直流电机调速电路
直流调速器接线图(图文详解)

直流调速器接线图(图⽂详解)直流调速器就是调节直流电动机速度的设备,直流调速器由于直流电动机具有低转速⼤⼒矩的特点,是交流电动机⽆法取代的,因此调节直流电动机速度的设备——直流调速器具有⼴阔的应⽤天地。
直流调速器接线图1、不隔离型(仅指BL产品)a、外部电位器连接⽅式:使⽤⼀个2W/10K 电位器控制驱动器调速,按照下图进⾏接线。
安装⽅法:电位器的连接说明(BL产品):注意1、驱动器所提供的5V输出电压,因电流较⼩(5mA),所以不能外接其它负载(如:数显表、指⽰灯等),否则造成驱动器的损坏。
2、为了减少不必要的电⼦信号⼲扰,应尽量缩短速度调节电位器的连线长度,当连线超过0.5m时,必须使⽤屏蔽线,屏蔽⽹单端接地。
b、外置VID连接⽅式:0-5V,0-10V,4-20mA 控制信号经过专⽤隔离器转换后连接到VID接⼝,每种控制应⽤只能使⽤⼀种控制信号进⾏控制。
订货时需要说明控制⽅式。
外置VID隔离器(另配)的连接使⽤请参考下图所⽰:注意外置VID接⼝线若过长,请务必使⽤屏蔽线,屏蔽⽹单端接地。
2、隔离型:(仅指AL产品)对于AL隔离型产品,使⽤0-5V,0-10V或4-20mA的外部标准信号控制连接⽅式见下图所⽰。
每种控制应⽤只能使⽤⼀种控制信号进⾏控制。
订货时需要说明控制⽅式。
注意1、标准信号输⼊务必使⽤屏蔽线,屏蔽⽹单端接地。
2、以上控制⽅式的连接,只能选⽤⼀种⽅式连接,不能同时连接⼏种⽅式。
3、所有控制信号的连线务必使⽤屏蔽线,屏蔽⽹单端接地。
使能控制:INHIBIT使能控制连接:该控制⽅式可通过⼀个“使能线路”来进⾏控制器输出的停⽌和开启控制如下图所⽰:也可以使⽤⼀个集电极开路(NPN)来代替开关进⾏控制。
当“使能控制端”两端闭合时,控制器内部电路会迅速(取ACCEL设定值)提升马达转速,直到MAX SPD 设定值上。
当“使能控制端”两端断开时,控制器内部电路会快速降低马达转速,直到马达停⽌运转。
直流电机PWM调速电路

直流电机P W M调速电路Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】《电子技术》课程设计报告课题:直流电机PWM调速电路班级电气工程1101学号1101205304学生姓名xxx专业电气信息类系别电子与电气工程学院指导老师电子技术课程设计指导小组xxxxx电子与电气工程学院2012年5月一、设计目的a)培养理论联系实际的正确设计思想,训练综合运用已经学过的理论和生产实际知识去分析和解决工程实际问题的能力。
b)学习较复杂的电子系统设计的一般方法,了解和掌握模拟、数字电路等知识解决电子信息方面常见实际问题的能力,由学生自行设计、自行制作和自行调试。
c)进行基本技术技能训练,如基本仪器仪表的使用,常用元器件的识别、测量、熟练运用的能力,掌握设计资料、手册、标准和规范以及使用仿真软件、实验设备进行调试和数据处理等。
d)培养学生的创新能力。
二、设计任务与要求1.设计电机驱动主回路,实现直流电机的正反向驱动;2.设计PWM驱动信号发生电路;3.设计电机转速显示电路;4.设计电机转速调节电路;可以按键或电位器调节电机转速;5.安装调试;6.撰写设计报告。
三、设计思想及设计原理1.信号可以采用数字方法给定,也可以采用电位器给定。
建议采用数字方法。
2.PWM信号可以采用三角波发生器和比较器产生,也可采用数字电路及可编程器件产生。
建议采用数字方法。
3.正反转主回路可以采用双极型器件实现,也可以用MOS器件实现;4.转速测量电路可以采用增量型光电编码器,也可采用自行制作的光电编码电路、霍尔传感器以及其它近似测速方法。
