初二因式分解知识点整合
初中数学之因式分解知识点汇总

初中数学之因式分解知识点汇总因式分解1. 因式分解的概念:把一个多项式化成几个整式的积的形式,这样的式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式。
2. 因式分解与整式乘法的关系因式分解与整式乘法都是整式变形,两者互为逆变形。
因式分解是将“和差”的形式化为“积”的形式,而整式乘法是将“积”化为“和差”的形式。
注:分解因式必须进行到每一个多项式的因式都不能再分解为止,即分解因式要彻底。
3. 公因式多项式的各项都含有的公共因式叫做这个多项式各项的公因式。
系数——取各项系数的最大公约数;字母——取各项都含有的字母;指数——取相同字母的最低次幂。
例如:多项式pa+pb+pc 中因式p 即为多项式各项的公因式。
因式分解九大方法:(一)运用公式法:我们知道整式乘法与因式分解互为逆变形。
如果把乘法公式反过来就是把多项式分解因式。
于是有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2如果把乘法公式反过来,就可以用来把某些多项式分解因式。
这种分解因式的方法叫做运用公式法。
(二)平方差公式1.平方差公式(1)式子:a2-b2=(a+b)(a-b)(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。
这个公式就是平方差公式。
(三)因式分解1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。
2.因式分解,必须进行到每一个多项式因式不能再分解为止。
(四)完全平方公式(1)把乘法公式(a+b)2=a2+2ab+b2 和(a-b)2=a2-2ab+b2反过来,就可以得到:a2+2ab+b2 =(a+b)2a2-2ab+b2 =(a-b)2这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。
上面两个公式叫完全平方公式。
(2)完全平方式的形式和特点①项数:三项②有两项是两个数的的平方和,这两项的符号相同。
初中数学关于因式分解知识点整理

初中数学关于因式分解知识点整理(1)因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.(2)公因式:一个多项式每一项都含有的相同的因式叫做这个多项式的公因式.(3)确定公因式的方法:公因数的系数应取各项系数的最大公约数;字母取各项的相同字母,而且各字母的指数取次数最低的. (4)提公因式法:一般地,如果多项式的各项有公因式可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.(5)提出多项式的公因式以后,另一个因式的确定方法是:用原来的多项式除以公因式所得的商就是另一个因式.(6)如果多项式的第一项的系数是负的,一般要提出〝-〞号,使括号内的第一项的系数是正的,在提出〝-〞号时,多项式的各项都要变号.(7)因式分解和整式乘法的关系:因式分解和整式乘法是整式恒等变形的正、逆过程,整式乘法的结果是整式,因式分解的结果是乘积式.(8)运用公式法:如果把乘法公式反过来,就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法.(9)平方差公式:两数平方差,等于这两数的和乘以这两数的差,字母表达式:a2-b2=(a+b)(a-b)(10)具备什么特征的两项式能用平方差公式分解因式①系数能平方,(指的系数是完全平方数)②字母指数要成双,(指的指数是偶数)③两项符号相反.(指的两项一正号一负号)(11)用平方差公式分解因式的关键:把每一项写成平方的形式,并能正确地判断出a,b分别等于什么.(l2)完全平方公式:两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方.字母表达式:a2±2ab+b2=(a±b)2(13)完全平方公式的特点:①它是一个三项式.②其中有两项是某两数的平方和.③第三项是这两数积的正二倍或负二倍.④具备以上三方面的特点以后,就等于这两数和(或者差)的平方.(14)立方和与立方差公式:两个数的立方和(或者差)等于这两个数的和(或者差)乘以它们的平方和与它们积的差(或者和). (15)利用立方和与立方差分解因式的关键:能把这两项写成某两数立方的形式.(16)具备什么条件的多项式可以用分组分解法来进行因式分解:如果一个多项式的项分组并提出公因式后,各组之间又能继续分解因式,那么这个多项式就可以用分组分解法来分解因式. (17)分组分解法的前提:熟练地掌握提公因式法和公式法,是学好分组分解法的前提.(18)分组分解法的原那么:分组后可以直接提出公因式,或者分组后可以直接运用公式.(19)在分组时要预先考虑到分组后能否继续进行因式分解,合理选择分组方法是关键.。
因式分解知识点总结

