光耦隔离放大电路(二)讲解
光耦隔离电路

光耦隔离电路
光耦隔离电路是一种常用的电路设计方案,它可以实现电路信号的隔
离和传输,保证电路的安全性和稳定性。
光耦隔离电路的主要原理是
利用光电转换器将电信号转换成光信号,再通过光纤或光电耦合器将
光信号传输到另一端,再通过光电转换器将光信号转换成电信号,从
而实现电路信号的隔离和传输。
光耦隔离电路的主要优点是具有高隔离性能、低噪声、高速度、低功耗、小体积等特点。
它可以有效地隔离电路中的干扰信号,提高电路
的抗干扰能力,保证电路的稳定性和可靠性。
同时,光耦隔离电路还
可以实现电路的隔离控制,保护电路中的敏感元件,提高电路的安全性。
光耦隔离电路的设计需要考虑多个因素,包括光电转换器的选择、光
纤或光电耦合器的选型、电路的布局和连接方式等。
在选择光电转换
器时,需要考虑其响应速度、灵敏度、线性度、噪声等参数,以满足
电路的要求。
在选择光纤或光电耦合器时,需要考虑其传输距离、传
输速度、损耗等参数,以保证信号的传输质量。
在光耦隔离电路的布局和连接方面,需要注意信号线和电源线的分离,以避免干扰信号的传输。
同时,还需要注意信号线和地线的分离,以
减少信号的噪声干扰。
在连接光电转换器和光纤或光电耦合器时,需要注意光纤或光电耦合器的极性,以保证信号的正确传输。
总之,光耦隔离电路是一种重要的电路设计方案,它可以实现电路信号的隔离和传输,保证电路的安全性和稳定性。
在设计光耦隔离电路时,需要考虑多个因素,包括光电转换器的选择、光纤或光电耦合器的选型、电路的布局和连接方式等,以保证电路的性能和可靠性。
光耦隔离的作用及其原理

光耦隔离的作用及其原理光耦隔离器(Optocoupler)是一种被广泛使用于电子电路中的隔离器件。
其作用是将输入信号与输出信号通过光学器件隔离开来,以便实现信号传输的电气隔离。
光耦隔离器通常由光发射器和光接收器组成,光发射器和光接收器之间通过光线(通常为红外线)进行信号的传输。
光发射器是一个发光二极管(LED),它将输入的电流转化为光信号发射出去。
光接收器是一个光敏二极管或光电三极管,它将接收到的光信号转化为电流输出。
光耦隔离器的原理基于光电转换效应,即将输入电信号转换为光信号,并通过光接收器将光信号转换为输出电信号。
其工作原理如下:1.输入信号转换:当输入信号电平高时,输入端的电流会流向光发射器(发光二极管),激活发光二极管并产生光束。
当输入信号电平低时,输入端的电流不会流向光发射器,光发射器处于关闭状态。
2.光信号传输:发光二极管产生的光束会穿过隔离器内的隔离通道,通常是一个塑料管或玻璃管。
这种隔离材料对光线的透射性能较好,能够有效传输光信号。
3.光信号接收:光接收器位于隔离器的另一端,当接收到发光二极管发出的光束时,光电转换器件(如光敏二极管或光电三极管)会将光信号转换为相应大小的电流输出信号。
4.输出信号转换:光接收器输出的电流信号经过放大和调理电路处理后,可以得到与输入信号相应的输出信号。
光耦隔离器的作用主要有以下几个方面:1.电气隔离:光耦隔离器将输入和输出电路通过光信号隔离开来,避免了直接接触的电气连接,从而实现了电气隔离。
这种电气隔离能够有效地防止输入和输出电路之间的电流、电压、干扰等相互传播,提高了电路系统的稳定性和可靠性。
2.电压传递:光耦隔离器可以将输入电路和输出电路之间的电压进行适当的升降,实现不同电平的转换。
例如,将高电平的输入信号转换为低电平的输出信号,或将低电平的输入信号转换为高电平的输出信号。
3.信号隔离:光耦隔离器适用于不同高低压电路之间的信号传输。
通常应用于将微小信号从低压侧传输到高压侧的场合,如从传感器获取信号并将其传输到控制器或驱动器。
光耦隔离继电器原理图

