第九章不等式与不等式组练习题

合集下载

第九章《不等式与不等式组》(含答案)

第九章《不等式与不等式组》(含答案)

第九章《不等式与不等式组》一、选择题(每题3分,共30分)1.已知点M(1﹣2m,m﹣1)在第四象限,则m的取值范围在数轴上表示正确的是()2.已知x<y,则下列不等式成立的是()A.x﹣2>y﹣2B.4x>4y C.x+2<y+2D.﹣3x<﹣3y 3.不等式>﹣1的正整数解的个数是()A.1个 B.2个 C.3个 D.4个4.对于不等式组下列说法正确的是()A.此不等式组无解 B.此不等式组有7个整数解C.此不等式组的负整数解是﹣3,﹣2,﹣1 D .此不等式组的解集是﹣<x≤2A. (3)B. (4)C.(1)、(3)D.(2)、(4)5.某班有20位同学参加乒乓球、羽毛球比赛,甲说:“只参加一项的人数大于14人。

”乙说:“两项都参加的人数小于5人。

”对于甲、乙两人的说法,有下列四个命题,其中真命题的是()A.若甲对,则乙对B.若乙对,则甲对C.若乙错,则甲错D.若甲错,则乙对6.一个不等式组的解集在数轴上表示出来如图所示,则下列符合条件的不等式组为( )A.21xx>⎧⎨≤-⎩B.21xx<⎧⎨>-⎩C.21xx<⎧⎨≥-⎩D.21xx<⎧⎨≤-⎩7.下列面说法:①若-a>-b,则a>b②若2x>-2y,则x>-y,③若ax>ay,则x>y,④若a-1>b-1,则a>b,其中正确的是()A.1B.2C.3D.48.据气象台预报,2020年某日长春市最高气温33℃,最低气温24℃,则当天气温(℃:)的变化范围是()A.t>33 B.t≤24 C.24<t<3 D.24≤t≤339.下列各对不等式中,解集不相同的一对是()A.34227x x-+<与7(3)2(42)x x--<+ B.31244xx+>-与31x>-C.22123x x+-≥与()()32221x x+≥- D.1923x x-+<与()()3129+x x-<-10.已知两个不等式的解集在数轴上如图所示,则由这两个不等式组成的不等式组的解集为()A.x>2 B.x<2 C.x≥﹣2 D.﹣2<x<2二、填空题(每空2分,共22分)11.解不等式组+11213xx≥-⎧⎨+≤⎩,,①②请结合题意填空,完成本题的解答:(1)解不等式①,得__________;(2)解不等式②,得__________;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集为__________.12.点()2,3P x x-+在第一象限,则x的取值范围是________.13.若(m+1)x|m|+2>0是关于x的一元一次不等式,则m=.14.写出一个解集为x>1的一元一次不等式:__________.15.不等式3x-1<2x+3的正整数解是________.16.若b a <,则不等式组⎩⎨⎧>>b x a x 的解集是________,不等式组⎩⎨⎧<>bx ax 的解集是_________,不等式组⎩⎨⎧><bx ax 的解集是_________.三、解下列关于x 的不等式,并把解集在数轴上表示出来(17~20每题5分,21题6分,共26分):17.4(2)5(1)x x +>- 18.2+5133x -+≤19.253(-1)742x x x x +<⎧⎪⎨+>⎪⎩20.()815171062x x x x ⎧->-⎪⎨--≤⎪⎩21.下面的不等式的解法有错误,按下列的要求完成解答:解不等式:2+12236x x +-<解:去分母,得()221212x x +-+<,-------① 去括号,得42212x x +-+<,----------② 合并,得 38x <,-------------------③ 解得 83x <.--------------------④ (1)以上的解法中错误的一步是(写出序号即可);(2)改正错误的步骤,求出不等式的解,并画出数轴,在数轴上表示不等式的解集.四、解答题(22,23题每题6分,24,25题每题5分,共22分) 22.求出33126x x -+≤-的正整数解.23.已知方程组⎩⎨⎧-=++=+②①m y x m y x 12,312的解满足x +y <0,求m 的取值范围.24.“六•一”儿童节那天,小强去商店买东西,看见每盒饼干的标价是整数,于是小强拿出10元钱递给商店的阿姨,下面是他俩的对话:如果每盒饼干和每袋牛奶的标价分别设为x 元,y 元,请你根据以上信息,回答以下问题:(1)找出x 与y 之间的关系式; (2)求出每盒饼干和每袋牛奶的标价.25.若关于x 的不等式组152(3)3()>22x x -x a x +>⎧⎨++⎩只有4个整数解,求a 的取值范围.参考答案:一、选择题 题号 1 2 3 4 5 6 7 8 9 10 答案 BCDBBCBDDA二、填空题 题号 111213 14 答案 21x x ≥-≤,,画图略,21x -≤≤ 2x >1答案不唯一题号 15 16答案 1,2,3x b a x b ><<,,无解三、计算 17.13x < 18.12x ≥- 19.8x > 20.32x -<≤21.解:(1)x +2应该打括号.故答案为:①.(2)去分母,得2(2x +1)-(x +2)<12,去括号,得4x +2-x -2<12,合并,得 3x <12,解得:x <4,∴不等式的解集是x <4.把不等式的解集在数轴上表示为:.四、解答题22.31,2,3x x ≤=, 23.1m <-24.解:(1)由题意,得0.9x +y =10-0.8,化简得:y =9.2-0.9x ; (2)根据题意,得不等式组109.20.910x x x <⎧⎨+->⎩①②, 解这个不等式组,得:8<x <10, ∵x 为整数, ∴x =9,∴y =9.2-0.9×9=1.1,答:每盒饼干的标价为9元,每袋牛奶的标价为1.1元.2321231723161453a x a a a -<<-<⎧⎨-≥⎩-<<-25.解:由题意得,所以。

人教版七年级下册第九章《不等式与不等式组》全章练习(分层分结典型练习题含答案)

人教版七年级下册第九章《不等式与不等式组》全章练习(分层分结典型练习题含答案)

第九章不等式与不等式组9.1不等式9.1.1不等式及其解集基础题知识点1不等式1.给出下面5个式子:①3>0;②4x+3y≠0;③x=3;④x-1;⑤x+2<3,其中不等式有(B)A.2个B.3个C.4个D.5个2.选择适当的不等号填空:(1)2<3;(2)4;(3)若a为正方形的边长,则a>0;(4)若x≠y,则-x≠-y.3.如图,左边物体的质量为x g,右边物体的质量为50 g,用不等式表示下列数量关系是x>50.第3题第4题4.如图,身高为x cm的1号同学与身高为y cm的2号同学站在一起时,如果用一个不等式来表示他们的身高关系,那么这个式子可以表示成x<y(用“>”或“<”填空).5.用适当的符号表示下列关系:(1)x是正数:x>0;(2)m大于-3:m>-3;(3)a-b是负数:a-b<0;(4)a的13比5大:13a>5.6.“b的12与c的和是负数”用不等式表示为12b+c<0.知识点2不等式的解和解集7.用不等式表示如图所示的解集,其中正确的是(A)A.x>-2B.x<-2C.x>2D.x≠-28.下列说法中,错误的是(C)A.x =1是不等式x <2的解;B.-2是不等式2x -1<0的一个解;C.不等式-3x >9的解集是x =-3;D.不等式x <10的整数解有无数个。

