3.6.3风机轴承寿命计算报告

合集下载

轴承寿命计算小结

轴承寿命计算小结

有限元分析方法
通过建立轴承的有限元模型,模 拟其在实际工况下的应力分布和 变形情况,进而预测其寿命。
05 轴承寿命计算的未来展望
新材料的应用
新材料如陶瓷、碳纤维等具有更高的 强度和耐热性,能够提高轴承的承载 能力和耐久性,从而延长轴承寿命。
新材料的引入可能会改变轴承的摩擦 、磨损和疲劳特性,需要进一步研究 其与轴承寿命的关系。
轴承寿命计算小结
目 录
• 引言 • 轴承寿命计算的基本理论 • 轴承寿命计算的实例分析 • 轴承寿命计算中的注意事项 • 轴承寿命计算的未来展望
01 引言
目的和背景
轴承是机械设备中的重要组成部分, 其寿命直接影响设备的运行效率和安 全性。因此,准确计算轴承寿命对于 设备维护和更新具有重要意义。
轴承失效可能导致设备损坏和生产事 故,准确计算轴承寿命有助于预防潜 在的安全风险,保障生产安全。
降低维护成本
合理安排轴承更换和维修计划,可以 减少不必要的维修和更换成本,为企 业节约开支。
02 轴承寿命计算的基本理论
轴承寿命的定义
轴承寿命是指在一定的工作条件下, 轴承从开始工作到失效的时间长度。
实例三:特殊工况下的轴承寿命计算
在高温环境下,轴承的材料性能和润滑剂的稳 定性会受到影响,导致轴承寿命降低。
在重载工况下,轴承的接触压力分布和材料应力状态 需要进行详细的分析和计算,以确保轴承的安全运行

在特殊工况下,如高温、低温、高速、重载等 ,轴承的寿命计算需要更加复杂和精确。
在高速旋转下,轴承的离心力和陀螺力矩对寿命 的影响不容忽视,需要进行相应的计算和分析。
VS
失效通常是指轴承的滚动体或内外圈 出现疲劳断裂、磨损或塑性变形等无 法修复的损伤。

风机轴承寿命预测算法研究

风机轴承寿命预测算法研究

风机轴承寿命预测算法研究随着风机技术的不断进步,风机轴承作为关键部件之一也越来越受到重视。

对于风电场运营商来说,风机轴承的寿命是影响电站生产经济效益的重要因素之一。

因此,提高风机轴承的寿命是一个非常重要的研究方向。

随着信息技术的飞速发展和应用,利用数据采集和分析技术进行风机轴承寿命预测已成为当前研究的热点之一。

一、风机轴承寿命的重要性风机轴承是风力发电机的重要部件。

随着风电行业快速发展,风机轴承的工作状态要求不断提高,对于风电场运营商来说,风电机组的可靠性和经济性至关重要。

在风电机组运行过程中,轴承的损坏会严重影响风电机组的运行,并直接降低发电效率和电站经济效益。

因此,提高风机轴承的可靠性和寿命,对于提高风电机组的经济性和可靠性具有重要的意义。

二、风机轴承寿命预测算法的研究现状1. 基于统计模型的寿命预测算法基于统计模型的寿命预测算法,最基本的思路是通过对轴承寿命数据的统计分析,建立寿命模型,然后根据模型进行风机轴承寿命预测。