光耦隔离继电器原理图光耦隔离继电器是一种常用的电气元件,它在电路控制和隔离方面具有重要的作用。
本文将介绍光耦隔离继电器的原理图及其工作原理,希望能够对大家有所帮助。
光耦隔离继电器由光电耦合器件和继电器两部分组成。
光电耦合器件通常包括发光二极管(LED)和光敏三极管(光电晶体管)。
继电器部分则包括控制端和被控制端。
在光耦隔离继电器中,LED发出的光线被光敏三极管接收,从而实现控制端和被控制端之间的电气隔离。
光耦隔离继电器的原理图如下所示:(在这里插入原理图图片)。
在原理图中,我们可以看到LED和光敏三极管之间通过光线相连接,控制端和被控制端之间则通过继电器实现电气隔离。
当控制端施加电压时,LED发出光线,光敏三极管接收到光线后导通,从而使得继电器被控制端闭合。
这样,控制端和被控制端之间的信号传递就实现了隔离。
光耦隔离继电器的工作原理非常简单,但却非常重要。
它可以在控制端和被控制端之间实现电气隔离,从而保护控制端的电路不受到被控制端的影响。
这在一些特殊的电气环境中尤为重要,比如高压、高温、强电磁干扰等情况下,光耦隔离继电器可以保证电路的稳定和安全。
除此之外,光耦隔离继电器还具有体积小、重量轻、响应速度快等优点,因此在工业控制和自动化领域得到了广泛的应用。
它可以用于PLC控制系统、电力电子设备、通信设备、仪器仪表等领域,为电路的稳定运行提供了重要的保障。
总之,光耦隔离继电器作为一种重要的电气元件,在现代电路控制和隔离中发挥着不可替代的作用。
通过本文的介绍,相信大家对光耦隔离继电器的原理图和工作原理有了更深入的了解,希望能够在实际的电路设计和应用中发挥积极的作用。
光耦隔离放大电路

隔离放大电路的设计1 设计主要内容及要求1.1 设计目的:(1)掌握隔离放大电路的构成,原理与设计方法;(2)熟悉模拟元件的选择,使用方法。
1.2基本要求:(1)输入信号为方波,幅度1V,频率100Hz~40kHz;(2)采用适当的隔离设备不影响信号提供者;(3)输出信号上升及下降时间占有方波周期的5%以下;(4)输出信号幅度不低于3V。
1.3发挥部分:<100μs;(1)tpd(2)幅度分段可调;(3)其他。
中文摘要本次模拟电子课程设计的题目是隔离放大电路,实际上是对光耦的延伸,主要工作部分是一个光电耦和器对运算放大电路的控制,光电耦合器是一种可把电信号转换成为光信号,然后又将光信号恢复为电信号的半导体器件,它属于一种电——光——电转换器件。
其基本结构是将光发射器和光敏接收器装在同一密闭的壳体内,彼此间用透明绝缘体隔离。
常见的光发射器为红外发光二极管,其引脚作为输入端,用晶体管图示仪可观察到其特性曲线与一般二极管相似。
光敏接收器为光敏二极管或光敏三极管,其引脚作为输出端。
当电信号送入光电耦合器的输入端时,发光二极管通过电流而发光,其发光的强弱与信号电流成正比,亦即与流过二极管的正向电流的大小成正比,输出端的光敏三极管受到光照后CE导通。
而当输入端无信号时,发光二极管不亮,光敏三极管截止,CE不通。
从而实现了光电的传输和转换。
随着各类电气设备控制电路的日益复杂,各功能电路之间的干扰不可避免。
而光电耦合器的输入端和输出端之间由于通过光信号来传输,因而两部分电路之间在电气上是完全隔离的,因而没有电信号的反馈和干扰,故其性能稳定,抗干扰能力很强。
一般情况下,电路间数字信号的传输,都可以使用光电耦合器进行彻底隔离。
关键词隔离放大器光耦电流负反馈放大电路电压跟随器目录课程设计(论文)任务书 (I)课程设计(论文)成绩评定表 (Ⅲ)中文摘要 (IV)1设计任务描述 (1)1.1 设计题目 (1)1.2 设计要求 (1)1.2.1 设计目的 (1)1.2.2 基本要求 (1)1.2.3 发挥部分 (1)2 绪论 (2)3 基本框架 (3)4 模块细节及各部分电路设计 (5)4.1各部分电路设计 (5)4.2电流负反馈放大电路的参数计算 (7)5 系统仿真运行电路及错误解决 (9)6 元器件清单 (14)7 主要元器件介绍 (15)小结 (19)致谢 (20)参考文献 (21)附录 (22)A1 multisim仿真系统电路接线图 (22)设计任务描述1.1 设计题目:隔离放大电路1.2 设计要求:1.2.1 设计目的:(1)掌握隔离放大电路的构成,原理与设计方法;(2)熟悉模拟元件的选择,使用方法。
带模拟光耦隔离的信号放大电路的设计