9.下列各数:-2,-2.5,0,1,6中,不等式23x>1的解有6;不等式-23x>1的解有-2,-2.5.10.把下列不等式的解集在数轴上表示出来. (1)x >-3;解:(2)x >-1;解:(3)x <3;解:(4)x<-32.解:中档题11.x 与3的和的一半是负数,用不等式表示为(C)A.12x +3>0B.12x +3<0C.12(x +3)<0D.12(x +3)>0 12.实数a ,b 在数轴上的位置如图所示,则下列不等式成立的是(D)A.a >bB.ab >0C.a +b >0D.a +b <0 13.对于实数x ,我们规定[x]表示不大于x 的最大整数,例如[1.2]=1,[3]=3,[-2.5]=-3.若[x +410]=5,则x 的取值可以是(C)A.40 B .45 C .51 D .5614.请写出满足下列条件的一个不等式.(1)0是这个不等式的一个解:x<1;(2)-2,-1,0,1都是不等式的解:x<2;(3)0不是这个不等式的解:x>0;(4)与x<-1的解集相同的不等式:x+2<1.15.有如图所示的两种广告牌,其中图1是由两个两直角边相等的直角三角形构成的,图2是一个长方形,从图形上确定这两个广告牌面积的大小关系,并将这种大小关系用含字母a,b的不等式表示为12a2+12b2>ab.16.用不等式表示:(1)7x与1的差小于4;(2)x的一半比y的2倍大;(3)a的9倍与b的12的和是正数.解:(1)7x-1<4. (2)12x>2y. (3)9a+12b>0.17.直接写出下列各不等式的解集:(1)x+1>0;解:x>-1.(2)3x<6.解:x<2.18.已知一支圆珠笔1.5元,签字笔与圆珠笔相比每支贵2元.小华想要买x支圆珠笔和10支签字笔.若付50元仍找回若干元,则如何用含x的不等式来表示小华所需支付的金额与50元之间的关系?解:列不等式为:1.5x+10×(1.5+2)<50.19.在爆破时,如果导火索燃烧的速度是每秒钟0.8 cm,人跑开的速度是每秒钟4 m,为了使点导火索的人在爆破时能够跑到100 m以外的安全地区,设导火索的长为s cm.(1)用不等式表示题中的数量关系;解:4×s0.8>100.(2)当导火索是下列哪个长度时,人能跑到安全地区(D)A.15 cmB.18 cmC.20 cmD.25 cm综合题20.阅读下列材料,并完成填空:你能比较2 0172 018和2 0182 017的大小吗?为了解决这个问题,先把问题一般化,即:比较n n +1和(n+1)n的大小(n>0,且n为整数).从分析n=1,2,3,…的简单情况入手,从中发现规律,经过归纳猜想出结论:(1)通过计算,填“>”或“<”;①12<21;②23<32;③34>43;④45>54.(2)根据(1)的结果,猜想n n+1和(n+1)n的大小关系;(3)根据(2)中的猜想,知2 0172 018>2 0182 017.解:当n=1或2时,n n+1<(n+1)n;当n>2,且n为整数时,n n+1>(n+1)n.第九章 不等式与不等式组9.1 不等式9.1.2 不等式的性质第1课时 不等式的基本性质基础题知识点1 不等式的性质11.若a >b ,则a -3>b -3.(填“>”“<”或“=”)2.若a -4<b -4,则a <b.(填“>”“<”或“=”)3.已知实数a ,b 在数轴上的对应点的位置如图所示,则a -2<b -2.知识点2 不等式的性质24.若a >b ,则3a >3b ;a 5>b5;ac 2>bc 2(c 为非零实数).(填“>”“=”或“<”)5.如果2m <3n ,那么不等式两边同时乘16(或除以6),可变为13m<12n.知识点3 不等式的性质36.若-12a≥b,则a≤-2b ,其根据是(C)A.不等式的两边加(或减)同一个数(或式子),不等号的方向不变B.不等式的两边乘(或除以)同一个正数,不等号的方向不变C.不等式的两边乘(或除以)同一个负数,不等号的方向改变D.以上答案均不对7.若a >b ,am <bm ,则一定有(B)A.m =0B.m <0C.m >0D.m 为任何实数 中档题8.若x >y ,则下列式子中错误的是(D)A.x -3>y -3B.x 3>y3 C.x +3>y +3 D.-3x >-3y9.(2017·株洲)已知实数a ,b 满足a +1>b +1,则下列选项错误的为(D)A.a >bB.a +2>b +2C.-a <-bD.2a >3b10.下列说法不一定成立的是(C)A.若a>b,则a+c>b+c;B.若a+c>b+c,则a>b;C.若a>b,则ac2>bc2;D.若ac2>bc2,则a>b11.若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是(B)A.a-c>b-cB.a+c<b+cC.ac>bcD.ac<cb12.已知关于x的不等式(1-a)x>2的解集为x<21-a,则a的取值范围是a>1.13.如图所示,A,B,C,D四人在公园玩跷跷板,根据图中的情况,这四人体重从小到大排列的顺序为B<A<D<C.14.张华在进行不等式变形时遇到不等式b<-b,他将不等式两边同时除以b得1<-1,这显然是不成立的,你能解释这是为什么吗?你能求出b的取值范围吗?解:∵不知道b的正负,∴将不等式两边同时除以b,不等号的方向不知道改变不改变.张华把b看成大于0,所以才得出错误的结论.不等式两边同时加上b,得2b<0.不等式两边同时除以2,得b<0.第2课时 不等式的基本性质的运用基础题知识点1 利用不等式的性质解不等式1.不等式x -2>1的解集是(C)A.x>1B.x>2C.x>3D.x>4 2.(2016·临夏)在数轴上表示不等式x -1<0的解集,正确的是(C)3.利用不等式的基本性质求下列不等式的解集,并写出变形的依据.(1)若x +2 016>2 017,则x>1; (不等式两边同时减去2__016,不等号方向不变) (2)若2x>-13,则x>-16; (不等式两边同时除以2,不等号方向不变)(3)若-2x>-13,则x<16; (不等式两边同时除以-2,不等号方向改变)(4)若-x7>-1,则x<7. (不等式两边同时乘-7,不等号方向改变)4.根据不等式的性质,将下列不等式化成“x>a”或“x<a”的形式.(1)8x >7x +1; (2)-3x <-4x -34.解:(1)不等式两边都减7x ,得x >1. (2)不等式两边都加4x ,得x <-34.知识点2 不等式的简单应用5.某单位打算和一个体车主或一出租车公司签订月租合同.个体车主答应除去每月1 500元租金外,每千米收1元;出租车公司规定每千米收2元,不收其他费用.设该单位每月用车x 千米时,乘坐出租车划算,请写出x 的取值范围. 解:根据题意,得1 500+x>2x ,解得x<1 500. ∵单位每月用车x(千米)是正数, ∴x 的取值范围是x >0并且x <1 500.6.若式子3x +4的值不大于0,则x 的取值范围是(D)A.x <-43B.x ≥43C.x <43D.x ≤-437.如图是关于x 的不等式2x -a≤-1的解集,则a 的取值是(C)A.a ≤-1B.a ≤-2C.a =-1D.a =-2 8.利用不等式的性质解下列不等式.(1) 5x≥3x-2;解:不等式两边同时减去3x ,得2x≥-2.不等式两边同时除以2,得x≥-1.(2)8-3x <4-x.解:不等式两边同时加上x ,得8-2x <4.不等式两边同时减去8,得-2x <-4. 不等式两边同时除以-2,得x>2.9.已知一台升降机的最大载重量是1 200 kg ,在一名体重为75 kg 的工人乘坐的情况下,它最多能装载多少件25 kg 重的货物?解:设能载x 件25 kg 重的货物,因为升降机最大载重量是1 200 kg ,所以有 75+25x≤1 200,解得x≤45.因此,升降机最多载45件25 kg 重的货物.10.已知关于x的不等式ax<-b的解集是x>1,求关于y的不等式by>a的解集.解:∵不等式ax<-b的解集是x>1,∴a<0,-ba=1.∴b=-a,b>0.∴不等式by>a的解集为y>ab=-1,即不等式by>a的解集为y>-1.第九章 不等式与不等式组9.1 不等式 9.2 一元一次不等式 第1课时 一元一次不等式的解法基础题知识点 一元一次不等式及其解法1.下列不等式中,属于一元一次不等式的是(B)A.4>1B.3x -16<4C.1x <2 .4x -3<2y -7 2.(2017·眉山)不等式-2x >12的解集是(A)A.x <-14B.x <-1C.x >-14 D.x >-1 3.(2017·吉林)不等式x +1≥2的解集在数轴上表示正确的是(A)4.(2016·六盘水)不等式3x +2<2x +3的解集在数轴上表示正确的是(D)5.不等式x 2-x -13≤1的解集是(A)A.x ≤4B.x ≥4C.x ≤-1D.x ≥-1 6.(2017·遵义)不等式6-4x ≥3x -8的非负整数解有(B)A.2个B.3个C.4个D.5个 7.