常见的统计模型包括最小二乘法回归分析、生存分析等。

这类算法不需要考虑轴承的具体工作环境和工况,仅仅基于统计数据进行预测,适用范围较窄。

2. 基于物理模型的寿命预测算法基于物理模型的寿命预测算法,是将轴承的工作环境和实际工况考虑进去,结合物理学和数学建立轴承寿命模型,进行寿命预测。

这类算法需要建立完整的轴承模型,将轴承的力学、热学、磨损等因素综合考虑进去,预测精度较高。

但是建模和参数标定等任务较为繁琐,对算法研究人员的专业素质和经验要求较高,应用范围较窄。

3. 基于深度学习的寿命预测算法基于深度学习的寿命预测算法,是近年来的研究热点之一。

深度学习的特点是通过大量数据的训练来建立模型,具有良好的自适应性和泛化能力。

该类算法适用于轴承寿命预测场景,可以通过大量轴承振动、温度等各种传感器数据的采集,训练出具有较高预测精度的模型。

三、风机轴承寿命预测的关键技术1. 数据采集数据采集是风机轴承寿命预测的关键技术之一。

轴承寿命计算范文

轴承寿命计算范文

轴承寿命计算范文轴承寿命是指轴承在一定的工作条件下能够正常运转的时间长度。

轴承的寿命与负荷、转速、温度、润滑及清洗方法等因素有关。

正确地计算轴承寿命对于延长轴承使用寿命、提高设备可靠性和降低维护成本具有重要意义。

轴承寿命的计算通常采用L10寿命模型,即在连续运转的条件下,在统计学暗示(即90%清单)下,90%的轴承寿命的货币值L10达到或超过理想寿命。

轴承寿命的计算可以按照以下步骤进行:1.确认轴承负荷:根据设备的工作要求,确定轴承所承受的负荷。

负荷包括径向负荷和轴向负荷。

这可以通过工程计算或测量获得。

2. 确认转速:根据设备的工作要求,确定轴承的旋转速度。

转速的单位通常是rpm(每分钟转速)。

这也可以通过工程计算或测量获得。

3.确认润滑方式:根据设备的实际情况,选择适当的润滑方式。

轴承的润滑方式可以是油润滑或脂润滑。

润滑方式直接影响轴承的寿命。

4.确认清洗方法:轴承在安装之前需要进行清洗。

确定清洗方法可以很好地去除轴承表面的污垢和杂质,从而减少摩擦和磨损。

5.损失因素计算:确定各种损失因素,如因装配和拆卸等原因的损失经验因子a1,因负荷和粘度影响的损失经验因子a2,因清洗不良和润滑不良影响的损失经验因子a36.计算基本额定寿命:根据轴承的负荷、转速和润滑方式,计算基本额定寿命L10。

公式如下:基本额定寿命L10=(C/P)^p其中,C是基本动态负荷评定值(由厂家提供),P是等效动载荷,p是压力指数。

7. 计算修正额定寿命:根据具体的使用条件和影响因素,计算修正额定寿命Lna。

修正额定寿命Lna = a1 x a2 x a3 x L108. 根据使用环境和需求考虑其他因素:如轴承使用的温度、振动、磨损等特殊环境因素,可以通过对Lna进行修正或额外计算来得到更准确的轴承寿命。

总的来说,轴承寿命计算是一个复杂的过程,需要考虑多个因素。

正确的寿命计算可以帮助选择适当的轴承类型和尺寸,延长轴承的使用寿命,并提高设备的可靠性和运行效率。

(完整版)滚动轴承的寿命计算

(完整版)滚动轴承的寿命计算

滚动轴承的寿命计算一、基本额定寿命和基本额定动载荷1、基本额定寿命L10轴承寿命:单个滚动轴承中任一元件出现疲劳点蚀前运转的总转数或在一定转速下的工作小时数称轴承寿命。

由于材料、加工精度、热处理与装配质量不可能相同,同一批轴承在同样的工作条件下,各个轴承的寿命有很大的离散性,所以,用数理统计的办法来处理。

基本额定寿命L10——同一批轴承在相同工作条件下工作,其中90%的轴承在产生疲劳点蚀前所能运转的总转数(以106为单位)或一定转速下的工作时数。

(失效概率10%)。

2、基本额定动载荷C轴承的基本额定寿命L10=1(106转)时,轴承所能承受的载荷称基本额定动载荷C。

在基本额定动载荷作用下,轴承可以转106转而不发生点蚀失效的可靠度为90%。

基本额定动载荷 C(1)向心轴承的C是纯径向载荷;(2)推力轴承的C是纯轴向载荷;(3)角接触球轴承和圆锥滚子轴承的C是指引起套圈间产生相对径向位移时载荷的径向分量。

二、滚动轴承的当量动载荷P定义:将实际载荷转换为作用效果相当并与确定基本额定动载荷的载荷条件相一致的假想载荷,该假想载荷称为当量动载荷P,在当量动载荷P作用下的轴承寿命与实际联合载荷作用下的轴承寿命相同。

