+=,∴x+y=0故答案为D.【点睛】本题主要考查了立方根的性质,通过立方根的性质得到x+y=0是解答本题的关键.8.D解析:D利用平方根的定义求解即可.【详解】解:∵2的平方根是.故选D.【点睛】此题主要考查了平方根的定义,注意一个正数的平方根有2个,它们互为相反数.9.B解析:B【分析】根据无理数的定义判断即可.【详解】1-,0.716π是无理数,3故选:B.【点睛】本题主要考查无理数的定义,熟练掌握定义是关键.10.B解析:B【分析】根据平方根及立方根的定义逐一判断即可得答案.【详解】,故该选项运算错误,=,故该选项运算正确,2=,故该选项运算错误,2=,故该选项运算错误,8故选:B.【点睛】本题考查平方根、算术平方根及立方根,一个正数的平方根有两个,它们互为相反数;其中正的平方根叫做这个数的算术平方根;一个数的立方根只有一个.二、填空题11..【分析】先根据题意求得、、、,发现规律即可求解.【详解】解:∵a1=3∴,,,,∴该数列为每4个数为一周期循环,∵∴a2020=.故答案为:.【点睛】此题主要考查规律的探索,解析:43.【分析】先根据题意求得2a、3a、4a、5a,发现规律即可求解.【详解】解:∵a1=3∴222 23a==--,()321222a==--,4241322a==-,523423a==-,∴该数列为每4个数为一周期循环,∵20204505÷=∴a2020=44 3a=.故答案为:43.【点睛】此题主要考查规律的探索,解题的关键是根据题意发现规律.12.【分析】根据非负数的性质列式求出m、n的值,然后代入代数式进行计算即可得解.【详解】由题意得,m+3=0,n-2=0,解得m=-3,n=2,所以,mn=(-3)2=9.故答案为9.【解析:【分析】根据非负数的性质列式求出m、n的值,然后代入代数式进行计算即可得解.【详解】由题意得,m+3=0,n-2=0,解得m=-3,n=2, 所以,m n =(-3)2=9. 故答案为9. 【点睛】此题考查绝对值和算术平方根非负数的性质,解题关键在于掌握几个非负数的和为0时,这几个非负数都为0.13.> 【解析】∵ . , ∴ , ∴ ,故答案为>.解析:> 【解析】∵10.52-=-=20-> , ∴0> , ∴0.5> ,故答案为>.14.-2. 【分析】根据二次根式有意义的条件可得x =2,进而可得y 的值,然后计算出2x+3y 的值,进而可得立方根. 【详解】 解:由题意得:, 解得:x =2, 则y =﹣4, 2x+3y =2×2+3×(解析:-2. 【分析】根据二次根式有意义的条件可得x =2,进而可得y 的值,然后计算出2x +3y 的值,进而可得立方根. 【详解】解:由题意得:2020x x -≥⎧⎨-≥⎩,解得:x =2, 则y =﹣4,2x+3y =2×2+3×(﹣4)=4﹣12=﹣8.2=-. 故答案是:﹣2. 【点睛】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.15.4【解析】根据题意可得(﹣2)※x=﹣2+2x ,进而可得方程﹣2+2x=2+x ,解得:x=4.故答案为:4.点睛:此题是一个阅读理解型的新运算法则题,解题关键是明确新运算法则的特点,然后直接根解析:4【解析】根据题意可得(﹣2)※x=﹣2+2x ,进而可得方程﹣2+2x=2+x ,解得:x=4. 故答案为:4.点睛:此题是一个阅读理解型的新运算法则题,解题关键是明确新运算法则的特点,然后直接根据新定义的代数式计算即可.16.【分析】先根据绝对值、算术平方根、偶次方的非负性求出a 、b 、c 的值,再代入即可得.【详解】由题意得:,解得,则,故答案为:.【点睛】本题考查了绝对值、算术平方根、偶次方的非负性的应用 解析:12- 【分析】先根据绝对值、算术平方根、偶次方的非负性求出a 、b 、c 的值,再代入即可得.【详解】由题意得:2102010a b c -=⎧⎪+=⎨⎪-=⎩,解得1221a b c ⎧=⎪⎪=-⎨⎪=⎪⎩, 则()112122a b c ++=+-+=-, 故答案为:12-. 【点睛】本题考查了绝对值、算术平方根、偶次方的非负性的应用等知识点,熟练掌握绝对值、算术平方根、偶次方的非负性是解题关键.17.①③.【分析】根据[x]表示不超过x的最大整数,即可解答.【详解】由题意可知[-2.1]=-3,[1]=1,-3+1=-2,故①正确;②中,当x取小数时,显然不成立,例如x取2.6,[x]解析:①③.【分析】根据[x]表示不超过x的最大整数,即可解答.