建议采用光电编码器。
5.显用数字方法显示电机转速。
采用光电编码等方法的脉冲测速方法时,可采用计数法测量电机转速;电机转速信号为模拟信号时,可采用数字表头显示转速。
建议采用数字方法。
6.(提高部分)可以采用反馈控制技术对系统进一步完善。
四、单元电路设计4.1LM324组成的PWM直流电机产生电路4.1.1它主要由U1(LM324)和Q1组成图4.1中,由U1a、U1d组成振荡器电路,提供频率约为400Hz的方波/三角形波。
直流电机的调速方法

直流电机的调速方法一、前言直流电机是工业生产中常用的驱动设备,它具有调速范围广、转矩平稳等优点。
在实际应用中,为了满足不同的工艺要求,需要对直流电机进行调速。
本文将介绍直流电机的调速方法。
二、基本原理直流电机的调速原理是通过改变电源电压和/或改变电枢回路中的电阻来改变电机的转速。
当电压增大或者回路阻值减小时,会使得转矩增大,从而使得转速提高;反之亦然。
三、调速方式1. 串联型调速串联型调速是通过改变外接串联在直流电机上的可变阻值来改变回路总阻值,从而达到降低转矩和减缓转速的目的。
具体步骤如下:(1)将可变阻器串联在直流电机中;(2)当可变阻器阻值增加时,回路总阻值增加,从而使得输出功率减小;反之亦然;(3)通过逐渐增加或减小可变阻器的阻值来实现调节。
2. 并联型调速并联型调速是通过改变外接并联在直流电机上的可变阻值来改变电枢回路的总电阻,从而达到提高转矩和加快转速的目的。
具体步骤如下:(1)将可变阻器并联在直流电机中;(2)当可变阻器阻值增加时,电枢回路总电阻增加,从而使得输出功率减小;反之亦然;(3)通过逐渐增加或减小可变阻器的阻值来实现调节。
3. 电枢调速电枢调速是通过改变直流电机中的电枢回路中的电阻来改变回路总阻值,从而达到降低转矩和减缓转速的目的。
具体步骤如下:(1)将可变阻器连接在直流电机的电枢回路上;(2)当可变阻器阻值增加时,回路总阻值增加,从而使得输出功率减小;反之亦然;(3)通过逐渐增加或减小可变阻器的阻值来实现调节。
4. 磁通调速磁通调速是通过改变直流电机中励磁回路中串联在励磁线圈上的可变抵抗来改变磁通量大小,从而达到改变转速和转矩的目的。
具体步骤如下:(1)将可变抵抗串联在励磁线圈上;(2)当可变抵抗阻值增加时,回路总阻值增加,从而使得磁通量减小,输出功率减小;反之亦然;(3)通过逐渐增加或减小可变抵抗的阻值来实现调节。
四、注意事项1. 在进行调速时,应根据直流电机的额定参数和工作要求进行合理选择。
直流电机调速电路发展综述

直流电机调速电路发展综述1.早期调速方法在早期,直流电机的调速主要通过改变电机的输入电压或电流来实现。
一种常用的方法是串联电阻调速,通过在电枢电路中串联电阻来降低电机的输入电压,从而达到调速的目的。
然而,这种方法效率较低,且无法实现平滑的调速。
2.晶体管控制调速随着晶体管技术的发展,人们开始使用晶体管作为控制元件来实现直流电机的调速。
通过改变晶体管的导通状态,可以调节电机的输入电流,从而实现平滑的调速。
这种方法较串联电阻调速更为先进,但仍然存在效率较低的问题。
3.可控硅整流器调速可控硅整流器的出现为直流电机调速带来了新的解决方案。
可控硅整流器可以控制直流电机的输入电压,从而实现精确的调速控制。
这种方法具有较高的效率和较宽的调速范围,但需要专业的控制电路来实现。
4.PWM控制调速随着微电子技术的发展,PWM(脉宽调制)控制技术开始广泛应用于直流电机调速。
PWM控制技术通过调节脉冲宽度来改变电机的输入电压或电流,从而实现精确的调速控制。