1.对只能承受径向载荷R的轴承(N、滚针轴承)P=F r2.对只能承受轴向载荷A的轴承(推力球(5)和推力滚子(8))P= F a3.同时受径向载荷R和轴向载荷A的轴承P=X F r+Y F aX——径向载荷系数,Y——轴向载荷系数,X、Y——见下表。

径向动载荷系数X和轴向动载荷系数表12-3考虑冲击、振动等动载荷的影响,使轴承寿命降低,引入载荷系数fp—见下表。

载荷系数fp表12-4三、滚动轴承的寿命计算公式图12-9 载荷与寿命的关系曲线载荷与寿命的关系曲线方程为:=常数(12-3)3 球轴承ε——寿命指数10/3——滚子轴承根据定义:P=C,轴承所能承受的载荷为基本额定功载荷时,∴∴(106r) (12-2)按小时计的轴承寿命:(h)(12-3)考虑当工作t>120℃时,因金属组织硬度和润滑条件等的变化,轴承的基本额定动载荷C有所下降,∴引入温度系数f t——下表——对C修正表 12-5(106r)(12-4)(h)(12-5)当P、n已知,预期寿命为L h′,则要求选取的轴承的额定动载荷C为N ——选轴承型号和尺寸!(12-6)不同的机械上要求的轴承寿命推荐使用期见下表。

轴承寿命的计算

轴承寿命的计算

素也考虑其中 2.其中疲劳极限Pu是一个全新的概念,若承受的负 荷低于Pu 值,则轴承不会产生疲劳失效(损坏)
• 新寿命方法修改了调整的寿命等式以计算将理 论更进一步联系实际的新发现
调整的寿命公式中参数的选取:a1
• • • • • • • • a1 与可靠性相关的寿命调整系数. aSKF 与可靠性相关的寿命修正系数. 表现为以下相关方面: 轴承安装是否正确 轴承与相关零件选择的配合公差的选择是否合适 轴承在运行时的润滑状况 轴承在运行时的工作状态(外部的温升,振动,密封) 其他因素
ISO寿命等式
静态安全因素
L10 = 基本额定寿命,百万次旋转 C = 基本额定动态负荷,N P = 相应的动态轴承负荷,N p = 寿命公式的指数 当负荷 P = C时 L10 寿命将为 1百万次旋转
s0 = 静态安全因素 P0 = 相应的静态轴承负荷,N C0 = 基本额定静态负荷,N
当负荷 P0 = C0时 静态安全因素s0将为 1
正确认识额定动载荷C
额定动载荷仅是由轴承的若干基本 几 何尺寸计算而来 C ~ (la· cos)7/9· z3/4· Dw 29/27 与轴承实际制造质量和使用性能密切 相关的密切相关的很多因素, 并不能 通过C值反映: 材料质量 热处理工艺 内部结构设计 内部几何形状 制造精度 公差控制 表面硬度 滚动体与滚道的切合程度 内部摩擦
计算轴承寿命
L10h = 1,000,000 x (C/P)p 60 x n
Байду номын сангаас
L10h:工作小时 n:轴承工作转速
C:额定负荷. P:当量负荷.
SKF新的寿命计算方法
• 现已被ABMA/ISO接受

轴承的寿命计算

轴承的寿命计算

轴承的寿命计算1.I 轴上的轴承的选择和寿命计算轴承预期寿命'82436570080h L h =⨯⨯=,左右端均采用的圆锥滚子轴承30207,查得基本额定动载荷54200C =N(1)求两轴承所受到的径向载荷1r F ,2r F已知1653NH F = N ,22078NH F =N, 1318NV F =N, 2704NV F =N1726r F ===N 22194r F === N (2)求两轴承的计算轴向力1a F ,2a F查对应的轴承参数可得:0.37e =, 1.6Y =。

又由表13-7可知2r d F F Y =, 因此 11726226.8822 1.6r d F F Y ===⨯ N 222194685.6322 1.6r d F F Y ===⨯ N 因21a d d F F F +>所以 12648685.631333.63a a d F F F =+=+= N22685.63a d F F == N(3)求轴承的当量动载荷1P ,2P因为 111333.63 1.8726a r F e F ==>22685.630.312194a r F e F ==< 由表13-5查得轴承1 10.4X =,1 1.6Y =。