已知y 1=-x +3,y 2=3x -4,当x >74时,y 1<y 2.8.解不等式,并把解集在数轴上表示出来:(1)5x-2≤3x;解:移项,得5x-3x≤2.合并同类项,得2x≤2.系数化为1,得x≤1.其解集在数轴上表示为:(2)2(x-1)+5<3x;解:去括号,得2x-2+5<3x.移项,得2x-3x<2-5.合并同类项,得-x<-3.系数化为1,得x>3.其解集在数轴上表示为:(3)x-22≤7-x3.解:去分母,得3(x-2)≤2(7-x).去括号,得3x-6≤14-2x.移项、合并同类项,得5x≤20.解得x≤4.其解集在数轴上表示为:9.(2017·舟山)小明解不等式1+x 2-2x +13≤1的过程如图.请指出他解答过程中错误步骤的序号,并写出正确的解答过程.解:错误的是①②⑤,正确的解答过程如下:去分母,得3(1+x)-2(2x +1)≤6. 去括号,得3+3x -4x -2≤6. 移项,得3x -4x ≤6-3+2. 合并同类项,得-x ≤5. 两边都除以-1,得x ≥-5. 中档题10.(2017·丽水)若关于x 的一元一次方程x -m +2=0的解是负数,则m 的取值范围是(C)A.m ≥2B.m >2C.m <2D.m ≤2 11.不等式13(x -m)>2-m 的解集为x >2,则m 的值为(B)A.4B.2C.32D.12 12.要使4x -32的值不大于3x +5,则x 的最大值是(B)A.4B.6.5C.7D.不存在 13.(2016·南充)不等式x +12>2x +23-1的正整数解的个数是(D)A.1B.2C.3D.414.(2017·大庆)若实数3是不等式2x-a-2<0的一个解,则a可取的最小正整数为(D)A.2B.3C.4D.515.(2017·烟台)运行程序如图所示,从“输入实数x”到“结果是否<18”为一次程序操作.若输入x后程序操作仅进行了一次就停止,则x的取值范围是x<8.16.解不等式,并把解集在数轴上表示出来:(1)2(x+1)-1≥3x+2;解:去括号,得2x+2-1≥3x+2.移项,得2x-3x≥2-2+1.合并同类项,得-x≥1.系数化为1,得x≤-1.其解集在数轴上表示为:(2)(2017·晋江月考)3(x-1)<4(x-12)-3;解:去括号,得3x-3<4x-2-3.移项,得3x-4x<3-2-3.合并同类项,得-x<-2.系数化为1,得x>2.其解集在数轴上表示为:(3)2x -13-9x +26≤1;解:去分母,得2(2x -1)-(9x +2)≤6.去括号,得4x -2-9x -2≤6. 移项,得4x -9x ≤6+2+2. 合并同类项,得-5x ≤10. 系数化为1,得x ≥-2. 其解集在数轴上表示为:(4)x +12≥3(x -1)-4.解:去分母,得x +1≥6(x -1)-8.去括号,得x +1≥6x -6-8. 移项,得x -6x ≥-6-1-8. 合并同类项,得-5x ≥-15. 系数化为1,得x ≤3. 其解集在数轴上表示为:综合题17.已知关于x 的方程4(x +2)-2=5+3a 的解不小于方程(3a +1)x 3=a (2x +3)2的解,试求a 的取值范围.解:解方程4(x +2)-2=5+3a ,得x =3a -14.解方程(3a +1)x 3=a (2x +3)2,得x =9a 2. 依题意,得3a -14≥9a 2. 解得a ≤-115. 故a 的取值范围为a ≤-115.第九章不等式与不等式组9.2一元一次不等式第2课时一元一次不等式的应用基础题知识点1一元一次不等式的简单应用1.(2017·齐齐哈尔)为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3 000元.若每个篮球80元,每个足球50元,则篮球最多可购买(A)A.16个B.17个C.33个D.34个2.某校举行关于“保护环境”的知识竞赛,共有25道题,答对一题得10分,答错(或不答)一题倒扣5分,小明参加本次竞赛,得分超过了100分,则他至少答对的题数是(B)A.17B.16C.15D.123.某市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收2.6元(不足1千米按1千米计).某人打车从甲地到乙地经过的路程是x千米,出租车费为21元,那么x的最大值是(B)A.11B.8C.7D.54.(2016·西宁)某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有(C)A.103块B.104块C.105块D.106块5.为了举行班级晚会,孔明准备去商店购买20个乒乓球作道具,并买一些乒乓球拍作奖品,已知乒乓球每个1.5元,球拍每个22元.如果购买金额不超过200元,且买的球拍尽可能多,那么孔明应该买多少个球拍?解:设孔明应该买x个球拍,根据题意,得1.5×20+22x≤200,解得x≤7811. 由于x取整数,故x的最大值为7. 答:孔明应该买7个球拍.知识点2利用一元一次不等式设计方案6.某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案.方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围内时,采用方案一更合算?解:(1)120×0.95=114(元).答:实际应支付114元.(2)设购买商品的价格为x元,由题意得0.8x+168<0.95x,解得x>1 120.答:当购买商品的价格超过1 120元时,采用方案一更合算.7.某景区售出的门票分为成人票和儿童票,成人票每张100元,儿童票每张50元,若干家庭结伴到该景区旅游,成人和儿童共30人.售票处规定:一次性购票数量达到30张,可购买团体票,每张票均按成人票价的八折出售,请你帮助他们选择花费最少的购票方式.解:设参加旅游的儿童有m人,则成人有(30-m)人.根据题意,得按团体票购买时,总费用为100×80%×30=2 400(元).分别按成人票、儿童票购买时,总费用为100(30-m)+50m=(3 000-50m)元.①若3 000-50m=2 400,解得m=12.即当儿童为12人时,两种购票方式花费相同.②若选择购买团体票花费少,则有3 000-50m>2 400,解得m<12.即当儿童少于12人时,选择购买团体票花费少.③若选择分别按成人票、儿童票购票花费少,则有3 000-50m<2 400,解得m>12.即当儿童多于12人时,选择分别按成人票、儿童票购票花费少.中档题8.(2016·雅安)“一方有难,八方支援”,雅安芦山4·20地震后,某单位为一中学捐赠了一批新桌椅,学校组织初一年级200名学生搬桌椅.规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅(一桌一椅为一套)的套数为(C)A.60B.70C.80D.909.(2017·牡丹江)某种商品的进价为每件100元,商场按进价提高50%后标价,为增加销量,准备打折销售,但要保证利润率不低于20%,则至多可以打8折.10.铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160 cm,某厂家生产符合该规定的行李箱,已知行李箱的高为30 cm,长与宽的比为3∶2,则该行李箱的长的最大值为78cm.11.2017年的5月20日是第28个全国学生营养日,某市某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如图).若这份快餐中所含的蛋白质与碳水化合物的质量之和不高于这份快餐总质量的70%,求这份快餐最多含有多少克的蛋白质?信息1.快餐成分:蛋白质、脂肪、碳水化合物和其他.2.快餐总质量为400克.3.碳水化合物质量是蛋白质质量的4倍.解:设这份快餐含有x克的蛋白质,则这份快餐含有4x克的碳水化合物,根据题意,得x+4x≤400×70%,解得x≤56.答:这份快餐最多含有56克的蛋白质.12.某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱.供应这种纸箱有两种方案可供选择:方案一:从纸箱厂定制购买,每个纸箱价格为4元;方案二:由蔬菜加工厂租赁机器自己加工制作这种纸箱,机器租赁费按生产纸箱数收取.工厂需要一次性投入机器安装等费用16 000元,每加工一个纸箱还需成本费2.4元.假设你是决策者,你认为应该选择哪种方案?并说明理由.解:设纸箱的个数为x,则当两种方案费用一样时,4x=2.4x+16 000,解得x=10 000;当方案一费用低时,4x<2.4x+16 000,解得x<10 000;当方案二费用低时,4x>2.4x+16 000,解得x>10 000.答:当需要纸箱的个数为10 000时,两种方案都可以;当需要纸箱的个数小于10 000时,方案一便宜;当需要纸箱的个数大于10 000时,方案二便宜.综合题13.