这种方法具有效率高、精度高、噪声低等优点,是当前直流电机调速的主流技术之一。
5.矢量控制与直接转矩控制为了进一步提高直流电机的调速性能,人们开始研究矢量控制和直接转矩控制等高级控制策略。
矢量控制通过将电机的输入电流分解为转矩电流和励磁电流两个分量,分别对它们进行控制,从而实现对电机转矩的精确控制。
直接转矩控制则通过直接控制电机的输出转矩来实现快速响应的调速控制。
这些高级控制策略能够进一步提高直流电机的调速性能和动态响应能力。
6.现代数字化调速技术随着数字信号处理器(DSP)和微控制器等数字芯片的出现,数字化调速技术开始广泛应用于直流电机控制。
数字化调速技术能够实现更加快速和精确的调速控制,同时也方便了与计算机等其他设备的接口。
目前,数字化调速技术已经成为直流电机调速的主流技术之一。
7.智能控制调速近年来,智能控制技术也开始应用于直流电机调速。
智能控制技术包括模糊控制、神经网络控制、遗传算法等,能够实现更加复杂和高效的电机控制。
直流电机pwm调速原理

直流电机pwm调速原理直流电机PWM调速原理是通过改变电源给电机的电压和电流,从而控制电机转速的一种方法。
PWM,即脉冲宽度调制,是一种用来调节电平电路中电平的技术,利用脉冲信号的占空比(高电平与周期时间之比)来控制电平的平均值。
在直流电机PWM调速中,首先需要了解电机的电刷子与换向器的工作原理。
电刷子负责切换电极的极性,而换向器则根据电刷子的位置将电流传送到正确的电极上。
当电流在电机的绕组中流动时,会形成磁场,这个磁场会与永磁体产生相互作用,从而产生电机的转动力。
为了控制电机的转速,可以通过改变供电电压的幅值和频率来实现。
在PWM调速中,电源输出的电压信号被分解为一系列的脉冲信号。
脉冲信号的占空比根据所需的电机转速来确定,占空比越大,电机转速越快。
在每个脉冲周期中,脉冲信号的高电平部分代表电源给电机供电的时间,而低电平部分则代表停止供电的时间。
通过改变脉冲信号的占空比,可以控制电机的平均电压和平均电流。
当占空比增大时,电机平均得到更多的能量供应,转速也会相应增加。
反之,当占空比减小时,电机平均得到更少的能量供应,转速会减慢。
这样,通过不断调整脉冲信号的占空比,就可以实现对直流电机的精准调速。
需要注意的是,在PWM调速中,电机的换向也需要考虑进去。
换向器需要根据电机的转向来控制电刷子的位置,使电流能够按正确的路径流动。
这样能够保证电机的正常运转,并提供足够的转矩和稳定性。
综上所述,直流电机PWM调速是通过改变电源给电机的电压和电流的脉冲信号的占空比来实现的。
通过调节脉冲信号的占空比,可以控制电机的平均电压和电流,从而实现对电机转速的精确控制。
同时,需考虑电机的换向,以保证电机能够正常运转。
直流电机无级调速电路(完整篇)

直流电机无级调速电路/content/12/0330/23/7988683_199474671.shtml成品直流电机无级调速电路板很贵,我在维修一台包装机时得到一块直流电机调速板,经测绘并制作成功,现奉献给大家。
这块电路板电路简单,成本不高,制作容易,电路作简单分析:220V交流电经变压器T降压,P2整流,V5稳压得到9V直流电压,为四运放集成芯片LM324提供工作电源。
P1整流输出是提供直流电机励磁电源。
P4整流由可控硅控制得到0-200V的直流,接电机电枢,实现电机无级调速。
R1,C2是阻容元件,保护V1可控硅。
R3是串在电枢电路中作电流取样,当电机过载时,R3上电压增大,经D1整流,C3稳压,W1调节后进入LM324的12脚,与13脚比较从14脚输出到1脚,触发V7可控硅,D4 LED红色发光管亮,6脚电压拉高使V1可控硅不能触发,保护电机。