因式分解知识点总结一、因式分解的概念。
1. 定义。
- 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式。
例如:x^2-4=(x + 2)(x - 2),就是将多项式x^2-4因式分解为两个整式(x + 2)与(x - 2)的积的形式。
2. 与整式乘法的关系。
- 因式分解与整式乘法是互逆的恒等变形。
整式乘法是把几个整式相乘化为一个多项式,如(a + b)(a - b)=a^2-b^2;而因式分解是把一个多项式化为几个整式相乘,如a^2-b^2=(a + b)(a - b)。
二、因式分解的方法。
1. 提公因式法。
- 公因式的确定。
- 系数:取各项系数的最大公因数。
例如,对于多项式6x^2+9x,系数6和9的最大公因数是3。
- 字母:取各项相同的字母。
在6x^2+9x中,相同的字母是x。
- 字母的指数:取相同字母的最低次幂。
对于6x^2+9x,x的最低次幂是1。
所以公因式是3x。
- 提公因式的步骤。
- 找出公因式。
- 用多项式除以公因式,得到另一个因式。
例如,6x^2+9x = 3x(2x+3)。
2. 公式法。
- 平方差公式。
- 公式:a^2-b^2=(a + b)(a - b)。
- 应用条件:多项式必须是两项式,并且这两项都能写成平方的形式,符号相反。
例如,9x^2-16y^2=(3x + 4y)(3x - 4y),这里9x^2=(3x)^2,16y^2=(4y)^2。
- 完全平方公式。
- 公式:a^2+2ab + b^2=(a + b)^2,a^2-2ab + b^2=(a - b)^2。
- 应用条件:多项式是三项式,其中有两项能写成平方的形式,且这两项的符号相同,另一项是这两个数乘积的2倍。
例如,x^2+6x + 9=(x + 3)^2,这里x^2=x^2,9 = 3^2,6x=2× x×3。
3. 十字相乘法(拓展内容,人教版教材部分有涉及)- 对于二次三项式ax^2+bx + c(a≠0),如果能找到两个数m和n,使得m + n=b 且mn = ac,那么ax^2+bx + c=(x + m)(x + n)。
【知识】因式分解知识点归纳

【关键字】知识因式分解知识点归纳总结一(一)运用公式法:我们知道整式乘法与因式分解互为逆变形。
如果把乘法公式反过来就是把多项式分解因式。
于是有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2如果把乘法公式反过来,就能够用来把某些多项式分解因式。
这种分解因式的方法叫做运用公式法。
(二)平方差公式1.平方差公式(1)式子:a2-b2=(a+b)(a-b)(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。
这个公式就是平方差公式。
(三)因式分解1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。
2.因式分解,必须进行到每一个多项式因式不能再分解为止。
(四)完全平方公式(1)把乘法公式(a+b)2=a2+2ab+b2 和(a-b)2=a2-2ab+b2反过来,就能够得到:a2+2ab+b2 =(a+b)2a2-2ab+b2 =(a-b)2这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。
上面两个公式叫完全平方公式。
(2)完全平方式的形式和特点①项数:三项②有两项是两个数的的平方和,这两项的符号相同。
③有一项是这两个数的积的两倍。
(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。
这里只要将多项式看成一个整体就能够了。
(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。
(五)分组分解法我们看多项式am+ an+ bm+ bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.如果我们把它分成两组(am+ an)和(bm+ bn),这两组能分别用提取公因式的方法分别分解因式.原式=(am +an)+(bm+ bn)=a(m+ n)+b(m +n)做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以原式=(am +an)+(bm+ bn)=a(m+ n)+b(m+ n)=(m +n)•(a +b).这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就能够用分组分解法来分解因式.(六)提公因式法1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式.2. 运用公式x2 +(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数.2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:①列出常数项分解成两个因数的积各种可能情况;②尝试其中的哪两个因数的和恰好等于一次项系数.3.将原多项式分解成(x+q)(x+p)的形式.(七)分式的乘除法1.把一个分式的分子与分母的公因式约去,叫做分式的约分.2.分式进行约分的目的是要把这个分式化为最简分式.3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减.(八)分数的加减法1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.4.通分的依据:分式的基本性质.5.通分的关键:确定几个分式的公分母.通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.6.类比分数的通分得到分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。
因式分解知识点总结