某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条.(1)若x=30,通过计算可知方案一购买较为合算;(只填“方案一”或“方案二”,不要求解题过程)(2)当x>20时,①该客户按方案一购买,需付款(40x+3__200)元;(用含x的式子表示)②该客户按方案二购买,需付款(36x+3__600)元;(用含x的式子表示)③这两种方案中,哪一种方案更省钱?解:若按方案一购买更省钱,则有40x+3 200<36x+3 600.解得x<100.即当买的领带数少于100时,方案一付费较少.若按方案二购买更省钱,则有40x+3 200>36x+3 600.解得x>100.即当买的领带数超过100时,方案二付费较少;若40x+3 200=36x+3 600,解得x=100.即当买100条领带时,两种方案付费一样.第九章 不等式与不等式组周周练(9.1~9.2)(时间:45分钟 满分:100分)一、选择题(每小题4分,共32分)1.下列各式中,是一元一次不等式的是(C) A.5+4>8 B.2x -1 C.2x ≤5 D.1x -3x ≥0 2.下列数值中不是不等式5x ≥2x +9的解的是(D)A.5B.4C.3D.2 3.(2017·六盘水)不等式3x +6≥9的解集在数轴上表示正确的是(C)4.(2017·杭州)若x +5>0,则(D)A.x +1<0B.x -1<0C.x5<-1 D.-2x <12 5.下列解不等式2+x 3>2x -15的过程中,出现错误的一步是(D) ①去分母,得5(x +2)>3(2x -1); ②去括号,得5x +10>6x -3; ③移项,得5x -6x >-10-3; ④系数化为1,得x >13.A.①B.②C.③D.④ 6.设a ,b ,c 表示三种不同物体的质量,用天平秤两次,情况如图所示,则这三种物体的质量从小到大排列正确的是(A)A.c <b <aB.b <c <aC.c <a <bD.b <a <c7.(2017·毕节)关于x 的一元一次不等式m -2x3≤-2的解集为x ≥4,则m 的值为(D)A.14B.7C.-2D.28.某射击运动员在一次比赛中(共10次射击,每次射击最多是10环),前6次射击共中52环.如果他要打破89环的记录,那么第7次射击不能少于(D)A.5环B.6环C.7环D.8环二、填空题(每小题3分,共18分)9.用不等式表示“y 的12与5的和是正数”为12y +5>0. 10.不等式23x +1<73x -3的解集是x >125.11.若不等式(a -2)x <1的两边同时除以a -2后变成x>1a -2,则a 的取值范围是a <2.12.不等式3(x -1)≤5-x 的非负整数解有3个.13.某校规定期中考试成绩的40%和期末考试成绩的60%的和作为学生成绩总成绩.该校李红同学期中数学考了85分,她希望自己学期总成绩不低于90分,则她在期末考试中数学至少应得多少分?设她在期末应考x 分,可列不等式为40%×85+60%x ≥90.14.已知关于x ,y 的方程组⎩⎨⎧x +2y =3,2x +y =6a 的解满足不等式x +y >3,则a 的取值范围是a >1.三、解答题(共50分)15.(8分)解下列不等式,并将其解集在数轴上表示出来. (1)8x -1≥6x +3;解:移项,得8x -6x ≥3+1.合并同类项,得2x ≥4. 系数化为1,得x ≥2. 其解集在数轴上表示为:(2)2x -1<10x +16.解:去分母,得12x -6<10x +1.移项,得12x -10x <1+6. 合并同类项,得2x <7. 系数化为1,得x<72. 其解集在数轴上表示为:16.(6分)已知式子1-3x2与x -2的差是负数,求x 的取值范围.解:∵1-3x2与x -2的差是负数,∴1-3x2-(x -2)<0.解得x >1.17.(6分)已知关于x 的方程x +m =3(x -2)的解是正数,求m 的取值范围. 解:解方程x +m =3(x -2),得x =3+12m. ∵方程的解是正数, ∴3+12m >0.∴m >-6,即m 的取值范围是m >-6.18.(8分)已知:不等式2-x3≤2+x.(1)解该不等式,并把它的解集表示在数轴上;(2)若实数a满足a>2,说明a是不是该不等式的解.解:(1)2-x≤3(2+x),2-x≤6+3x,-4x≤4,x≥-1.解集表示在数轴上如下:(2)∵a>2,不等式的解集为x≥-1,而2>-1,∴a是该不等式的解.19.(10分)(2017·贵港)某次篮球联赛初赛阶段,每队有10场比赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,积分超过15分才能获得参赛资格.(1)已知甲队在初赛阶段的积分为18分,求甲队初赛阶段胜、负各多少场;(2)如果乙队要获得参加决赛资格,那么乙队在初赛阶段至少要胜多少场?解:(1)设甲队胜了x场,则负了(10-x)场,根据题意,得2x+10-x=18,解得x=8.则10-x=2.答:甲队胜了8场,负了2场.(2)设乙队在初赛阶段胜a场,根据题意,得2a+(10-a)>15,解得a>5.答:乙队在初赛阶段至少要胜6场.20.(12分)某市某中学要印制本校高中招生的录取通知书,有两个印刷厂前来联系制作业务.甲厂的优惠条件是:按每份定价1.5元的八折收费,另收900元制版费;乙厂的优惠条件是:每份定价1.5元的价格不变,而制版费900元六折优惠.且甲、乙两厂都规定:一次印刷数至少是500份.如何根据印刷的数量选择比较合算的方案?如果这个中学要印制2 000份录取通知书,那么应选择哪个厂?需要多少费用?解:设印刷数量为x份,则当1.2x+900=1.5x+540,此时x=1 200.∴当印刷数量为1 200份时,两个印刷厂费用一样,二者任选其一.当1.2x+900<1.5x+540,此时x>1 200.∴当印刷数量大于1 200份时,选择甲印刷厂费用少,比较合算.当1.2x+900>1.5x+540,此时500≤x<1 200.∴当印刷数量大于或等于500且小于1 200份时,选择乙印刷厂费用少,比较合算.当印制2 000份时,选择甲印刷厂比较合算,所需费用为1.2×2 000+900=3 300(元).∴如果要印制2 000份录取通知书,应选择甲印刷厂,需要3 300元.第九章 不等式与不等式组 9.3 一元一次不等式组基础题知识点1 一元一次不等式组1.下列不等式组中,是一元一次不等式组的是(A)A.⎩⎨⎧x>2x<-3 B.⎩⎨⎧x +1>0y -2<0 C.⎩⎨⎧3x -2>0(x -2)(x +3)>0 D.⎩⎪⎨⎪⎧3x -2>0x +1>1x知识点2 解一元一次不等式组2.如图表示下列四个不等式组中其中一个的解集,这个不等式组是(D)A.⎩⎨⎧x ≥2x >-3B.⎩⎨⎧x ≤2x <-3C.⎩⎨⎧x ≥2x <-3D.⎩⎨⎧x ≤2x >-3 3.下列四个数中,为不等式组⎩⎨⎧3x -6<0,3+x>3的解的是(C)A.-1B.0C.1D.2 4.(2017·湖州)一元一次不等式组⎩⎪⎨⎪⎧2x >x -1,12x ≤1的解集是(C)A.x >-1B.x ≤2C.-1<x ≤2D.x >-1或x ≤25.(2017·德州)不等式组⎩⎨⎧2x +9≥3,1+2x 3>x -1的解集是(B)A.x ≥-3B.-3≤x <4C.-3≤x <2D.x >46.(2017·自贡)不等式组⎩⎨⎧x +1>2,3x -4≤2的解集表示在数轴上正确的是(C)7.(2017·襄阳)不等式组⎩⎨⎧2x -1>x +1,x +8≥4x -1的解集为2<x ≤3.8.(2017·天津)解不等式组:⎩⎨⎧x +1≥2,①5x ≤4x +3.②请结合题意填空,完成本题的解答. (1)解不等式①,得x ≥1; (2)解不等式②,得x ≤3;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为1≤x ≤3.9.解不等式组: (1)⎩⎨⎧x -3<1,①4x -4≥x +2;② 解:解不等式①,得x <4.解不等式②,得x ≥2. ∴不等式组的解集为2≤x <4.(2)(2016·郴州)⎩⎨3(x -1)<2x.②解:解不等式①,得x >1.解不等式②,得x <3. ∴不等式组的解集是1<x <3.知识点3 一元一次不等式组的运用10.已知点P(3-m ,m -1)在第二象限,则m 的取值范围在数轴上表示正确的是(A)11.已知不等式组⎩⎨⎧x +1<2a ,x -b >1的解集是2<x <3,则a =2,b =1.中档题12.一元一次不等式组⎩⎨⎧2x +1>0,x -5≤0的解集中,整数解的个数是(C)A.4B.5C.6D.7 13.(2017·鄂州)对于不等式组⎩⎪⎨⎪⎧13x -6≤1-53x ,3(x -1)<5x -1,下列说法正确的是(A)A.此不等式组的正整数解为1,2,3;B.此不等式组的解集为-1<x ≤76; C.此不等式组有5个整数解; D.此不等式组无解。