电机过载电流大小由W1调节。
市电过零检测,移相控制是由R5、R6降压,P3整流,经4N35隔离得到一个脉动直流进入14脚,从8脚到5脚输出是脉冲波,调节W2电位器即调节6脚的电压大小,可以改变脉冲的宽度,脉冲的中心与交流电过零时刻重合,使得双向可控硅很好地过零导通,D4是过载指示,D3是工作指示,W2是电机速度无级调节电位器。
电路制作好后只要元件合格,不用调整就可使用。
我从100W-1000W电机都试过,运行可靠,调节方便,性能优良。
12V直流电机高转矩电子调速器直流电机在一些应用中需要随时具有高转矩输出能力,无论它是处于低速还是高速运转。
例如钻孔、打磨、掘进等应用条件下,电机必需具备高低压运转的最大力矩输出。
显然,常用的线性降压调速无法达到这一要求,因为电机空载与加载状态其转速并不与工作电压成正比,若空载即需低速运转则加载后往往无法工作。
这里介绍一种专为大范围转矩变化的直流电机调速而设计的电路,它根据电机的工作电流变化来判断其加载状态,并由此对电机转速作出自动调整。
5v直流电机调速电路设计ad设计及其原理

5v直流电机调速电路设计ad设计及其原理
为了设计一个5V直流电机的调速电路,我们可以使用一个无刷直流电机(BLDC motor),以及一个电子调速器(ESC)来控制电机的转速。
基本原理是通过调整输入给电机的电压来改变电机的转速。
通常情况下,直流电机的转速与输入电压之间存在线性关系。
因此,我们可以通过调整输入电压的大小来实现对电机转速的调节。
以下是一个简单的5V直流电机调速电路设计及其原理:
1. 材料准备:
- 5V直流电机
- 电子调速器(ESC)
- Arduino或其他微控制器
- 电源(可选择5V电源)
2. 连接电机和电子调速器:
- 将电机的电源线连接到电源的正极,将电机的地线连接到电源的负极。
- 将电机的三个相线(A、B、C)连接到电子调速器的对应引脚。
3. 连接电子调速器和微控制器:
- 将电子调速器的信号线连接到微控制器的数字引脚。
这个信号线用于发送控制电机转速的指令。
4. 编程微控制器:
- 使用Arduino或其他微控制器来编写调速程序。
- 根据需要,使用PWM信号模拟模式或其他相应的驱动方式编程。
5. 控制电机转速:
- 在程序中,使用微控制器发送PWM信号控制电子调速器的输入电压。
通过调整PWM信号的占空比(即高电平持续时间占整个周期的比例)来调整电机的输出转速。
通过这样的设计,我们可以实现对5V直流电机的精确调速。
这种设计可以应用于许多需要对电机转速精确控制的场合,如机械设备、机器人、无人机等。
直流电机调速器的工作原理

直流电机调速器的工作原理
dc电机调速器的工作原理
(一)电路原理
1. 电路结构:直流电机调速器的电路结构一般由内部直流电源、变流器和可调阻器组成。
2. 工作原理:直流电机调速器电路通过将外部直流电源电压变换成交流电压,然后再变换成有功率控制回路相应大小的直流电压。
而可调阻器就充当了调节电压大小的调节器,调节直流电机的转速来实现电机调速的功能。
(二)控制原理
1. 手动控制:手动控制直流电机调速器,可以根据调节阻器的不同电流大小,控制直流电机的速度。
2. 自动控制:根据节能需要,自动控制系统可以自动调节直流电机调速器的控制电压,并能够根据当前电机负载情况,自动调节控制电压大小。
(三)工作原理
1. 控制系统:直流电机调速器的控制系统由控制电路、变频器和控制信号器构成,其中变频器根据控制电路的控制信号,调节电压的大小和直流电机的频率。