【详解】由题意可知[-2.1]=-3,[1]=1,-3+1=-2,故①正确;②中,当x取小数时,显然不成立,例如x取2.6,[x]+[-x]=2-3=-1,故②错误;③中,若[x+1]=3,则x+1要满足x+1≥3,且x+1<4,解得x≥2,且x<3,故③正确;④中,当-1≤x<1时,在取值范围内验证此式的值为1,2.故④错误;所以正确的结论是①③.18.-0.0513【分析】根据立方根的意义,中,m的小数点每移动3位,n的小数点相应地移动1位.【详解】因为所以-0.0513故答案为:-0.0513【点睛】考核知识点:立方根.理解立方解析:-0.0513【分析】=中,m的小数点每移动3位,n的小数点相应地移动1位.n【详解】5.130≈≈-0.0513故答案为:-0.0513【点睛】考核知识点:立方根.理解立方根的定义是关键.19.6【分析】求出在哪两个整数之间,从而判断的整数部分.【详解】∵,,又∵36<46<49∴6<<7∴的整数部分为6故答案为:6【点睛】本题考查无理数的估算,正确掌握整数的平方数是解解析:6【分析】的整数部分.【详解】∵246=,2636=,2749=又∵36<46<49∴6<76故答案为:6【点睛】本题考查无理数的估算,正确掌握整数的平方数是解题的关键.20.50【分析】根据算术平方根小数点移动的规律解答.【详解】∵20.2是2020的小数点向左移动了两位,∴应是的小数点向左移动一位得到的,∴,故答案为:4.50.【点睛】此题考查算术平解析:50【分析】根据算术平方根小数点移动的规律解答.【详解】∵20.2是2020的小数点向左移动了两位,的小数点向左移动一位得到的,04.5≈,故答案为:4.50.【点睛】此题考查算术平方根小数点的移动规律,熟记规律是解题的关键.三、解答题21.(1)N,E,T 密文为M,Q,P;(2)密文D,W,N 的明文为F,Y ,C .【分析】(1) 由图表找出N,E,T 对应的自然数,再根据变换公式变成密文.(2)由图表找出N=M,Q,P 对应的自然数,再根据变换.公式变成明文.【详解】解:(1)将明文NET 转换成密文:2522517263N M +→→+=→ 3313E Q →→=→ 5158103T P +→→+=→ 即N,E,T 密文为M,Q,P;(2)将密文D,W,N 转换成明文:()133138114D F →→⨯--=→2326W Y →→⨯=→253(2517)222N C →→⨯--=→即密文D,W,N 的明文为F,Y ,C .【点睛】本题考查有理数的混合运算,此题较复杂,解答本题的关键是由图表中找到对应的数或字母,正确运用转换公式进行转换.22.(1)111n n -+;1n n +;(2)①1341-;②112424+;( 3 )14. 【分析】(1)利用材料中的“拆项法”解答即可; (2)①先变形为111234=⨯,再利用(1)中的规律解题;②先变形为121224=,再逆用分数的加法法则即可分解; (3)按照定义“⊗”法则表示出193⊗,再利用(1)中的规律解题即可. 【详解】解:(1)观察发现:()11n n =+111n n -+, 1111122334(1)n n ++++⨯⨯⨯+ =11111111223341n n -+-+-+⋯+-+ =111n -+ =1n n +; 故答案是:111n n -+;1n n +. (2)初步应用: ①111234=⨯=1134-; ②121112242424==+; 故答案是:1134-;112424+. ( 3 )由定义可知: 193⊗=11111111112203042567290110132++++++++ =455111111611311412-+-+-+⋯+- =13211- =14. 故193⊗的值为14. 【点睛】考查了有理数运算中的规律型问题:数字的变化规律,有理数的混合运算.本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.23.(1)11316⨯;11131316⎛⎫⨯- ⎪⎝⎭;(2)[]13(1)(131)n n +-⋅+;13(3111311)n n ⎡⎤--+⎢⎣+⎥⎦;(3)100301. 【分析】(1)观察前4个等式的分母先得出第5个式子的分母,再依照前4个等式即可得出答案;(2)根据前4个等式归纳类推出一般规律即可;(3)利用题(2)的结论,先写出1234100a a a a a +++++中各数的值,然后通过提取公因式、有理数加减法、乘法运算计算即可.