人教版第九章《不等式与不等式组》单元测试题(含答案)

人教版第九章《不等式与不等式组》单元测试题(含答案)

靖边县第五中学第九章 不等式与不等式组一、选择题 (本大题共 6小题,每小题 4分,共 24分)1.已知实数 a ,b ,若 a >b ,则下列结论正确的是 ( ) A .a -5<b - 5 B .2+a <2+bC. < D.3a >3b 2.不等式 3(x -1)≤5- x 的非负整数解有 ( )A .1个B . 2个C .3个D .4个3.关于 x 的一元一次不等式≤- 2的解集为 x ≥4,则 m 的值为 ( )6元,凡一次性购买两条以上,商家推出两种优惠销售办法,第一种:“两条按原价,其余按七折付款”;第二种:“全部按原价的八折付款”. 若想在购买相同数量的情况下,要使第一种办法比第二种办法得到的优惠多,最少要购买 毛巾 ( )A .4条B . 5条C . 6条D . 7条二、填空题 (本大题共 5小题,每小题 4分,共 20分)7.不等式组的解集为 _______ .8.不等式组的所有整数解的积为 _______ .9.定义新运算:对于任意实数 a ,b ,都有 a ⊕b =a (a -b ) + 1,其中等式右边是通常的 加法减法及乘法运算,如: 2⊕5=2×(2- 5)+1=2×(-3)+1=-5.那么不等式3⊕ x <13的解 集为 _______ .10.若不等式组有解,则 a 的取值范围是 ______ .11.若不等式组的解集为 3≤ x ≤4,则不等式 ax + b <0的解集为 _____ .三、解答题 ( 本大题共 7小题,共 56分)12.(6分) 解不等式- x >1,并把它的解集在数轴上表示出来.靖边县第五中学A .14B . 7C - 2D . 24.不等式组的解集在数轴上表示正确的是 ()图9-Z -15.如果关于 x 的不等式组的解集为 x <3,那么m A .m =3 B . m >3 C m <3 D . m ≥36.某种毛巾原零售价为每条 的取值范围为 ( )13.(8分)解不等式组并将它的解集在数轴上表示出来.14.(8 分)已知关于x的不等式组其中实数a是不等于2的常数,请依据a的取值情况求出不等式组的解集.15.(8分)已知关于x,y的方程组的解都为正数,求a的取值范围.16.(8分)旅游者参观某河流风景区,先乘坐摩托艇顺流而下,然后逆流返回.已知水流的速度是每小时3千米,摩托艇在静水中的速度是每小时18千米.为了使参观时间不超过4小时,旅游者最远可走多少千米?17.(8分)某校计划购买一批篮球和足球,已知购买2个篮球和1个足球共需320元,购买3个篮球和2个足球共需540元.(1)求每个篮球和每个足球的售价;(2)如果学校计划购买这两种球共50个,总费用不超过5500元,那么最多可购买多少个足球?18.(10 分)现有一个种植总面积为540 m2的长方形塑料温棚,分垄间隔套种草莓和西红柿共24垄,种植的草莓或西红柿单种农作物的总垄数不低于10垄,又不超过14垄(垄数为正整数),它们的占地面积、产量利润分别如下:(12 在这几种种植方案中,哪种方案获得的利润最大?最大利润是多少?详解详析1.[答案] D2.[解析] C 去括号,得3x-3≤5-x. 移项、合并同类项,得4x≤8.系数化为1,得x≤2.∴不等式的非负整数解有0,1,2,共3个.故选 C.3.[解析] D 去分母,得m-2x≤-6,移项,得-2x≤-m-6,系数化为1,得x≥m+3.∵关于x的一元一次不等式≤-2的解集为x≥4,∴ m+3=4,解得m= 2. 故选 D.4.[解析] B 解不等式-> 1,得x<-2,解不等式3-x≥2,得x≤1,∴不等式组的解集为x<-2,故选B.5.[解析] D 由3x-1>4(x-1),得x<3,而不等式组的解集也为x<3,∴m≥3.故选 D.6.[解析] D 设购买毛巾x条.由题意得6×2+6× 0.7(x-2)<6×0.8 x,解得x>6.∵ x为整数,∴ x最小为7.故选 D.7.[答案]-1≤x<2[解析]由①,得x≥- 1.由②,得x<2,所以-1≤x<2.8.[答案] 09.[答案]x>-1[解析]由题意得3(3 -x)+1< 13,解得x>- 1.10.[答案]a>-111.[答案]x>[解析]解不等式①,得x≥.解不等式②,得x≤-a.∴不等式组的解集为≤x≤-a.∵不等式组的解集为3≤x≤4,∴=3,-a=4,∴ b=6,a=-4,∴不等式ax+b<0可化为-4x+6<0,解得x>.12.解:去分母,得4x-1-3x>3. 移项、合并同类项,得x> 4. 在数轴上表示不等式的解集如图所示:13.解:由①得-2x≥-2,即x≤1. 由②得4x-2<5x+5,即x>-7. 所以原不等式组的解集为-7< x≤1. 在数轴上表示不等式组的解集为:14.解:解不等式①,得x≥2. 解不等式②,得x< a.故当a> 2时,不等式组的解集为2≤x<a;当a<2时,不等式组无解.15.解:解方程组,得∵解都为正数,解得-< a< 4.16.解:设旅游者可走x千米.根据题意,得+≤4,解得x≤35.答:旅游者最远可走35千米.17.解:(1)设每个篮球和每个足球的售价分别为x元、y元,根据题意,得解得答:每个篮球和每个足球的售价分别为100元、120元.(2)设购买足球a个,则购买篮球(50 -a)个,根据题意,得120a+100(50 -a)≤5500,解得a≤25.答:最多可购买25个足球.18.解:(1)根据题意可知西红柿种了(24 -x)垄,则15x+30(24-x)≤540,解得x≥1又因为x ≤14,且x是正整数,所以x的值为12,13,14.故共有三种种植方案:方案一:种植草莓12垄,种植西红柿12垄;方案二:种植草莓13垄,种植西红柿11垄;2.方案三:种植草莓14垄,种植西红柿10垄.(2)方案一获得的利润为12×50×1.6+12×160×1.1=3072(元);方案二获得的利润为13×50×1.6+11×160×1.1=2976(元);方案三获得的利润为14×50×1.6+10×160×1.1=2880(元).由计算可知,方案一即种植西红柿和草莓各12垄,获得的利润最大,最大利润是3072 元.。

人教版数学七年级下册第九章不等式与不等式组 单元测试(含答案)

人教版数学七年级下册第九章不等式与不等式组 单元测试(含答案)

人教版数学七年级下册第九章不等式与不等式组一、单选题1.以下表达式:①4x+3y≤0;②a>3;③x2+xy;④a2+b2=c2;⑤x≠5.其中不等式有()A.4个B.3个C.2个D.1个2.关于m的不等式−m>1的解为().A.m>0B.m<0C.m<−1D.m>−13.若(m−2)x2m+1−1>5是关于x的一元一次不等式,则该不等式的解集为()A.m=0B.x<−3C.x>−3D.m≠24.设a、b、c表示三种不同物体的质量,用天枰称两次,情况如图所示,则这三种物体的质量从小到大排序正确的是【】A.c<b<a B.b<c<a C.c<a<b D.b<a<c5.若式子3a−4的值不小于2,则a的取值范围是()A.a≥−23B.a≥2C.a<−23D.a<26.已知x<y,则下列不等式一定成立的是().A.x+5<y+2B.−2x+5<−2y+5C.x3>y3D.2x−3<2y−37.规定[x]为不大于x的最大整数,如[3.6]=3,[−2.1]=−3,若[x+12]=3且[3−2x]=−4,则x的取值范围为()A.52<x<72B.3<x<72C.3<x≤72D.52≤x<728.八年级某小组同学去植树,若每人平均植树7棵,则还剩9棵,若每人平均植树9棵,则有1位同学有植树但植树棵数不到3棵.则同学人数为()A.8人B.9人C.10人D.11人9.若不等式组{x +a−22≥−1,3x−22<x−12无解,则实数a 的取值范围是( )A .a ≥−1B .a <−1C .a ≤1D .a ≤−110.对一实数x 按如图所示程序进行操作,规定:程序运行从“输入一个实数x ”到“判断结果是否大于190?”为一次操作,如果操作恰好进行两次后停止,则x 的取值范围是( )A .x <64B .x >22C .22<x ≤64D .22<x <64二、填空题11.不等式3x +22<x 的解集是 .12.不等式2x>3的最小整数解是 .13.不等式组{2x−4≥0x 3<2的解集是.14.已知a <b,用“<”或“>”号填空: a−3 b−3; −4a −4b .15.用不等式表示“x 的一半减去3所得的差不大于1” .16.某品牌衬衫的进价为120元,标价为240元,如果商店打折销售但要保证利润不低于30%,则最少可以打折出售.17.若不等式组{2x +a−1>02x−a−1<0的解集为0<x <1,则a 的值为 .18.若整数m 使得关于x 的不等式组{2x +1≥5x +m ≤2无解,且使得关于x ,y 二元一次方程组{x +2y =2,3x−y =m +1 的解x ,y 均为正数,则符合条件的整数m 的和是 .三、解答题19.(1)解不等式:x +12−x−13≤1,并把它的解集在数轴上表示出来.(2)解不等式组:{3x +2≥4x−54x−3<2120.已知二元一次方程组{x+y=3a+9x−y=5a+1的解x,y均为正数.(1)求a的取值范围;(2)化简:|5a+5|−|a−4|21.如图,有一高度为20cm的容器,在容器中倒入100cm3的水,此时刻度显示为5cm,现将大小规格不同的两种玻璃球放入容器内,观察容器的体积变化测量玻璃球的体积.若每放入一个大玻璃球水面就上升0.5cm.(1)求一个大玻璃球的体积;(2)放入27个大玻璃球后,开始放入小玻璃球,若放入5颗,水面没有溢出,再放入一颗,水面会溢出容器,求一个小玻璃球体积的范围.22.关于x,y的二元一次方程组ax+by=c(a,b,c是常数),b=a+1,c=b+1.(1)当{x=3y=1时,求c的值.(2)当a=1时,求满足|x|<5,|y|<5的方程的整数解.2(3)若a是正整数,求证:仅当a=1时,该方程有正整数解.23.为了防控甲型H1N1流感,某校积极进行校园的环境消毒,为此购买了甲、乙两种消毒液,现已知过去两次购买这两种消毒液的瓶数和总费用如表所示:甲种消毒液(瓶)乙种消毒液(瓶)总费用(元)第一次4060660第二次8030690(1)求每瓶甲种消毒和每瓶乙种消毒液各多少元?(2)现在学校决定购买甲乙两种消毒液共300瓶,要求甲乙两种的数量都不少于100瓶,,请你帮助学校计算购买时最低费用为多少?并且甲的数量不少于乙数量的3224.5月22日是第28个国际生物多样性日,为联合国《生物多样性公约》第十五次缔约方大会(COP15)在昆明顺利召开.营造良好氛围,昆明市在植物园举办主题宣传活动.某班开展了此项活动的知识竞赛.小明为班级购买奖品后与小颖对话如下:(1)请用方程的知识帮助小明计算一下,为什么小颖说他搞错了;(2)小明连忙拿出发票,发现自己的确错了,因为他还买了一本笔记本,但笔记本的单价已模糊不清,只能辨认出单价是小于10元的整数,那么笔记本的单价可能是多少元?参考答案1.B 2.C 3.B 4.A 5.B 6.D 7.B 8.A 9.D 10.C 11.x <-212.213.2≤x <614.< >15.12x−3≤116.6.517.118.1019.(1)x ≤1(2)x <620.(1)−54<a <4;(2)当−5<a ≤−1时,−4a−9;当−1<a <4时,6a +121.(1)一个大玻璃球的体积为10cm 3;(2)一个小玻璃球体积的大于5cm 3且不大于6cm 3.22.c =73;(2){x =2y =1 ,{x =−1y =2 {x =−4y =323.(1)甲种消毒每瓶6元,乙种消毒液每瓶7元;(2)最低费用1900元.24.2元或6元。