2. 机械系统:机械系统由排风机、风扇叶片、转子和电机部件构成,当变频器调节电压的大小和电机的频率的时候,排风机的叶片会根据电机的频率和电压的大小作出不同的转角,从而改变速度调节电机的转速,从而实现调节直流电机转速的功能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 绪论1.1 直流调速的优点直流调速系统,特别是双闭环直流调速系统是工业生产过程中应用最广的电气传动装置之一。
它通常采用三相全控桥式整流电路对电动机进行供电,从而控制电动机的转速,传统的控制系统采用模拟元件,如晶体管、各种线性运算电路等,虽在一定程度上满足了生产要求,但是因为元件容易老化和在使用中易受外界干扰影响,并且线路复杂、通用性差,控制效果受到器件性能、温度等因素的影响,从而致使系统的运行特性也随之变化,故系统运行的可靠性及准确性得不到保证,甚至出现事故。
双闭环直流调速系统是一个复杂的自动控制系统,在设计和调试的过程中有大量的参数需要计算和调整,运用传统的设计方法工作量大,系统调试困难,将SIMULINK 用于电机系统的仿真研究近几年逐渐成为人们研究的热点。
同时,MATLAB软件中还提供了新的控制系统模型输入与仿真工具SIMULINK,它具有构造模型简单、动态修改参数实现系统控制容易、界面友好、功能强大等优点,成为动态建模与仿真方面应用最广泛的软件包之一。
它可以利用鼠标器在模型窗口上“画”出所需的控制系统模型,然后利用SIMULINK提供的功能来对系统进行仿真或分析,从而使得一个复杂系统的输入变得相当容易且直观。
1.2 本人的主要工作本文采用工程设计方法对转速、电流双闭环直流调速系统进行辅助设计,选择适当的调节器结构,进行参数计算和近似校验,并建立起制动、抗电网电压扰动和抗负载扰动的MATLAB/SIMULINK仿真模型,分析转速和仿真波形,并进行调试,使双闭环直流调速系统趋于完善、合理。
2 方案选择及系统工作原理2.1 电动机参数及设计要求1、输入三相交流电压:380 V2、电机额定功率和转速:自定3、要求电动机转速在(30%~100%)n N 范围内可调。
设参数如下:直流电机额定电压220V N U =,额定电枢电流136A N I =,额定转速1460rpm N n =,电枢回路总电阻0.5Ωa R =,电感0.012H a L =,励磁电阻240f R =Ω,励磁电感120H f L =,互感 1.8H af L =,0.132Vmin r e C =,允许过载倍数 1.5λ=。
晶闸管装置放大系数:40s K =,时间常数:0.03s l T =,0.18s m T =2.2 方案选择及系统框图2.2.1 方案一:转速单闭环直流电机调速系统转速单闭环调速系统是一种最基本的反馈控制系统,其系统框图如图2.1所示。
ASRMTG++_+__U ctU dI dUnTAU n *GT V_图2.1 转速单闭环直流调速系统原理框图ASR —转速环节 GT —触发装置 TA —电流互感器TG —测速发电机 n U */n U —转速给定电压和转速反馈电压2.2.2 方案二:转速、电流双闭环直流电机调速系统采用转速负反馈和PI 调节器的单闭环调速系统可以在保证系统稳定的条件下实现转速无静差。
为了实现转速和电流两种负反馈分别起作用,在转速、电流双闭环调速系统中设置了两个调节器,分别调节转速和电流,二者之间实行串级联接。
为获得良好的静、动态性能,双闭环调速系统的两个调节器一般都采用PI 调节器,如图2.2所示。
图中,转速调节器的输出作为电流调节器的输入,而电流调节器的输出去控制电力电子变换器。