【详解】(1)观察前4个等式的分母可知,第5个式子的分母为1316⨯则第5个式子为:51111131631316a ⎛⎫==⨯- ⎪⨯⎝⎭ 故应填:11316⨯;11131316⎛⎫⨯- ⎪⎝⎭; (2)第1个等式的分母为:14(130)(131)⨯=+⨯⨯+⨯第2个等式的分母为:47(131)(132)⨯=+⨯⨯+⨯第3个等式的分母为:710(132)(133)⨯=+⨯⨯+⨯第4个等式的分母为:1013(133)(134)⨯=+⨯⨯+⨯归纳类推得,第n 个等式的分母为:[]13(1)(13)n n +-⋅+则第n 个等式为:[]1111313(1)(13)13(1)13n a n n n n +-⋅++⎡⎤==-⎢⎥⎣-⎦+(n 为正整数) 故应填:[]13(1)(131)n n +-⋅+;13(3111311)n n ⎡⎤--+⎢⎣+⎥⎦; (3)由(2)的结论得:[]10013(1001)(13100)298301311111329801a ⎛⎫==+⨯-⨯+⨯⨯=⨯- ⎪⎝⎭则1234100a a a a a +++++ 1111144771010132983011+++++⨯⨯⨯⨯⨯= 111111111111343473711132981031013301⎛⎫⎛⎫⎛⎫⎛⎫⨯-+⨯-+⨯-+⨯-++ ⎪ ⎪ ⎛⎫=⨯-⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎪⎝⎭ 111111111++++344771*********3018=-⎛⎫⨯-+--- ⎪⎝⎭1330111⎛=⨯-⎫ ⎪⎝⎭30130103⨯= 110030=. 【点睛】本题考查了有理数运算的规律类问题,依据已知等式归纳总结出等式的一般规律是解题关键.24.(1)1120152016-,1140284032-;(2)20192020. 【分析】(1)根据题目中式子的特点可以写出猜想;(2)根据|a-1|+(ab-2)2=0,可以取得a 、b 的值,代入然后由规律对数进行拆分,从而可以求得所求式子的值.【详解】解:(1)1112015201620152016=-⨯, 111111()2014201622014201640284032=⨯-=-⨯, 故答案为:1120152016-,1140284032-; (2)∵|a ﹣1|+(ab ﹣2)2=0,∴a ﹣1=0,ab ﹣2=0,解得,a =1,b =2, ∴1111+(1)(1)(2)(2)(2018)(2018)ab a b a b a b +++++++++…… =111112233420192020+++⋯+⨯⨯⨯⨯ =1﹣1111111+2233420192020+-+-+- (1)12020 =20192020. 【点睛】本题考查数字的变化类、非负数的性质、有理数的混合运算,解答本题的关键是明确题意,求出所求式子的值.25.(1)1;5;(2)①3.807,0.807;②12p +;4p -.【分析】(1)根据布谷数的定义把2和32化为底数为2的幂即可得出答案;(2)①根据布谷数的运算性质, g (14)=g (2×7)=g (2)+g (7),7(7)(4)4g g g ⎛⎫=- ⎪⎝⎭,再代入数值可得解; ②根据布谷数的运算性质, 先将两式化为2(18)(2)(3)g g g =+,3()(3)(16)16g g g =-,再代入求解.【详解】解:(1)g (2)=g (21)=1,g (32)=g (25)=5;故答案为1,32;(2)①g (14)=g (2×7)=g (2)+g (7),∵g (7)=2.807,g (2)=1,∴g (14)=3.807;7(7)(4)4g g g ⎛⎫=- ⎪⎝⎭g (4)=g (22)=2, ∴74g ⎛⎫ ⎪⎝⎭=g (7)-g (4)=2.807-2=0.807; 故答案为3.807,0.807;②∵()3g p =.∴22(18)(23)(2)(3)12g g g g p =⨯=+=+; 3()(3)(16)416g g g p =-=-. 【点睛】本题考查有理数的乘方运算,新定义;能够将新定义的运算转化为有理数的乘方运算是解题的关键.26.(1)1114545=-⨯;(2)111(1)1n n n n =-++;(3)2551. 【解析】试题分析:(1)规律:相邻的两个数的积的倒数等于它们的倒数的差,故第四个式子为:1114545=-⨯; (2)根据以上规律直接写出即可;(3)各项提出12之后即可应用(1)中的方法进行计算. 解:(1)答案为:1114545=-⨯; (2)答案为:()11111n n n n =-++; (3)111244668+++⨯⨯⨯…1100102⨯ =12×(111122334++⨯⨯⨯+…+15051⨯)=12×5051=25 51.点睛:本题是一道找规律问题.解题的重点要根据所给式子中的数字变化归纳出规律,而难点在于第(3)问中要灵活应用所总结出来的公式.。