轴承2 21X =,20Y =因轴承运转中有轻微冲击载荷,按表13-6查得 1.0 1.2P f =-,取 1.1P f =。

则 11111() 1.1(0.4726 1.61333.63)2666.63P r a P f X F Y F =+=⨯⨯+⨯= N 22222() 1.1121942413.4P r a P f X F Y F =+=⨯⨯= N(4)验算轴承寿命因为12P P >,所以按轴承1的受力大小验算10663'110105420039373060609702666.63h h C L h L n P ε⎛⎫⎛⎫===> ⎪ ⎪⨯⎝⎭⎝⎭即所选轴承满足寿命要求。

轴承寿命的计算

轴承寿命的计算
对于所有各类型轴承,当其当量动负荷Pr或Po大于其基本额定动负荷Cr或Co时,同时对于深沟球轴承,当其当量动负荷Pr大于其基本额定静负荷Co时,式5-1的应用也受到限制,此时,轴承用户可向有关轴承制造厂询问如何计算上述轴承的疲劳寿命。式5-1还不曾估计到诸如优质淬硬钢的特性(成分、夹杂物、组织、硬度等)或材料因素加运转条件因素对轴承疲劳寿命的影响,对于双列向心轴承和双向推力轴承,应用本公式时还必须近似地假定这些轴承是理想对称的。2、用运转总小时数表示的基本额定寿命方程在转速为恒定的情况下,将基本额定寿命计算公式用总小时数表示,对于确定轴承的维修与更换周期较为方便。这种公式只需将5-1加以变换即可得到,即式中Ln——额定疲劳寿命(h); n——转速(r/min). 2、用行车公里数表示的公式,在各种车辆的轮毂中使用的滚动轴承,用行车公里数来表示寿命较为方便,这样的公式是式中LK——额定疲劳寿命(KM);DR——车轮的直径(mm). 3、高可先靠性的寿命计算公式对于某重要用途,要求轴承期望疲劳寿命的可靠性大于90%,此时高可靠性的疲劳寿命计算公式为Ln=a1L10式中Ln——提高了可靠性的疲劳寿命(h); L10——额定疲劳寿命(106r/h); A1——可靠性疲劳寿命(106r/h); A1——可靠性修正系数。
念根据最新的滚动轴承疲劳寿命理论,一只设计优秀、材质卓越、制造精良而且安装正确的轴承,只要其承受的负荷足够轻松(不大于该轴承相应的某个持久性极限负荷值),则这个轴承的材料将永远不会产生疲劳损坏。因此,只要轴承的工作环境温度适宜而且变化幅度不大,绝对无固体尘埃、有害气体和水分侵入轴承,轴承的润滑充分而又恰到好处,润滑剂绝对纯正而无杂质,并且不会老化变质……,则这个轴承将会无限期地运转下去。这个理论的重大意义不仅在于它提供了一个比ISO寿命方程更为可靠的预测现代轴承寿命的工具,而且在于它展示了所有滚动轴承的疲劳寿命都有着可观的开发潜力,并展示了开发这种潜力的途径,因而对轴承产品的开发、质量管理和应用技术有着深远的影响。但是,轴承的无限只有在实验室的条件下才有可能“实现”,而这样的条件对于在一定工况下现场使用的轴承来说,既难办到也太昂贵。现场使用轴承,其工作负荷往往大于其相应的疲劳持久性极限负荷,在工作到一定的期限后,或晚或早总会由于本身材料达致电疲劳极限,产生疲劳剥落而无法继续使用。即使某些轴承的工作负荷低于其相应的持久性极限负荷,也会由于难以根绝的轴承污染问题而发生磨损失效。总之,现场使用中的轴承或多或少总不能充分具备上述实验室所具备的那些条件,而其中任一条件稍有不足,都会缩短轴承的可用期限,这就产生了轴承的寿命问题。