ACRMTG++_+__U ctU dI dU nTAU n*GT V_ASR_U iU i *图2.2 转速、电流双闭环直流调速系统原理框图ASR —转速环节 ACR —电流环节 GT —触发装置 TG —测速发电机 TA —电流互感器n U */n U —转速给定电压和转速反馈电压 i U */i U —电流给定电压和电流反馈电压2.2.3 方案三:双闭环脉宽调速系统ACRUPW PWMMTG+_U ctU nTAU n *ASR_U iU i *GMFADLD GD +图2.3 双闭环控制的直流脉宽调速系统原理框图UPW —脉宽调制器 GM —调制波发生器 GD —基极驱动器DLD —逻辑延时环节 PWM —脉宽调制变换器 FA —瞬时动作的限流保护比较三种方案,虽然转速单闭环调速系统可以在保证系统稳定的条件下实现转速无静差,但对于动态性能要求很高的系统中,单闭环系统中不能完全按照需要来控制动态过程的电流和转矩。
转速、电流双闭环调速系统中设置了两个调节器,分别调节转速和电流,能获得良好的静、动态性能。
所以本设计最终采用的是方案二:转速、电流双闭环调速。
2.3 系统工作原理简介2.3.1 双闭环调速系统静态特性为了分析双闭环调速系统的静特性,必须先绘出它的稳态结构图,如图2.4所示。
+ __1eCαRβREd I0dUASR ACRiU*i U ct UnUnU*_+d InnAnIdIdmIdnomB图2.4 双闭环调速系统稳态结构图图2.5 双闭环调速系统的静特性分析静特性的关键是掌握这样的PI调节器的稳态特征。
一般存在两种情况:饱和----输出达到限幅值;不饱和----输出未达到限幅值。
当调节器饱和时,输出为恒值,输入量的变化不再影响输出,除非有反向的输入信号使调节器退出饱和;换句话说,饱和的调节器暂时隔断了输入和输出间的联系,相当于使该调节环开环。
当调节器不饱和时,PI作用使输入偏差电压U∆在稳态时总是零。
实际上,在正常运行时,电流调节器是不会达到饱和状态的。
因此,对于静特性来说,只有转速调节器饱和与不饱和两种情况。
2.3.2 双闭环系统启动过程分析设置双闭环控制的一个重要目的就是要获得接近于理想的起动过程(图2.6),因此在分析双闭环调速系统的动态性能时,有必要首先讨论它的起动过程。
由于在起动过程中转速调节器ASR经历了不饱和、饱和、退饱和三个阶段,整个过渡过程也就分成三段。
I dnnI dLI dmtI dLI dI dm00t 1t 2 t 3t 4ttn n *ⅠⅡⅢ图2.6 双闭环调速控制系统理想快速起动 图2.7 双闭环调速系统起动时转速和电流波形2.3.3 双闭环调速系统的动态抗扰动性能(1) 动态跟随性能双闭环调速系统在起动和升速过程中,能够在电流受电机过载能力约束的条件下,表现出很快的动态跟随性能。
在减速过程中,由于主电路电流的不可逆性,跟随性能变差。
对于电流内环来说,在设计调节器时应强调有良好的跟随性能。
(2) 动态抗扰性能1、抗负载扰动由图2.8动态结构图中可以看出,负载扰动作用在电流环之后,只能靠转速调节器来产生抗扰作用。
因此,在突加(减)负载时,必然会引起动态速降(升)。
为了减少动态速降(升),必须在设计ASR 时,要求系统具有较好的抗扰性能指标。
对于ACR 的设计来说,只要电流环具有良好的跟随性能就可以了。
11on T S +ASRACR+_UnU n *_U iU i *+11oi T S +1S s K T S +111R T S +m R T S1eC 1oi T S β+1on T S α+++__dL I d I E 0d U ct Un 电流环图2.8 双闭环调速系统的动态结构图2、抗电网电压扰动电网电压扰动和负载扰动在系统动态结构图中作用的位置不同,系统对它的动态抗扰效果也不一样。