第六章《实数》复习

第六章《实数》复习

1第十三章 实数1.4的平方根是 ,4的算术平方根是 ,9的平方根是 2.(-2)2的算术平方根是 ,9/16的算术根是 ,0.01的平方根是 3.若41122=x ,则x = ;若4112=x ,则x = 。

4.4922平方根是 ,算术平方根是 。

5.平方根等于本身的数是 。

6.当m= 且n= 时,021=++-n m ,此时(mn)m = 7.如果 a x =3,那么x 是a 的___________,a 是x 的___________. 8.若12-x 是225的算术平方根,则x 的立方根是___________.9.16的平方根是( ) A 、±4 B 、4 C 、±2 D 、2 10.当m ≥0时,m 表示( )(A )一个负数 (B )m 的算术平方根 (C )一个负实数 (D )一个有理数 11.以下各数没有算术平方根是( )(A )22- (B) 2)2(- (C) 0 (D) 2)2(-12.3729--的平方根是( )A .9B .3C .±3D .±913.“94的平方根是32±”可用数学式子表示为( )A 、3294±=B 、3294=±C 、3294=D 、3294±=±14.“求36的平方根”用式子表示是( )A 、√36B 、 ±√36C 、 +√36D 、-√36 15.下列等式正确的是( )A .416-=-B .15225±=C .51253-=-D .393-=- 16.计算下列各题。

(1)100 (2)49- (3)1625(4)169⨯ (5)22512+ (6)2)21(-17.求下列各式中的x 。

(1)01)1(813=-+x (2)101=-x(3)422=-x (4)22)4()23(-=-x18.已知23,23-=+=y x 求:(1)x+y (2)xy (3)x 2+xy+y 219.小美设计了一面矩形的彩旗,它的长为6cm ,宽为3cm ,这面彩旗的对角线的长可能是整数吗?可能是分数吗?可能是有理数吗?20.对于任意数2,a a 一定等于a 吗?21.圆柱的高为6.5m ,体积为850m 3,求此圆柱的底面圆的半径r .22. 如果13--y x 和42-+y x 互为相反数,求x+4y 的算术平方根.。

第六章 实数 全章复习

第六章  实数 全章复习

第六章 实数 全章复习一:知识梳理(磨刀不误砍柴工)1.平方根及算术平方根如果a x =2 ()0≥a 则称x 是a 的________;可以表示为________,其中______表示a 的算术平方根 注意:①正数有____个算术平方根;有______个平方根,它们之间的关系是________②负数有____个平方根,有______算术平方根③0的平方根和算术平方根都是______④算术平方根是一个______(大于、小于、大于等于、小于等于)零的数。

⑤算术平方根等于其本身的数有__________,平方根等于其本身的数有___________2.立方根如果a x =3 则称x 是a 的_______(也叫三次方根),可以表示为________注意:①正数的立方根是________ ②负数的立方根是___________③0的立方根是___________ ④任何一个数都有________的立方根 ⑤立方根等于其本身的数有___________ ⑥________3=-a3.实数及其分类1.____________________叫无理数。

试写出几个常见的无理数__________2.实数是________和_________的统称。

3.实数和数轴上的点是________对应的关系。

4.实数的分类⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧无限不循环小数正无理数无限循环小数都可以化成有限小数或正有理数有理数实数____________________________ ⎪⎩⎪⎨⎧_________0________实数4.实数的运算有理数的运算法则及性质,到实数范围内依然成立如 ① 相反数任意一个实数a 的相反数是______________② 绝对值⎪⎩⎪⎨⎧<=>=)0_________()0_________()0_________(a a a a③ 倒数任意一个实数a )0(≠a 的倒数是______________④ 交换律、结合律、分配律、去括号法则等运算性质和法则在实数范围内依然成立 二:小试牛刀(快乐展示 展示快乐)选择题:1. 有下列说法:⑴2是无理数; ⑵无限不循环小数是无理数;⑶无理数是无限小数;。