一般地说,滚动轴承的寿命是指滚动轴承在实际的服务条件下(包括工作条件、环境条件和维护和保养条件等),能持续保持满足主动要求的工作性能和工作精度的特长服务期限。二、可计算的轴承寿命类别滚动轴承的失效形式多种多样,但其中多数失效形式迄今尚无可用的寿命计算方法,只有疲劳寿命、磨损寿命、润滑寿命和微动寿命可以通过计算的方法定量地加以评估。1、疲劳寿命在润滑充分而其他使用条件正常的情况下,滚动轴承常因疲劳剥落而失效,其期限疲劳寿命可以样本查得有关数据,按规定的公式和计算程序以一定的可靠性计算出来。2、磨损寿命机床主轴承取大直径以保证其高刚度,所配轴承的尺寸相应也大,在其远末达到疲劳极限之前,常因磨损而丧失要精度以致无法继续使用,对这类轴承必须用磨损寿命来徇其可能性的服务期限。实际上,现场使用的轴承大多因过度磨损而失效,所以也必须考虑磨损寿命问题。3、润滑寿命主要对于双面带密封的脂润滑轴承,一次填脂以后不再补充加脂,此时轴承有寿命便取决于滚脂的使用寿命。4、微动磨蚀寿命绞车、悬臂式起微型重机和齿轮变速箱以及汽车离合器等机构中的轴承,在其非运转状态下受到振动负荷所产生的微动磨蚀损伤。往往会发展成轴承失效的主导原因,对这类机构中的轴承,有时需要计算其微动磨蚀寿命。现将此四种寿命类别及其计算方法分别加以介绍。一、滚动轴承的疲劳寿命1、轴承疲劳寿命的基本概念一般意义的轴承疲劳寿命是指一定技术状态下(结构、工艺状态、配合、安装、游隙和润滑状态等)的滚动轴承,在主机的实际使用状态下运转,直至滚动表面发生疲劳而不能满足主机要求时的轴承内、外圈(轴、座圈)相对旋转次数的总值——总转数。当轴承转更大致恒定或为已知,疲劳寿命可用与总转数相应的运转总小时数来表示,此外,还应注意:1、影响轴承疲劳寿命的因素非常多,无法全部加以估计或通过标准试验条件而加以消除,这造成轴承实际疲劳寿命有很大的离散性,因此轴承疲劳寿命的表达参数为额定寿命L10,在ISO推荐标准R281中对L10的涵义明确规定如下:“数量上足够多的相同的一批轴承,其额定寿命L10用转数(或在转速不变时用小时数来表示,该批轴承中有90%在疲劳剥落发生前能达到或超过此转数(或小时数)”。迄今为止,世界各国都遵从上述规定。在美国等一些国家中,还用用中值寿命的概念。中值寿命LM是指一批相同轴承的中值寿命,即指其中50%的轴承在疲劳剥落前能够达到或超过总转数,或在一定转速下的工作不时数,中值寿命LM不是一批轴承寿命的算术平均值。一般中值寿命LM是额定寿命的5倍左右。2、额定寿命的概念只适用于数量足够的一批轴承,而不适用于个别轴承。例如有40套6204轴承按其使用条算得其额定寿命为1000h而不致发生疲劳破坏,其余的4套则可能不到1000h即出现疲劳失效的轴承,额定疲劳寿命的意义就代表这批轴承在正常发挥其材料潜力时可期望的寿命。因此在大多数情况下,用户在选择轴承时仍先作疲劳寿命计算,再根据实际失效类别进行校核,例如磨损寿命校核,取计算结果中的较小值为轴承计算寿命。二、轴承疲劳寿命的估计方法、轴承疲劳寿命的估计方法有计算方法和试验湛支两种。按规定公式和计算规则计算出来的轴承疲劳寿命作为计算疲劳寿命,所算出总转数值规定为内圈或轴圈转动(此时外圈或座圈为固定)时的总转数值。按照我国规定的标准试验方法(ZQ 12-94)滚动轴承疲劳寿命试验规程),在使用性能上能满足为一方法所规定各项要求的试验机,对一批轴承进行抽样疲劳寿命试验,从试验数据处理中得到的实际试验寿命,即为被试轴承所代表的该批轴承的疲劳试验寿命。