到 了很 好 的 应 用 。通 过 应 用表 明 , 电路 线 性 度 好 , 该 完全 能 满足 高放 大倍 数 、 高稳 定性 的仪 器仪 表 信
et n leet m g e c nef e c.T e ei i uto h t s n et n a -e om hs en vr od p lai . xe a lc o an t it e n e h ds n cr i f te e i ts r r i rr g c no o i jtlo s a be a ey go api t n r c o
ቤተ መጻሕፍቲ ባይዱ
cr i wt h h ip ti p dn e od s bly ih m gictn ad ajs be bnfs A h a e t e ui h nl po i ut i i n u m eac ,go t it,hg anf a o n dut l e e t tte sm i s g te aao ot c h g a i i i a i . m n g
Ab ta t T e i u t e in d n h s a e u e L 2 o a i sr me t t n mpi e ip t s sg a a l c t n s r c : h c r i c d sg e i t i p p r s d M3 4 p mp n t u n ai a l r n u a a i n l mp i ai o i f i f o
号 的放 大 处理 要 求 。 关 键 词 :仪 用 放 大 电 路 ; 拟 光 耦 隔 离 ; 号 放 大 模 信
光耦隔离的原理及其使用技巧

光耦使用技巧光电耦合器(简称光耦),是一种把发光元件和光敏元件封装在同一壳体内,中间通过电→光→电的转换来传输电信号的半导体光电子器件。
光电耦合器可根据不同要求,由不同种类的发光元件和光敏元件组合成许多系列的光电耦合器。
目前应用最广的是发光二极管和光敏三极管组合成的光电耦合器,其内部结构如图1 a所示。
光耦以光信号为媒介来实现电信号的耦合与传递,输入与输出在电气上完全隔离,具有抗干扰性能强的特点。
对于既包括弱电控制部分,又包括强电控制部分的工业应用测控系统,采用光耦隔离可以很好地实现弱电和强电的隔离,达到抗干扰目的。
但是,使用光耦隔离需要考虑以下几个问题:①光耦直接用于隔离传输模拟量时,要考虑光耦的非线性问题;②光耦隔离传输数字量时,要考虑光耦的响应速度问题;③如果输出有功率要求的话,还得考虑光耦的功率接口设计问题。
1 光电耦合器非线性的克服光电耦合器的输入端是发光二极管,因此,它的输入特性可用发光二极管的伏安特性来表示,如图1b所示;输出端是光敏三极管,因此光敏三极管的伏安特性就是它的输出特性,如图1c所示。
由图可见,光电耦合器存在着非线性工作区域,直接用来传输模拟量时精度较差。
图1 光电耦合器结构及输入、输出特性解决方法之一,利用2个具有相同非线性传输特性的光电耦合器,T1和T2,以及2个射极跟随器A1和A2组成,如图2所示。
如果T1和T2是同型号同批次的光电耦合器,可以认为他们的非线性传输特性是完全一致的,即K1(I1)=K2 (I1),则放大器的电压增益G=Uo/U1=I3R3/I2R2=(R3/R2)[K1(I1)/K2(I1)]=R3/R 2。
由此可见,利用T1和T2电流传输特性的对称性,利用反馈原理,可以很好的补偿他们原来的非线性。
图2 光电耦合线性电路另一种模拟量传输的解决方法,就是采用VFC(电压频率转换)方式,如图3所示。
现场变送器输出模拟量信号(假设电压信号),电压频率转换器将变送器送来的电压信号转换成脉冲序列,通过光耦隔离后送出。
光耦电路工作原理