第六章实数复习(公开课)ppt课件

第六章实数复习(公开课)ppt课件

在几何图形中,我们也需要使用在绘制函数图像时,我们需要使用实 数。例如,绘制一次函数、二次函数 、三角函数等图像时都需要用到实数 。
科学问题中的实数应用
物理测量
在物理学中,许多物理量都是用 实数来表示的。例如,物体的速 度、加速度、力等都需要用到实
总结词
实数减法的运算律
详细描述
实数减法具有一些重要的运算律,如差不变性质、减法结 合律和减法交换律等。这些运算律可以帮助我们简化复杂 的减法计算,提高计算的准确性和效率。
实数的乘法
总结词
实数乘法的定义与性质
详细描述
实数乘法是数学中的基本运算之一,它具有结合律、交换 律和分配律等性质。实数乘法可以用来解决许多实际问题 ,如计算面积、解决概率问题等。
根式的化简
化简根式是指将根式化简为一个最简 形式的过程。例如,√8=2√2,因为8 可以分解为4×2,而4的平方根是2, 所以√8=2√2。
Part
05
实数的应用
生活中的实数应用
长度测量
在日常生活中,我们经常需要测 量物体的长度、宽度和高度等, 这些都需要用到实数。例如,测 量房间的尺寸、家具的大小等。
总结词
实数乘法的几何意义
详细描述
实数乘法的几何意义可以理解为将数轴上的点进行拉伸或 压缩。在数轴上,一个数乘以另一个数的结果等于一个数 覆盖另一个数的长度。
总结词
实数乘法的运算律
详细描述
实数乘法具有结合律、交换律和分配律。结合律是指 (ab)c=a(bc);交换律是指ab=ba;分配律是指 a(b+c)=ab+ac。这些运算律可以帮助我们简化复杂的乘 法计算,提高计算的准确性和效率。
在数轴上进行乘法运算时,将数 轴上的每个点乘以一个正数或负 数,长度会相应地扩大或缩小。

人教版七年级数学下册第六章《实数》小结与复习说课稿

人教版七年级数学下册第六章《实数》小结与复习说课稿
3.数学游戏:设计实数运算相关的数学游戏,让学生在游戏中运用所学知识,提高学习兴趣;
4.生活实践:让学生收集生活中的实数问题,进行分析和解决,培养学生的数学应用意识。
(四)总结反馈
在总结反馈阶段,我将采取以下措施引导学生自我评价,并提供有效的反馈和建议:
1.让学生总结本节课所学知识,分享自己的学习心得;
(2)掌握实数运算的顺序和法则;
(3)解决实数混合运算中的实际问题。
二、学情分析导
(一)学生特点
本节课面向的是七年级学生,这个年龄段的学生正处于青春期,好奇心强,求知欲旺盛,具备一定的独立思考能力。在认知水平上,他们已经掌握了基本的算术运算,具备了一定的数学逻辑思维能力。然而,由于年龄和经验的限制,他们对实数概念的理解可能还不够深入,对实数运算的掌握也可能不够熟练。
2.互动教学:设计课堂提问、小组讨论等活动,引导学生积极参与,提高他们的学习主动性;
3.激励评价:对学生在课堂上的表现给予积极的评价和鼓励,增强他们的自信心;
4.举一反三:通过典型例题的讲解,引导学生发现解题规律,提高他们解决问题的能力;
5.数学游戏:设计一些与实数相关的数学游戏,让学生在游戏中学习,提高他们的学习兴趣。
板书在教学过程中的作用是帮助学生构建知识框架,直观展示教学内容的逻辑关系。为确保板书清晰、简洁且有助于学生把握知识结构,我将采取以下措施:
1.提前规划板书内容,确保知识点完整、系统;
2.使用不同颜色的粉笔,区分重点、难点和关键点;
3.板书过程中,适时引导学生关注,解释板书中的逻辑关系;
4.在适当位置留下空白,用于记录学生的疑问和课堂生成性内容。
2.提高练习:设计一些综合性较强的实数题目,培养学生的解题能力和思维能力;

人教版数学七年级下册第六章《实数》复习

人教版数学七年级下册第六章《实数》复习

第六章实数复习题1、平方根是其本身的数是0;算术平方根是其本身的数是0和1;立方根是其本身的数是0和±1。

2、每一个正数都有两个互为相反数的平方根,其中正的那个是算术平方根;任何一个数都有唯一一个立方根,这个立方根的符号与原数相同。

3、a本身为非负数,有非负性,即va三0;ja有意义的条件是a±o。

4、公式:(1)(丽)2=a(a±0);(2)口=-罷(a取任何数)。

5、区分(需)2二a(a±0),与v'a2=|a6、非负数的重要性质:若几个非负数之和等于0,则每一个非负数都为0(此性质应用很广,务必掌握)。

7•易混淆的三个数:(1)忘(2)血)2(3)3^一、填空题:1、已知实数x,y满足Jx-2+(y+1)2=0,贝廿x-y等于2、比较大小:3迈2佔()3、满足-y2<x<、;5的整数x是()1 4、小成编写了一个如下程序:输入x f x2f立方根f倒数f算术平方根—2 f,贝Vx为•()5、要使壬2x-6有意义,x应满足的条件是6、已知+%;b二5=0,则(a-b)2的平方根是;7、若102.01二10.1,则±£1.0201=;8、一个正数x的平方根是2a-3与5-&,则a=;二、选择题:1、下列说法中:①土3都是27的立方根,②3y3=y,③玄64的立方根是2,④3。