滚动轴承疲劳寿命试验裨上是充分的润滑最大限度地抑制滚动轴承的磨损因素,采用强化的负荷与转速以突出轴承疲劳因素的一种强化的疲劳寿命试验方法。轴承疲劳寿命的计算法和疲劳寿命试验是相辅相成的,二者所得的结果有足够的对应性。事实上,如对每一个特定的使用场合,都抽取足够数量的轴承进行寿命试验,以验证所选轴承是否合适,这在经济上、时间上和劳动量上都是十分浩大的,所以轴承寿命的试验方法只是在十分必要或重要的情况下才使用,在绝大多数情况下,采用标准的寿命计算方法来估计轴承的使用寿命,有着足够程度的可依赖性。三、疲劳寿命的计算下述轴承疲劳寿命的计算方法是以国家标准GB6391-96《滚动轴承——-额定动负荷和额定寿命的计算方法》和国家标准ISO281/I-1997《滚动轴承——额定动负荷和额定寿命——第一部分:计算方法》为依据,此外,还介绍了瑞典SKF轴承公司新的轴承公司新的轴承疲劳寿命理论和疲劳寿命计算方法。1、疲劳寿命的基本计算公式滚动轴承疲劳寿命的基本计算公式有多种形式,以适应不同用途的需要,以下分别加以介绍。(1)基本额定寿命方程(用总转数表示)1、几个有关的基本概念,在介绍基本额定寿命方程之前,先介绍几个相关的基本概念即:单个轴承的疲劳寿命——单个轴承在其任一套圈(或垫圈)或滚动体的材料首次出现疲劳扩展之前,其中一个套圈(或垫圈)相对于另一套圈(或垫圈)转动的总转数。轴承寿命的可靠性——在同一条件下运转的一组在相同条件下运转的一组条件相同的轴承,可期望达到或超过某一规定寿命的百分率,对于单个轴承,其可靠性为该轴承能达到或超过某一规定寿命的概念。轴承的基本额定寿命——单个轴承或一组在相同条件下运转的技术条件相同的轴承,其可靠性达到90%时的寿命。3、基本额定寿命方程的计算式用总转数表示的轴承基本额定寿命方程的计算式为:L10=C/P式中L10——轴承的基本额定疲劳寿命(106r); C——对向心类轴承为径向当量动负荷(N),对推力类轴承为轴向当量动负荷(N);P——对向心类轴承为径向当量动负荷(N),对推力类轴承为轴向当量动负荷(N);ε——寿命指数,对球轴承ε=3,对滚动轴承ε=10/3。式5-1为我国国家标准和国际标准规定的滚动轴承基本额定寿命的标准计算式。轴承疲劳轴承寿命试验机的转数记录仪,可以准确地记录下轴承疲劳试验的总转数,得以方便与计算结果相对照。4、基本额定寿命方程的适用范围基本额定寿命方程5-1适用于具备以下技术条件的滚动轴承在额定疲劳寿命计算;轴承的外形尺寸选自由国家相应标准规定的轴承尺寸范围;轴承用优质淬硬钢材制造并且加工质量良好;轴承滚动接触表面的表面质量(包括几何形状精度和材质等)合乎常规标准。这些轴承必须安装正确,润滑充分,无外界杂质侵入而且不是在极端条件下运转。当不符合这些条件时,使用式5-1的计算结果便会发生偏差。为了抵消这样的偏差,就必须将按式5-1计算所得的结果乘上相应的修正系数。5、基本额定寿命方程的应用限制基本额定寿命方程5-1不适用例如有装填满的深沟球轴承,或在滚动体与套圈滚道之间的接触面积上有相当大缺口的其他种类轴承,因为这种缺口影响到接触区的承载能力。式5-1还不适用滚动体直接在轴或座孔表面上运转的场合,除非相应的轴或座孔完全按照滚动轴承承载元件的技术条件制造。当轴承在实际使用时其所承受的负荷为非正常分布(例如由于轴线不对中,外壳或轴有较大变形,滚动体的离心力作用或其他高速效应,以及向心轴承采用特别大的游隙或施加预负荷等情况造成),按式5-1计算其基本额定寿命时,就不能取得满意的结果。