第一讲因式分解知识梳理1.因式分解定义:把一个多项式化成几个整式乘积的形式,这种变形叫因式分解。
即:多项式f几个整式的积例:-ax+-bx=-x(a-∖-b)3 3 3因式分解,应注意以下几点。
1.因式分解的对象是多项式;2.因式分解的结果一定是整式乘积的形式;3.分解因式,必须进行到每一个因式都不能再分解为止;4.公式中的字母可以表示单项式,也可以表示多项式;5.结果如有相同因式,应写成幕的形式;6.题目中没有指定数的范围,一般指在有理数范围内分解;因式分解是对多项式进行的一种恒等变形,是整式乘法的逆过程。
2.因式分解的方法:(1)提公因式法:①定义:如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这个变形就是提公因式法分解因式。
公因式:多项式的各项都含有的相同的因式。
公因式可以是一个数字或字母,也可以是一个单项式或多项式。
'系数一一取各项系数的最大公约数<字母——取各项都含有的字母指数一一取相同字母的最低次塞例:↑2a3b3c-Sa3b2c3+βa4b2c2的公因式是解析:从多项式的系数和字母两部分来考虑,系数部分分别是12、-8、6,它们的最大公约数为2;字母部分/匕3g。
302。
3,。
力力:都含有因式/∕c,故多项式的公因式是2a3b2c.②提公因式的步骤第一步:找出公因式;第二步:提公因式并确定另一个因式,提公因式时,可用原多项式除以公因式,所得商即是提公因式后剩下的另一个因式。
注意:提取公因式后,对另一个因式要注意整理并化简,务必使因式最简。
多项式中第一项有负号的,要先提取符号。
例1:把12/b78。
从一2447√分解因式.解析:本题的各项系数的最大公约数是6,相同字母的最低次耗是ab,故公因式为6abo 解:↑2a2b-↑Sab2-24aV=6ab(2a-3b-4a2b2)例2:把多项式3。
-4)+x(4-R)分解因式解析:由于4-x=-(x-4),多项式3(x-4)+M4-x)可以变形为3(x-4)-X(X-4),我们可以发现多项式各项都含有公因式(工-4),所以我们可以提取公因式(x-4)后,再将多项式写成积的形式.解:3(x-4)+x(4-x)=3(x-4)-x(x-4)=(3-x)(x-4)例3:把多项式-f+2为分解因式解:-X2+2x=-(x2-2x)=-x(x-2)(2)运用公式法定义:把乘法公式反过来用,就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法。
因式分解法知识点

因式分解法知识点一、知识概述《因式分解法》①基本定义:因式分解法呢,就是把一个多项式化成几个整式乘积的形式。
简单说,就像是把一个大的“数学组合体”拆成几个小“零件”相乘的样子。
比如说多项式$x^2 - 4$,把它变成$(x + 2)(x - 2)$,这就是因式分解。
②重要程度:在数学这个学科里,它可太重要了。
在解方程里经常要用,如果不会因式分解,很多方程都解不出来。
而且在分式运算、化简代数式等方面也是超级重要的。
就好比在一个建筑工程里,它是基础中的基础,要是不会,后面一系列高楼大厦(复杂的数学问题)都盖不起来。
③前置知识:那得先掌握整式乘法的知识,像单项式乘以单项式、单项式乘以多项式、多项式乘以多项式这些。
还得知道基本的代数式运算规则,加减乘除啥的。
比如说不知道乘法规则,怎么能知道怎么把一个多项式拆成乘法的形式呢?④应用价值:实际应用啊,就比如在物理计算里,如果要化简一个关于力或者速度的表达式,可能就用到因式分解把式子变简单去计算。
再比如安排人员分组计算的时候,若关系用式子表示出来,因式分解能帮助快速算出分组个数和每组人数的关系。
二、知识体系①知识图谱:在数学这个大乐园里,因式分解算是代数部分的一个重要“景点”。
它跟很多地方都有联系,像是解方程的桥上、分式化简的城堡旁。
②关联知识:跟整式、方程、分式、代数式求值都有关系啊。
就像在一个大家庭里,它和其他成员相互帮助,整式为它提供原材料,方程依靠它来破解答案,分式需要它梳理关系,代数式求值借助它来变身简化。
③重难点分析:- 掌握难度:说实话,这个对于初学者有点难。
因为有时候要观察多项式的特点,不是一眼就能看出来怎么分解的。
- 关键点:关键就在于对多项式的形式要特别敏感。
看到多项式得能想到它可能用哪种分解方法,比如看到平方差形式,就知道可以用平方差公式。
④考点分析:- 在考试中的重要性:考试里经常出现啊,特别是在代数部分的考试中。
不管是选择题、填空题还是解答题,都有可能露面。
因式分解知识点归纳总结