8》=±4。

其中正确的有()A、1个B、2个C、3个D、4个2、下列语句中正确的是A.49的算术平方根是7C.-49的平方根是73、下列语句中,正确的是(B.49的平方根是-7D.49的算术平方根是土7)D.立方根是这个数本身的数共B.3是-9的算术平方根D.27的立方根是±32)无理数包括正无理数、零、负无理A.—个实数的平方根有两个,它们互为相反数B.负数没有立方根C.一个实数的立方根不是正数就是负数有三个4、下列说法正确的是()A.-2是(-2)2的算术平方根C.16的平方根是±45、有下列说法:(1)无理数就是开方开不尽的数数;(3)无理数是无限不循环小数;(4)无理数都可以用数轴上的点来表示。

第六章实数复习(公开课)ppt课件

第六章实数复习(公开课)ppt课件

19世纪
数学家逐步完善实数理论 ,形成了完备的实数体系 ,为数学分析、连续函数 等研究奠定了基础。
减法运算
总结词
减法运算的基本性质
详细描述
实数的减法运算可以转化为加法运算,即a-b=a+(-b)。
总结词
减法运算的运算律
详细描述
减法运算同样满足交换律和结合律,即a-b=b-a和(ab)-c=a-(b+c)。
总结词
减法运算的运算性质
详细描述
减法的可逆性也是减法的一个重要性质,每一个数都有 唯一的相反数;另外,0是减法的单位元,任何数与0 相减都等于它本身。
总结词
加法运算的运算律
详细描述
加法运算还有一些特殊的运算律,例如,任何数与0相加 都等于它本身,即a+0=a;相反数相加等于0,即a+(a)=0。
总结词
加法运算的运算性质
详细描述
加法运算还有一些重要的运算性质,例如,加法的可逆性 ,即每一个数都有加法逆元,与它相加等于0;加法的单 位元,即有一个特殊的数0,任何数与它相加都等于它本 身。
实数在几何学中有着广泛的应用,例如在计算长度 、面积和体积时,需要使用实数表示测量值。
函数定义域与值域
实数可以用来定义各种数学函数,包括代数函数、 三角函数、指数函数和对数函数等,同时函数的值 域也由实数构成。
数学分析基础
实数对于数学分析来说是必不可少的基础,极限、 连续性和可微性的定义都离不开实数。
在物理中的应用
80%
测量与计算
在物理学中,实数常被用于表示 和计算各种物理量,如长度、时 间、质量、电荷等。
100%
物理定律的数学表达
许多物理定律可以用实数表示的 数学公式来描述,例如牛顿第二 定律 F=ma。

第六章实数复习(公开课)ppt课件

第六章实数复习(公开课)ppt课件

$a times (b + c) = a times b + a times c$

特别注意
乘法中负负得正,即负 数乘以负数结果为正。
除法运算规则
除数为0的情况
任何数除以0都是无意义的,结果不确定。
被除数为0的情况
0除以任何非零数都等于0。
特别注意
在除法中,负负得正,即负数除以负数结果为正 。
03
3完备性Βιβλιοθήκη 实数集具有完备性,即任何实数域上的柯西序列 都收敛于一个实数,这保证了数学分析的严密性 。
无理数和有理数在解决实际问题中应用
几何应用
物理应用
在几何学中,无理数常常出现,如√2代表 对角线长度与边长之比为√2的等腰直角三 角形的边长。
在物理学中,许多常数都是无理数,如圆 周率π和自然对数的底e等,这些常数在描 述自然现象时具有重要作用。
开方运算应用
开方运算在数学、物理、工程等领域有广泛应用,如求解方程、计算面积和体积等。
05
无理数和有理数在实数范 围内地位和作用
无理数和有理数定义及分类
有理数定义
01
可以表示为两个整数之比的数,包括整数、有限小数和无限循
环小数。
无理数定义
02
无法表示为两个整数之比的数,即无限不循环小数。
分类
03
数值大小与结果
正数减去正数结果可能为 正也可能为负,负数减去 负数结果为正,正数减去 负数结果为正。
特别注意
减法没有交换律,即$ab$和$b-a$的结果不同。
乘法运算规则
乘法交换律
$a times b = b times a$。
乘法结合律
乘法分配律
$(a times b) times c = a times (b times c)$。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章实数复习一、 知识结构二、 基础知识回顾 1.无理数的定义( )叫做无理数 2.有理数与无理数的区 有理数总可以用( )或( )表示;反过来,任何( )或( )也都是有理数。