电网电压扰动的作用点则离被调量更远,它的波动先要受到电磁惯性的阻挠后影响到电枢电流,再经过机电惯性的滞后才能反映到转速上来,等到转速反馈产生调节作用,已经嫌晚。
在双闭环调速系统中,由于增设了电流内环,这个问题便大有好转。
由于电网电压扰动被包围在电流环之内,当电压波动时,可以通过电流反馈得到及时的调节,不必等到影响到转速后才在系统中有所反应。
因此,在双闭环调速系统中,由电网电压波动引起的动态速降会比单闭环系统中小的多。
2.3.4 双闭环调速系统中两个调节器的作用(1)转速调节器的作用1、使转速n跟随给定电压nU*变化,稳态无静差。
2、对负载变化起抗扰作用。
3、其饱和输出限幅值作为系统最大电流的给定,起饱和非线性控制作用,以实现系统在最大电流约束下起动过程。
(2)电流调节器的作用1、对电网电压波动起及时抗扰作用。
2、起动时保证获得允许的最大电流。
3、在转速调节过程中,使电流跟随其给定电压i U*变化。
3 双闭环调速系统的具体设计说明3.1 双闭环直流调速系统总体设计方案电动机额定电压为220V ,为保证供电质量,应采用三相减压变压器将电源电压降低,为避免三次谐波对电源干扰,主变压器采用D/Y 联结。
为使线路简单、工作可靠、装置体积小,宜选用KC04组成的六脉冲集成触发电路。
因调速精度要求高,为获得良好的静、动态性能,故选用转速、电流双闭环调速系统,且两个调节器采用PI 调节器,电流反馈进行限流保护,出现故障电流时由快速熔断器切断这电路电源。
该双闭环调速系统采用减压调速方案,故励磁应该保持恒定,励磁绕组采用三相不控桥式整流电路供电,电源可从主变压器二次侧引入。
整体电路原理图见附录1。
转速、电流双闭环调速系统原理图如图3.1所示。
图3.1 双闭环调速系统的原理图ASR —转速环节 ACR —电流环节 TG —测速发电机 TA —电流互感器UPE —电力电子变换器GT —触发装置 n U */n U —转速给定电压和转速反馈电压 i U */i U —电流给定电压和电流反馈电压3.2 主电路设计与参数计算3.2.1 主电路原理图(见附录1)电源接入主回路之前先要接一个空气开关,以保护主回路。
再经过整流变压器T降压,电源由380V(AC)变为220V(AC),再经过各相一个快速熔断器接入晶闸管全桥整流电路。
这三个熔断器主要保护晶闸管,作为过电流保护器件。
变压器一次侧和二次侧过电压保护均采用阻容吸收保护电路。
3.2.2 整流变压器的设计工业供电电压为AC 380V ,而电动机的额定电压为220V ,所以必须通过降压变压器使之达到系统要求。
本设计采用的是直流电机,故还须通过整流电路使之变成连续的直流电压。
为避免三次谐波对电源的干扰,整流变压器采用D/Y-11联结的三相全控桥式接法,如图3.3所示:VT2VT6VT4VT1VT3VT5i anabc T d1d2G1k4k6k2G3G5G4G6G2图3.3 整流变压器三相全控桥式连接图(1) 变压器二次侧电压U 2的计算2U 是一个重要的参数,选择过低就会无法保证输出额定电压。
选择过大又会造成延迟角α加大,功率因数变坏,整流元件的耐压升高,增加了装置的成本。
要比较精确地计算二次相电压必须考虑以下因素:1、 最小控制角min α。
在一般可逆传动系统的min α取30°-35°的范围。
2、电网电压波动。
根据规定电网允许波动5%-10%考虑在电网电压最低时要求能保证最大整流输出电压,故通常取波动系数0.9ε=。