因式分解知识点归纳总结
定义与基本概念
定义:把一个多项式化为几个整式的积的形式,这种变形叫做因
式分解,也叫作把这个多项式分解因式。
关系:因式分解是整式乘法
的逆过程。
分解方法
提公因式法:
公因式:多项式中的每一项都含有的因式,称为公因式。
找法:
取多项式各项系数的最大公约数为公因式的系数,各项中相同字母取
最低次幂的积。
公式法:
平方差公式:a² - b² = (a + b)(a - b)完全平方公式:a² +
2ab + b² = (a + b)²,a² - 2ab + b² = (a - b)²
十字相乘法:适用于二次项系数为1的二次三项式,如x² + (a + b)x + ab = (x + a)(x + b)。
分组分解法:将多项式分组,然后提取每组的公因式或应用其他方法进行分解。
应用与重要性
应用:因式分解在数学求根作图、解一元二次方程等方面有广泛
应用,是解决许多数学问题的有力工具。
重要性:学习因式分解的方
法与技巧,不仅是掌握数学内容所需,而且对于培养解题技能、发展
思维能力都有着十分独特的作用。
注意事项
在进行因式分解时,要注意分解彻底,即分解到每个因式都不能
再进一步分解为止。
注意公因式的提取要准确,避免遗漏或错误。
熟
记并理解常用的公式和定理,以便在分解过程中灵活运用。
综上所
述,因式分解是数学中的一个重要概念和方法,通过学习和掌握相关的知识点和技巧,可以更好地应用它来解决实际问题。
因式分解知识点归纳总结一

因式分解知识点归纳总结一(一)运用公式法:我们知道整式乘法与因式分解互为逆变形。
如果把乘法公式反过来就是把多项式分解因式。
于是有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2如果把乘法公式反过来,就可以用来把某些多项式分解因式。
这种分解因式的方法叫做运用公式法。
(二)平方差公式1.平方差公式(1)式子:a2-b2=(a+b)(a-b)(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。
这个公式就是平方差公式。
(三)因式分解1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。
2.因式分解,必须进行到每一个多项式因式不能再分解为止。
(四)完全平方公式(1)把乘法公式(a+b)2=a2+2ab+b2 和(a-b)2=a2-2ab+b2反过来,就可以得到:a2+2ab+b2 =(a+b)2a2-2ab+b2 =(a-b)2这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。
上面两个公式叫完全平方公式。
(2)完全平方式的形式和特点①项数:三项②有两项是两个数的的平方和,这两项的符号相同。
③有一项是这两个数的积的两倍。
(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。
这里只要将多项式看成一个整体就可以了。
(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。
(五)分组分解法我们看多项式am+ an+ bm+ bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.如果我们把它分成两组(am+ an)和(bm+ bn),这两组能分别用提取公因式的方法分别分解因式.原式=(am +an)+(bm+ bn)=a(m+ n)+b(m +n)做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以原式=(am +an)+(bm+ bn)=a(m+ n)+b(m+ n)=(m +n)•(a +b).这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式.(六)提公因式法1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式.2. 运用公式x2 +(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数.2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:①列出常数项分解成两个因数的积各种可能情况;②尝试其中的哪两个因数的和恰好等于一次项系数.3.将原多项式分解成(x+q)(x+p)的形式.(七)分式的乘除法1.把一个分式的分子与分母的公因式约去,叫做分式的约分.2.分式进行约分的目的是要把这个分式化为最简分式.3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减.(八)分数的加减法1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.4.通分的依据:分式的基本性质.5.通分的关键:确定几个分式的公分母.通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.6.类比分数的通分得到分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二因式分解知识点整合
初二因式分解知识点整合
在日复一日的学习中,大家都背过各种知识点吧?知识点是传递信息的基本单位,知识点对提高学习导航具有重要的作用。
为了帮助大家掌握重要知识点,以下是店铺为大家整理的初二因式分解知识点整合,欢迎大家分享。
1、因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的'两个转化
2、因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”
3、公因式的确定:系数的最大公约数?相同因式的最低次幂、
注意公式:a+b=b+a;a—b=—(b—a);(a—b)2=(b—a)2;(a—b)3=—(b—a)3
4、因式分解的公式:
(1)平方差公式:a2—b2=(a+b)(a—b);
(2)完全平方公式:a2+2ab+b2=(a+b)2,a2—2ab+b2=(a—b)2
5、因式分解的注意事项:
(1)选择因式分解方法的一般次序是:一提取、二公式、三分组、四十字;
(2)使用因式分解公式时要特别注意公式中的字母都具有整体性;
(3)因式分解的最后结果要求分解到每一个因式都不能分解为止;
(4)因式分解的最后结果要求每一个因式的首项符号为正;
(5)因式分解的最后结果要求加以整理;
(6)因式分解的最后结果要求相同因式写成乘方的形式、
6、因式分解的解题技巧:
(1)换位整理,加括号或去括号整理;
(2)提负号;
(3)全变号;
(4)换元;
(5)配方;
(6)把相同的式子看作整体;
(7)灵活分组;
(8)提取分数系数;
(9)展开部分括号或全部括号;
(10)拆项或补项
7、完全平方式:能化为(m+n)2的多项式叫完全平方式;对于二次三项式x2+px+q,有“x2+px+q是完全平方式?”。