而无理数是( )小数,有理数和无理数区别之根本是有限及无限循环和无限不循环。

有理数可以化成( ),无理数不能化成( )。

3.常见的无理数类型 (1) 一般的无限不循环小数,如:1.41421356¨···(2) 看似循环而实际不循环的小数,如0.1010010001···(相邻两个1之间0的个数逐次加1)。

(3) 有特定意义的数,如:π=3.14159265···(4).开方开不尽的数。

如:35,3。

4.算术平方根。

(1) 定义: (2) 我们规定:(3) 性质:算术平方根a 具有双重非负性:① 被开方数a 是非负数,即a ≥0.② 算术平方根a 本身是非负数,即a ≥0。

也就是说,( )的算术平方根是一个正数,0的算术平方根是( ), ( )没有算术平方根。

5.平方根 (1) 定义:(2) 非负数a 的平方根的表示方法:(3) 性质: 一个( )有两个平方根,这两个平方根( )。

( )只有一个平方根,它是( )。

( )没有平方根。

说明:平方根有三种表示形式:±a ,a ,-a ,它们的意义分别是 :非负数a 的平方根,非负数a 的算术平方根,非负数a 的负平方根。

要特别注意: a ≠±a 。

6.平方根与算术平方根的区别与联系:区别:①定义不同 ②个数不同:③ 表示方法不同:联系:①具有包含关系:②存在条件相同: ③ 0的平方根和算术平方根都是0。

7.开方运算:(1) 定义: ① 开平方运算: ② 开立方运算:(2)平方与开平方式( )关系,故在运算结果中可以相互检验。

8.a 2的算术平方根的性质实际问题引入无理数无理数的表示算术平方根平方根 立方根实数的有关概念及应用概念 分类绝对值、相反数 实数与数轴上点的对应 实数的运算和大小比较实数的应用①当a ≥0时,2a =( ) ② 当a<0时,2a =( ) 一般的,当a<0时,2a =-a.我们还知道,当a ≥0时,│a │=a ;当a<0时,│a │=a. 综上所述,有a (a ≥0) 2a =│a │=-a (a<0)从算术平方根的定义可得:2)(a =a (a ≥0)9.立方根(1) 定义:______________________________. (2) 数a 的立方根的表示方法:_________(3) 互为相反数的两个数的立方根之间的关:_________ (4) 两个重要的公式为任何数)为任何数)a a a a a (()3(3333==10.实数(1) 概念:________和________统称为实数。

(2) 分类 按定义_______ _____________________ ___ 有限小数或________小数 _______ 实数 _______________________ 无限不循环小数_________按大小 正实数实数 零负实数(4) (3)实数的有关性质(5) ⑴a 与b 互为相反数〈=〉a+b=0 (6) ⑵a 与b 互为倒数〈=〉ab=1(7) ⑶任何实数的绝对值都是非负数,即a ≥0 (8)⑷互为相反数的两个数的绝对值相等, 即a =a -⑸正数的倒数是正数;负数的倒数是负数;零没有倒数. (4)实数和数轴上的点的对应关系:实数和数轴上的点是一一对应的关系 (5) 实数的大小比较1. 在数轴上表示的两个数,右边的数总比左边的数大。

2. 正数大于零,零大于负数,正数大于一切负数,两个负数比较,绝对值大的反而小。

(6) 实数中的非负数及其性质在实数范围内,正数和零统称为非负数 我们已经学过的非负数有如下三种形式(9) ⑴任何一个实数a 的绝对值是非负数,即a ≥0 (10) ⑵任何一个实数的平方是非负数,即2a ≥0;(11) ⑶任何一个非负数a 的算术平方根是非负数,即a ≥0 (12) 非负数有以下性质 (13) ⑴非负数有最小值零(14) ⑵有限个非负数之和仍然是非负数(15) ⑶几个非负数之和等于0,则每个非负数都等于0。