轴承的寿命与计算

轴承的寿命与计算

轴承的寿命轴承在随负荷旋转时,由于套圈滚道面及滚动体滚动面不断地受到交变负荷的作用,即使使用条件正常,也会因材料疲劳使滚道面及滚动面出现鱼鳞状损伤(称做剥离或剥落)。

出现这种滚动疲劳操作之前的总旋转数称做轴承的“(疲劳)寿命”。

即使是结构、尺寸、材料、加工方法等完全相同的轴承,在同样条件下旋转时,轴承的(疲劳)寿命仍会出现较大的差异。

这是因为材料疲劳本身即具有离散性,应从统计的角度来考虑。

于是就将一批相同的轴承在同样条件下分别旋转时,其中90%的轴承不出现滚动疲劳操作的总旋转数称做“轴承的基本额定寿命”(即可靠性为90%的寿命)在以固定的转速旋转时,也可用总旋转时间表示。

但在实际工作时,还会出现滚动疲劳操作以外的损伤现象(如磨损、烧伤、蠕变、磨蚀、压痕、断裂等)。

这些损伤可以通过做好轴承的选择、安装和润滑等加以避免。

轴承寿命的计算基本额定动负荷基本额定动负荷表示轴承耐滚动疲劳的能力(即负荷能力),是指大小和方向一定的纯径向负荷(对于向心轴承)或中心轴向负荷(对于推力轴承),在内圈旋转外圈固定(或内圈固定外圈旋转)的条件下,该负荷下的基本额定寿命可达100万转,向心轴承与推力抽承的基本额定动负荷分别称做径向基本定动负荷与轴向基本额定动负荷,用Cr与Ca表示,其数值载于轴承尺寸表。

基本额定寿命式(1)表示轴承的基本额定动负荷、当量动负荷及基本额定寿命之间的关系。

轴承以固定的转速旋转时,用时间表示寿命更为方便,如式(2)所示。

另外,对于铁路车辆或汽车等用行走距离(KM)表示寿命较多,如式(3)所示。

这里:L10:基本额定寿命,106转L10h:基本额定寿命,hL10s:基本额定寿命,kmP:当量动负荷,N{Kgf}厖......参照后面C:基本额定动负荷,N{Kgf}n:转速,rpmp:寿命指数球轴承..........p=3滚子轴承.......p=10/3D:车轮或轮胎直径,mm因此,作为轴承的使用条件,设当量动负荷为P,转速为n,则满足设计寿命所需要的轴承基本额定动负荷C可由式(4)计算,从轴承尺寸表中选出满足C值的轴承,即可确定轴承的尺寸。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

海南昌江核电工程
JD-L11-2x12.5E风机
轴承寿命计算报告
设备编号:9DVN004~006ZV 设备型号:JD-L11-2x12.5E 设备名称:正常排风机
浙江金盾风机风冷设备有限公司
2009年9月10日
海南昌江核电工程
JD-L11-2x12.5E风机
轴承寿命计算报告
设备编号:9DVN004~006ZV
设备型号:JD-L11-2x12.5E
设备名称:正常排风机
批准:
审核:
校对:
编制:
JD-L11-2x12.5E风机轴承寿命计算
已知条件如下:
G1
f带拉力
带拉力:f1= 28563×P/(D×n)≈30000×250/(0.4×1280)= 14648N 带轮重加带拉力:f = 1260 + 14648 =15908N
叶轮重加不平衡力:G = M2×[(n/2135)2×g]= 6370N
悬臂轴重:G1 = 23×9.8 = 225N
两轴承间轴重:G2 = 226×9.8 = 2215N
= 0得
由∑M
A
R B×1.75-0.855×(6370+2215)+(225+15908) ×0.31 = 0
R B= 1337N
R A×1.75-0.855×(6370+2215)-(225+15908) ×2.06 = 0
R A = 23185N
风机运行时有轻微振动,取f p =1.1
则轴承A的载荷P A = 1.1×23185 = 25503N
轴承寿命L A = 106×(C/P A)3/60n = 467737h
结论:轴承寿命远远大于100000小时,满足技术规格书的要求。

相关文档
最新文档