人教版数学七年级下册第九章不等式与不等式组测试卷附解析

人教版数学七年级下册第九章不等式与不等式组测试卷附解析

人教版数学七年级下册第九章不等式与不等式组测试卷附解析一、单选题(共10题;共30分)1.x =3是下列不等式( )的一个解.A. x +1<0B. x +1<4C. x +1<3D. x +1<5 2.下列不等式求解的结果,正确的是( )A. 不等式组 {x ≤−3x ≤−5 的解集是 x ≤−3B. 不等式组 {x >−5x ≥−4 的解集是 x ≥−5C. 不等式组 {x >5x <−7 无解 D. 不等式组 {x ≤10x >−3 的解集是 −3≤x ≥103.在数轴上表示-2≤x <1正确的是( ) A.B.C. D.4.关于x 的不等式 2x +m >−6 的解集是 x >−3 ,则m 的值为( ) A. 1. B. 0. C. -1. D. -25.若m >n ,则下列不等式正确的是( )A. m -4<n -4B. m4>n4 C. 4m <4n D. -2m >-2n 6.已知关于x 、y 的方程组 {x +y =1−a x −y =3a +5 ,满足 x ≥12y ,则下列结论:① a ≥−2 ;② a =−53时, x =y ;③当 a =−1 时,关于x 、y 的方程组 {x +y =1−ax −y =3a +5 的解也是方程 x +y =2 的解;④若 y ≤1 ,则 a ≤−1 ,其中正确的有( )A. 1个B. 2个C. 3个D. 4个 7.若代数式4x - 32 的值不大于代数式3x +5的值,则x 的最大整数值是( ) A. 4 B. 6 C. 7 D. 88.如果关于x 的不等式组 {5x −2a >07x −3b ≤0 的整数解仅有7,8,9,那么适合这个不等式组的整数a ,b 的有序数对(a ,b )共有( )A. 4对B. 6对C. 8对D. 9对9.某种商品的进价为1200元,标价为1575元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多可打( )A. 6折B. 7折C. 8折D. 9折10.运行程序如图所示,从“输入实数 x”到“结果是否<18”为一次程序操作,若输入 x 后程序操作仅进行了三次就停止,那么 x 的取值范围是( )A. x ≥329B. 329≤x ≤143C. 329<x ≤143D. x ≤143二、填空题(共8题;共24分)11.如果关于 x 的不等式 2x −m <0 的正整数解恰有2个,则 m 的取值范围是________. 12.“x 与y 的平方和大于8. ”用不等式表示: ________. 13.若 y =2x −6 ,当 x ________时, y >0 ;14.某校规定把期中考试成绩的40%与期末考试成绩的60%的和作为学生的总成绩.该校李红同学在期中考试中数学考了86分,她希望自己这学期数学总成绩不低于92分,她在期末考试中数学至少应得多少分?设她在期末考试中数学考了 x 分,则可列不等式________.15.关于 x 的不等式 bx <a 的解集为 x >−2 ,写出一组满足条件的实数 a ,b 的值:a= ________,b= ________.16.如果不等式组 {x2+a ≥22x −b <3的解集是 0≤x <1 ,那么 a +b 的值为________.17.按下面的程序计算,若开始输入的值 x 为正整数:规定:程序运行到“判断结果是否大于10”为一次运算,例如当 x =2 时,输出结果等于11,若经过2次运算就停止,则 x 可以取的所有值是________.18.关于 x,y 的方程组 {x −y =1+3mx +3y =1+m 的解 x 与 y 满足条件 x +y ≤2 ,则 4m +3 的最大值是________.三、计算题(共1题;共10分)19.解下列不等式(1)4x-2+1x−5>1x−5+3x +2 (2)7x−62x+3>2四、解答题(共7题;共54分)20.(6分)解不等式组: {x −3(x −2)≥42x−15<x+12 并求该不等式组的非负整数解.21.(7分)解不等式 1−2x 3+x+22≥1 ,并把解集在数轴上表示出来.22.(7分)已知关于x ,y 的二元一次方程组 {3x −y =ax −3y =5−4a 的解满足 x <y ,试求a 的取值范围.23.(7分)某居民小区污水管道里积存污水严重,物业决定请工人清理.工人用每分钟可抽30吨水的抽水机来抽污水管道里积存的污水,估计积存的污水不少于1200吨且不超过1500吨,若工人抽污水每小时的工钱是60元,那么抽完污水最少需要支付多少元?24.(8分)新冠状病毒肺炎疫情发生后,全社会积极参与疫情防控工作,某市为了尽快完成100万只口罩的生产任务,安排甲、乙两个大型工厂共同完成.已知甲厂每天能生产口罩的数量是乙厂每天能生产口罩的数量的1.5倍,并且在独立完成60万只口罩的生产任务时,甲厂比乙厂少用5天,问至少应安排两个工厂共同工作多少天才能完成任务25.(9分)北京奥运会期间,某旅行社组团去北京观看某场足球比赛,入住某宾馆.已知该宾馆一楼房间比二楼房间少5间,该旅游团有48人,若全部安排在一楼,每间住4人,房间不够,每间住5人,有房间没住满.若全部安排在二楼,每间住3人,房间不够,每间住4人,则有房间没住满.你能根据以上信息确定宾馆一楼有多少房间吗?26(10分).对x,y定义了一种新运算T,规定T(x,y)= ax+by2x+y(其中a,b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)= a×0+b×12×0+1,已知T(1,﹣1)=﹣2,T(4,2)=1.(1)求a,b的值;(2)若关于m的不等式组{T(2m,5−4m)≤4T(m,3−2m)>p恰好有3个整数解,求p的取值范围.答案解析部分一、单选题 1.【答案】 D【解析】【解答】解:A 、3+1=4>0,故A 不成立; B 、3+1=4,故B 不成立; C 、3+1=4>3,故C 不成立; D 、3+1=4<5,故D 成立; 故答案为:D.【分析】直接将x=3代入各个不等式,不等式成立的即为所选. 2.【答案】 C【解析】【解答】解:A 、不等式组 {x ≤−3x ≤−5 的解集根据“同小取较小”的原则可知,此不等式组的解集为x≤-5;B 、不等式组 {x >−5x ≥−4 的解集是根据“同大取较大”的原则可知,此不等式组的解集为x≥-4;C 、不等式组 {x >5x <−7 根据“大大小小解为空”的原则可知,此不等式组无解;D 、不等式组 {x ≤10x >−3 的解集根据“小大大小中间找”的原则可知,-3<x≤10.故答案为:C .【分析】根据不等式组解集的确定方法分别求出各不等式组的解集即可. 3.【答案】 D【解析】【解答】解:解:x≥-2表示-2右边的部分,含-2这点,应为实心点,x<1表示1左边的部分,不含1这点,应为空心点,则正确的是D .【分析】根据不等式解集的表示法,在数轴上表示出两个不等式即可. 4.【答案】 B【解析】【解答】解: 2x +m >−6 , 2x >−6−m ,x >−6+m2由题知x >-3, 则 −6+m 2=−3 ,解得:m=0, 故答案为:B .【分析】解不等式求出 x >−6+m 2,结合 x >−3 ,从而得出 −6+m 2=−3 ,解之可得.5.【答案】 B【解析】【解答】解:A 、∵m >n ∴m-4>n-4,故A 不符合题意; B 、∵m >n ∴m4>n4 , 故B 符合题意; C 、∵m >n∴4m >4n ,故C 不符合题意; D 、∵m >n∴-2m <-2n ,故D 不符合题意; 故答案为:B.【分析】利用不等式的性质1,可对A 作出判断;利用不等式的性质2可对B ,C 作出判断,利用不等式的性质3,可对D 作出判断。

第九章《不等式与不等式组》全章测试(含答案)

第九章《不等式与不等式组》全章测试(含答案)

ABCD第九章《不等式与不等式组》全章测试时间:45分钟 满分:100分班级 姓名一、选择题(每小题6分,5题共30分)1.不等式21≥+x 的解集在数轴上表示正确的是( )2.利用数轴确定不等式组2133x x +≤⎧⎨>-⎩的解集,正确的是 ( )3.若b a >,则下列不等式中错误..的是 ( ) A .11->-b a B .11+>+b a C .b a 22> D .33a b ->- 4.如果关于x 的不等式(21)21a x a +<+ 的解集为1x > ,那么a 的取值范围是 ( ) A .0a > B. 0a < C. 12a >-D. 12a <- 5. 不等式组9511x x x m +<+⎧⎨>+⎩ 的解集是x >2,则m 的取值范围是 ( )A. m ≤2B. m ≤1C. m ≥2D. m ≥1二、填空题(每小题6分,5题共30分) 6.“x 的23倍与7的差不小于-5的相反数”,用不等式表示为_____ _ 7.如果2(1)3x -的值是非负数,则x 的取值范围是 8.不等式3120x -+>的正整数解为 9.当时k 时,不等式1(2)20k k x--+> 是一元一次不等式10. 不等式组⎩⎨⎧->-≥-1230x a x 的整数解共有4个,则a 的取值范围是三、解答题(11题、12题每题4分,13、14、15每题8分,共40分) 11. 解不等式,并把它的解集在数轴上表示出来 (1) 2418-≥--x x x (2)53[2()]72x x x --<12. 解不等式组(1) ⎪⎩⎪⎨⎧-<+≤--.1321,4)2(3x x x x (2)523(2),12123x xx x +<+⎧⎪--⎨⎪⎩ ≤. 13. 若二元一次方程组224x y kx y -=⎧⎨+=⎩的解x y > ,求k 的取值范围.14. 在一次知识竞赛中,甲、乙两人进入了“必答题”环节,规则是:两人轮流答题,每人都要回答20个题,每个题回答正确得m分,回答错误或放弃回答扣n分。