(16)(实数 练习题一、判断题(1)带根号的数一定是无理数( ); (2)无理数都是无限小数( ); (3)无理数包含正无理数、0、负无理数( );(4)4的平方根是2( );(5)无理数一定不能化成分数( ); (6)5是5的平方根( );(7)一个正数一定有两个平方根( ); (8)±25的平方根是5±( ) (9)互为相反数的两数的立方根也互为相反数( ); (10)负数的平方根、立方根都是负数( ); (11)①无理数是无限小数( );②无限小数是无理数( );③开方开不尽的数是无理数( );④两个无理数的和是无理数( );⑤无理数的平方一定是有理数( ); 二、填空题(12)把下列各数填入相应的集合中(只填序号):①25.0 ②π- ③16- ④39- ⑤0 ⑥1010010001.0 ⑦3 ⑧213- 有理数集合:{ …}无理数集合:{ …}正实数集合:{ …}负实数集合:{ …} (13)把下列各数填入相应的集合中(只填序号):①3.14 ②2π-③179- ④3100 ⑤0 ⑥ 212212221.1 ⑦3 ⑧0.15有理数集合:{ …}正数集合{ …}无理数集合:{ …}负数集合{ …}(14)36的算术平方根是 ,1.44的平方根是 ,11的平方根是 ,的平方根是23±,2)3.4(-的算术平方根是 , 410是 的平方。

(15) 21-的相反数是 、倒数是 、绝对值是 。

(16) 满足32<<-x 的整数x 是 .(17) 一个正数的平方等于144, 则这个正数是 , 一个负数的立方等于27,则这个负数是 , 一个数的平方等于5, 则这个数是 . (18). 若误差小于10, 则估算200的大小为 .(19). 化简:8125= , (20) .9的算术平方根是 ___、3的平方根是 ___, 0的平方根是 ___,-2的平方根是 . (21). –1的立方根是 ,271的立方根是 , 9的立方根是 . (22) .2的相反数是 , 倒数是 , -36的绝对值是 .(23). =-2)4( . =-33)6( , 2)196(= .(24) 一个数的平方根与立方根相等,这个数是______;立方根等于本身的数是_________.平方根等于本身的数是________;算术平方根等于本身的数是_____________.大于0小于π的整数是_________;3-满足<x <8的整数x 是__________.(25).._______a ,2)2(2的取值范围是则若a a -=-(26)_____2x x 则在实数范围内有意义,. (27)使________x 11的值是在实数范围内有意义的-+-x x三、 选择题:1. 边长为1的正方形的对角线长是( )A. 整数B. 分数C. 有理数D. 不是有理数 2. 在下列各数中是无理数的有( )-0.333…,4, 5, π-, 3π, 3.1415, 2.010101…(相邻两个1之间有1个0),76.0123456…(小数部分由相继的正整数组成).A.3个B.4个C. 5个D. 6个 3. 下列说法正确的是( )A. 有理数只是有限小数B. 无理数是无限小数C. 无限小数是无理数D. 3π是分数4. 下列说法错误的是( )A. 1的平方根是1B. –1的立方根是-1C.2是2的平方根 D. –3是2)3(-的平方根5. 若规定误差小于1, 那么60的估算值为( )A. 3B. 7C. 8D. 7或8 6. 下列平方根中, 已经简化的是( ) A.31B. 20C. 22D. 1217.81的平方根是( )A. 9B. ±9C. 3D. ±38. 下列说法正确的是( )A. 无限小数都是无理数B. 带根号的数都是无理数C. 开方开不尽的数是无理数D. π是无理数, 故无理数也可能是有限小数 9. 方根等于本身的数是( )A. –1B. 0C. ±1D. ±1或0 10. ππ--14.3的值是( )A. 3.14-π2B. 3.14C. –3.14D. 无法确定 11. a 为大于1的正数, 则有( ) A. a a =B. a a >C. a a <D. 无法确定12. 下面说法错误的是( )A. 两个无理数的和还是无理数B. 有限小数和无限小数统称为实数C. 两个无理数的积还是无理数D. 数轴上的点表示实数13.下列说法中不正确的是( )A.42的算术平方根是4 B. 24的算术平方根是C.332的算术平方根是 D. 981的算术平方根是 14. 121的平方根是±11的数学表达式是( )A. 11121=B.11121±=C. ±11121=D.±11121±=15.如果,162=x 则x=( )A.16B.16C.±16D.±1616. 364的平方根是( )A.±8B.±2C.2D.±4 17.下列说法中正确的是( )A.±64的立方根是2B.31271±的立方根是 C.两个互为相反数的立方根互为相反数 D.(-1)2的立方根是-1 18.-38-的平方根是( )A.±√2 B.-√2 C.±2 D.2 19.估计的大小应在76( )A.7~8之间B. 8.0~8.5之间C. 8.5~9.0之间D.9.0~9.5之间20.在实数范围内,下列说法中正确的是( )ba b a D ba b a C b a b a B b a b a A >>======则若则若则若则若,.,.,..,.22332221.解方程 (1) 049162=-x (2)064)13(2=--x22.已知2a-1的平方根是±3, 3a+b-1的算术平方根是4,求a+2b 的平方根。

相关文档
最新文档