人教版初中数学七年级下册第9章《不等式与不等式组》测试题及答案

人教版初中数学七年级下册第9章《不等式与不等式组》测试题及答案

人教版初中数学七年级下册第9章《不等式与不等式组》测试题(一)一、选择题:1,下列各式中,是一元一次不等式的是( ) A.5+4>8 B.2x -1 C.2x ≤5D.1x-3x ≥0 2,已知a<b,则下列不等式中不正确的是( )A. 4a<4bB. a+4<b+4C. -4a<-4bD. a-4<b-4 3,下列数中:76, 73,79, 80, 74.9, 75.1, 90, 60,是不等式23x >50的解的有( ) A.5个 B.6个 C.7个 D.8个 4,若t>0,那么12a+12t 与a 的大小关系是( ) A .2a +t>2a B .12a+t>12a C .12a+t ≥12a D .无法确定5,如图,a 、b 、c 分别表示苹果、梨、桃子的质量.同类水果质量相等 则下列关系正确的是( )A .a >c >bB .b >a >cC .a >b >cD .c >a >b6,若a<0关于x 的不等式ax+1>0的解集是( )A .x>1a B .x<1a C .x>-1a D .x<-1a7,不等式组31027x x +>⎧⎨<⎩的整数解的个数是( )A .1个B .2个C .3个D .4个8,从甲地到乙地有16千米,某人以4千米/时~8千米/时的速度由甲到乙,则他用的时间大约为( )A 1小时~2小时 B2小时~3小时 C3小时~4小时 D2小时~4小时9,某种出租车的收费标准:起步价7元(即行使距离不超过3千米都须付7元车费),超过3千米以后,每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费19元,那么甲地到乙地路程的最大值是( )A .5千米 B.7千米 C.8千米 D.15千米 10,在方程组2122x y mx y +=-⎧⎨+=⎩中若未知数x 、y 满足x+y ≥0,则m 的取值范围在数轴上表示应是( )二、填空题11,不等号填空:若a<b<0 ,则5a -5b -;a1 b 1;12-a 12-b .12,满足2n-1>1-3n 的最小整数值是________.13,若不等式ax+b<0的解集是x>-1,则a 、b 应满足的条件有______.14,满足不等式组122113x x x -⎧>-⎪⎪⎨-⎪-≥⎪⎩的整数x 为__________.15,若|12x --5|=5-12x -,则x 的取值范围是________.16,某种品牌的八宝粥,外包装标明:净含量为330g ±10g ,表明了这罐八宝粥的净含量x 的范围是 .17,小芳上午10时开始以每小时4km 的速度从甲地赶往乙地,•到达时已超过下午1时,但不到1时45分,则甲、乙两地距离的范围是_________. 18,代数式x-1与x-2的值符号相同,则x 的取值范围________.三、解答题19,解不等式组,并把它的解集在数轴上表示出来.(1)9-4(x-5)<7x+4; (2)0.10.81120.63x x x ++-<-;(3)523(1),317;22x x x x ->+⎧⎪⎨-≤-⎪⎩ (4)6432,2111.32x x x x +≥+⎧⎪+-⎨>+⎪⎩20,代数式213 1--x的值不大于321x-的值,求x的范围21,方程组3,23x yx y a-=⎧⎨+=-⎩的解为负数,求a的范围.22,已知,x满足3351,11.4x xx+>-⎧⎪⎨+>-⎪⎩化简:52++-xx.23,已知│3a+5│+(a-2b+52)2=0,求关于x的不等式3ax-12(x+1)<-4b(x-2)的最小非负整数解.24,是否存在这样的整数m,使方程组24563x y mx y m+=+⎧⎨-=+⎩的解x、y为非负数,若存在,求m•的取值?若不存在,则说明理由.25,有一群猴子,一天结伴去偷桃子.分桃子时,如果每只猴子分3个,那么还剩下59个;如果每个猴子分5个,就都分得桃子,但有一个猴子分得的桃子不够5个.你能求出有几只猴子,几个桃子吗?参考答案一、1,C;2,C;3,A;4,A.解:不等式t>0利用不等式基本性质1,两边都加上12a得12a+t>12a.5,C.6,D.解:不等式ax+1>0,ax>-1,∵a<0,∴x<-1a因此答案应选D.7,D.解:先求不等式组解集-13<x<72,则整数x=0,1,2,3共4个.8,D;9,C.10,D.解:2122x y m x y+=-⎧⎨+=⎩①+②,得3x+3y=3-m,∴x+y=33m-,∵x+y≥0,∴33m-≥0,∴m≤3在数轴上表示3为实心点.射线向左,因此选D.二、11,>、>、<;12,1.解:先求解集n>25,再利用数轴找到最小整数n=1.13,a<0,a=b 解析:ax+b<0,ax<-b,而不等式解集x>-1不等号改变了方向.因此可以确定运用不等式性质3,所以a<0,而-ab=-1,∴b=a.14,-2,-1,0,1 解析:先求不等式组解集-3<x≤1,故整数x=0,1,-1,-2.15,x≤11 解析:∵│a│=-a时a≤0,∴12x--5≤0,解得x≤11.16,320≤x≤340.17,(12~15)km.解:设甲乙两地距离为xkm,依题意可得4×(13-10)<x<4•×(134560-10),即12<x<15.18,x>2或x<1 解析:由已知可得10102020 x xx x->-<⎧⎧⎨⎨->-<⎩⎩或者.三、19,(1)9-4(x-5)<7x+4.解:去括号9-4x+20<7x+4,移项合并11x>25,化系数为1,x>2511.(2)0.10.81120.63x x x++-<-.解:811263x x x++-<-,去分母 3x-(x+8)<6-2(x+1),去括号 3x-x-8<6-2x-2,移项合并 4x<12,化系数为1,x<3.(3)523(1)31722x xxx->+⎧⎪⎨-≤-⎪⎩解:解不等式①得 x>52,解不等式②得 x≤4,∴不等式组的解集52<x ≤4. (4)6432211132x x x x+≥+⎧⎪+-⎨>+⎪⎩解:解不等式①得x ≥-23,解不等式②得x>1,∴不等式组的解集为x>1. 20,57≥x ;21,a<-3;22,7; 23,解:由已知可得535035520212a a ab b ⎧+==-⎧⎪⎪⎪⎨⎨-+=⎪⎪=⎩⎪⎩解得代入不等式得-5x-12(x+1)<-53(x-2),解之得 x>-1,∴最小非负整数解x=0.24,解:24563x y m x y m +=+⎧⎨-=+⎩得11139529m x m y +⎧=⎪⎪⎨-⎪=⎪⎩∵x ,y 为非负数00x y ≥⎧⎨≥⎩∴1113095209m m +⎧≥⎪⎪⎨-⎪≥⎪⎩解得-1311≤m ≤52,∵m 为整数,∴m=-1,0,1,2.答:存在这样的整数m=-1,0,1,2,可使方程24563x y m x y m +=+⎧⎨-=+⎩的解为非负数.点拨:先求到方程组的解,再根据题意设存在使方程组的解00x y ≥⎧⎨≥⎩的m ,•从而建立关于m 为未知数的一元一次不等式组,求解m 的取值范围,选取整数解.25,设有x 只猴子,则有(3x+59)只桃子,根据题意得:0<(3x+59)-5(x-1)<5,解得29.5<x<32,因为x 为整数,所以x=30或x=31,当x=30时,(3x+59)=149,当x=31时,(3x+59)=152.答:有30只猴子,149只桃子或有31只猴子,152只桃子.1. 将不等式组13x x ⎧⎨⎩≥≤的解集在数轴上表示出来,应是 ( )2. 下面给出的不等式组中①23x x >-⎧⎨<⎩②020x x >⎧⎨+>⎩③22124x x x ⎧>+⎪⎨+>⎪⎩④307x x +>⎧⎨<-⎩⑤101x y x +>⎧⎨-<⎩其中是一元一次不等式组的个数是( ) A.2个B.3个C.4个D.5个3. 不等式组24030x x ->⎧⎨->⎩,的解集为( )A.23x << B. 3x > C. 2x <D. 23x x ><-或4. 下列不等式中哪一个不是一元一次不等式( )A.3x >B.1y y -+>C.12x> D.21x >5. 下列关系式是不等式的是( )A.25x += B.2x + C.25x +>D.235+=6. 若使代数式312x -的值在1-和2之间,x 可以取的整数有( ) A.1个B.2个C.3个D.4个7. 不等式组2030x x -<⎧⎨->⎩的正整数解是( )A.0和1 B.2和3 C.1和3 D.1和2 8. 下列选项中,同时适合不等式57x +<和220x +>的数是( )A.3 B.3- C.1- D.19. 不等式211133x ax +-+>的解集是53x <,则a 应满足( ) A.5a > B.5a = C.5a >- D.5a =-10. a 是一个整数,比较a 与3a 的大小是( )C1DA3BA.3a a >B.3a a <C.3a a =D.无法确定二、填空题(每题3分,共30分) 11. 不等式(3)1a x ->的解集是13x a <-,则a 的取值范围 . 12. 某商品进价是1000元,售价为1500元.为促销,商店决定降价出售,但保证利润率不低于5%,则商店最多降 元出售商品.13. 一个两位数,十位数字与个位数字的和为6,且这个两位数不大于42,则这样的两位数有 ______个. 14. 若a b >,则22____ac bc .15. 关于x 的方程32x k +=的解是非负数,则k 的取值范围是 . 16. 若(1)20mm x++>是关于x 的一元一次不等式,则m 的取值是 .17. 关于x 的方程4132x m x -+=-的解是负数,则m 的取值范围 .18. 若0m n <<,则222x m x n x n >⎧⎪>-⎨⎪<⎩的解集为 .19. 不等式15x +<的正整数解是 .20. 不等式组⎩⎨⎧-<+<632a x a x 的解集是32+<a x ,则a 的取值 .三、解答题(21、22每小题8分,23、24第小题10分,共36分) 21. 解不等式5(1)33x x x +->+22. 解不等式组3(2)41214x x x x --⎧⎪⎨-<-⎪⎩≤23. 关于x ,y 的方程组322441x y k x y k +=+⎧⎨+=-⎩的解x ,y 满足x y >,求k 的取值范围.24.有学生若干人,住若干间宿舍,若每间住4人,则有20人无法安排住宿;若每间住8 人,则有一间宿舍不满也不空,问宿舍间数和学生人数分别是多少?25.喷灌是一种先进的田间灌水技术.雾化指标P是它的技术要素之一.当喷嘴的直径d(mm).喷头的工作压强为h(kPa)时.雾化指标P=100hd.如果树喷灌时要求3000≤P≤4000.若d=4mm.求h的范围.四、解答题(本题共2小题,每题12分,共24分)26.某同学在A,B两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包的单价的4倍少8元.(1)求该同学看中的随身听和书包的单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样商品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?27.在“512大地震”灾民安置工作中,某企业接到一批生产甲种板材240002m和乙种板材120002m的任务.(1)已知该企业安排140人生产这两种板材,每人每天能生产甲种板材302m或乙种板材202m .问:应分别安排多少人生产甲种板材和乙种板材,才能确保他们用相同的时间完成各自的生产任务?(2)某灾民安置点计划用该企业生产的这批板材搭建A B ,两种型号的板房共400间,在搭建过程中,按实际需要调运这两种板材.已知建一间A 型板房和一间B 型板房所需板材问:这400间板房最多能安置多少灾民?参考答案:一、选择题:1. B2. B.3. A4. C.5. C.6. B7. D.8. D.9. B.10. D. 二、填空题:11. 3a <. 12. 450元. 13. 4个. 14. ≥. 15. 2k ≤. 16. 1m =.17. 3m <. 18. 无解. 19. 1,2,3. 20..a ≤ -9 三、解不等式(组):21. 2x >-. 22. 312x <≤ 23. 1k > 24.解:设宿舍间数为x ,学生人数为y. 由题意得⎪⎩⎪⎨⎧>--<--+=0)1(88)1(8204x y x y x y解得: 5 < x < 7∵x 是正整数 ∴ x = 6 故y=44 答:宿舍间数为6,学生人数为44 . 24.解:把d=4代入公式P=100h d 中得P=1004h,即P=25h ,又∵3000≤P≤4000,∴3000≤25h≤4000,120≤h≤160,故h 的范围为120~160(kPa )26. (1)随身听的单价为360元,书包单价为92元.(2)在超市A 购买更省钱. 27.(1)设安排x 人生产甲种板材,应安排80人生产甲种板材,60人生产乙种板材.(2)设建造A 型板房m 间,则建造B 型板房为(400)m -间,由题意有:5478(400)240002641(400)12000m m m m +-⎧⎨+-⎩≤≤,.解得300m ≥.又0400m ≤≤,300400m ∴≤≤.这400间板房可安置灾民58(400)33200w m m m =+-=-+. ∴当300m =时,w 取得最大值2300名.答:这400间板房最多能安置灾民2300名.。

新人教版七年级数学第九章《不等式与不等式组》测试题

新人教版七年级数学第九章《不等式与不等式组》测试题

七年级数学第九章《不等式与不等式组》测试题班级 姓名 坐号 成绩一、选择题(每空3分,共15分)1、在数轴上表示不等式2x ≥-的解集,正确的是( )A B C D2、下列叙述不正确的是( )A 、若0x <,则2x x > B 、如果1a <-,则a a >-C 、若43-<-a a ,则0a > D 、如果0b a >>,则b a 11-<- 3、不等式组01x x >⎧⎨<⎩的解集是( )A 、1x <B 、0x >C 、01x <<D 、无解4、代数式1-m 的值大于-1,又不大于3,则m 的取值范围是( )A 、13m -<≤B 、31m -≤<C 、22m -≤<D 、22m -<≤ 5、不等式45111x -<的正整数解为( ) A 、1个 B 、3个 C 、4个 D 、5个二、填空题(每空2分,共30分)1、用不等式表示:a 与6的和小于5: ;a 与2的差不小于-1: a 的一半不大于-2: ;a 的2倍与7的差大于3: 2、如果ab <,用“<”或“>”填空:a +8b +8;a -1 b -1;10a 10b ;-6a -6b 3、不等式323x +>的两边都加上 ,得31x >4、不等式-<212x 的两边同除以-2,可得 5、不等式组x x -<-<⎧⎨⎩2030的解集是 ,不等式组x x ->->⎧⎨⎩2030的解集是不等式组x x ->-<⎧⎨⎩2030的解集是 ,不等式组x x -<->⎧⎨⎩2030的解集是6、当x 时,2(1)x -的值不小于8三、解不等式和不等式组(每题5分,共30分)1、 3129()()-<+x x2、 243325()()x x +≤+3、 22213+≥-x x4、 x x +-<+5213225、 211841x x x x ->++<-⎧⎨⎩6、x x xx --≥+>-⎧⎨⎪⎩⎪3241231()四、(7分)求不等式3159()x x +≥-的正整数解五、(8分)求不等式组2(2)53(2)82x x x x+<+⎧⎨-+≥⎩的整数解六、(10分)已知3123250a b a b -+++-=,求不等式组27()19(3)62ax x b a x b x -->⎧⎪⎨+->⎪⎩的解集七、附加题为了保护环境,某企业决定购买10台污水处理设备。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九章不等式与不等式组练习题
一、择题
1.若,a a -则a 必为( )
A 、负整数 B、 正整数 C、负数 D、正数
2.不等式组⎩
⎨⎧+-0201 x x 的解集是( ) A、12 x - B、1 x C、x 2- D、无解
3.下列说法,错误的是( )
A、33- x 的解集是1- x B、-10是102- x 的解
C、2 x 的整数解有无数多个 D、2 x 的负整数解只有有限多个
4.不等式组2130x x ≤⎧⎨+≥⎩
的解在数轴上可以表示为( ) A
C
5.不等式组⎩⎨⎧--≥-3
1201 x x 的整数解是( )
A、-1,0 B、-1,1 C、0,1 D、无解
6.若a <b <0,则下列答案中,正确的是( )
A、a <b B B 、a >b C、2a <2
b D 、a 3>b 2
7.关于x 的方程a x 4125=+的解都是负数,则a 的取值范围( )
A、a >3 B、a <3- C、a <3 D、a >-3
8. 当x 时,代数式52+x 的值不大于零
9.若x <1,则22+-x 0(用“>”“=”或“”号填空)
10.不等式x 27->1,的正整数解是
11. 不等式x ->10-a 的解集为x <3,则a
12.若a >b >c ,则不等式组⎪⎩⎪⎨⎧c x b x a x 的解集是 13.若不等式组⎩⎨⎧--3
212 b x a x 的解集是-1<x <1,则)1)(1(++b a 的值为 14.一罐饮料净重约为300g ,罐上注有“蛋白质含量6.0 ”其中蛋白质
的含量 _____ g
15.若不等式组⎩
⎨⎧3 x a x 的解集为x >3,则a 的取值范围是
16.解不等式①
1)1(22 ---x x ; ②3
41221x x +≤--
17.解不等式组 ①⎪⎩⎪⎨⎧--≤--x x x x 14
214)23(
②⎪⎩⎪⎨⎧-≥--+35663
4)1(513x x x x
18.关于y x ,的方程组⎩⎨⎧-=-+=+1
31m y x m y x 的解满足x >y
求m 的最小整数值
19.一本英语书共98页,张力读了一周(7天),而李永不到一周就已读完,李永平均每天
比张力多读3页,张力平均每天读多少页?(答案取整数)。

相关文档
最新文档