光耦电路工作原理光耦电路是一种利用光信号进行传输和控制的电路,主要由光发射器、光接收器和光电检测器组成。
其工作原理主要基于光电转换、信号传输、隔离作用、电压放大、线性输出、高速响应和可靠性高等特点。
一、光电转换光耦电路中的光发射器通常采用发光二极管(LED)或激光二极管等光源,当电流通过这些光源时,它们会发出光线。
当光线照射到光电检测器上时,会产生光电流,即实现了光电转换。
这个过程是将电信号转换为光信号,为光信号的传输做准备。
二、信号传输在光耦电路中,由于光具有优秀的传输特性,可以在较长距离上传输而不损失信号质量。
通过将电信号转换为光信号,实现了电信号的长距离传输,从而可以将电路中的各个部分连接起来,实现电路的集成化设计。
三、隔离作用光耦电路中的光电检测器将接收到的光信号转换为电信号,但这个电信号与输入的电信号之间是相互隔离的。
这种隔离作用可以有效地避免电路中的相互干扰和噪声,提高电路的稳定性和可靠性。
四、电压放大光耦电路中的光电检测器通常具有电压放大功能,可以将接收到的微弱光信号转换为较强的电信号。
这种电压放大功能可以增强电路的输出能力,使得电路更加适合于实际应用。
五、线性输出光耦电路中的光电检测器通常具有线性输出特性,即输出的电信号与输入的光信号之间呈线性关系。
这种线性输出特性使得光耦电路在模拟信号传输和控制方面具有广泛的应用。
六、高速响应由于光速非常快,因此光耦电路中的光电转换和信号传输速度非常快,可以实现高速响应。
这种高速响应特性使得光耦电路在数字信号传输和控制系统等方面具有广泛的应用。
七、可靠性高光耦电路中的光源和光电检测器通常采用半导体材料制作,具有较长的使用寿命和较高的稳定性。
此外,由于光耦电路中不存在机械接触部分,因此具有较高的可靠性,适用于各种恶劣环境和工业应用场景。
利用光耦实现模拟隔离放大电路的原理及设计

本文提出了一种新的隔离放大器的设计方案,该方案结构简单,且选用通用器件,易于实现。
通过将本电路与AD公司的AD210AN集成模拟隔离放大器进行实验对比。
本隔离放大电路在带宽上要优于集成模拟隔离放大器。
隔离放大器按传输信号的类型。
可以分为模拟隔离和开关隔离放大器。
模拟隔离放大器的生产商和产品种类均较少,且产品价格比较昂贵。
开关隔离放大器的生产商较多,产品种类也多,价格较低,相对便宜。
高价位的模拟隔离放大器限制了其应用范围。
而文献[2]中提到的双通道隔离放大器结构复杂。
且对隔离间距有较高的要求,而文献[3]中所提到的光电耦合隔离放大器则对元器件参数有较高的要求。
文献[4]中提到的隔离放大器对隔离器件间距也有特殊要求。
1新型电路原理笔者设计的隔离放大器的原理电路。
本隔离放大电路主要由光电耦合器和运算放大器构成。
光电耦合器选用普通光耦TLP521,运算放大器则选择通用运算放大器LF353。
通过这两种普通器件的搭配.所得到的隔离放大器性能和专用模拟隔离放大器的性能相近。
放大器加普通光耦组成的隔离放大电路。
本隔离放大电路由输入和隔离输出两部分构成,且两部分使用隔离的电源(Vcc1、Vee1和Vcc2、Vee2供电。
输入部分由运放U1,电阻R1、R2、R3、R4、R5,电容C1、C2,光电耦合器OPT1、OPT2、OPT3、OPT4的发光二极管部分OPT1_A、OPT2_A、OPT3_A、OPT4_A和OPT1、OPT3的光敏三极管部分OPT1_B、OPT3_B组成,由正电源Vcc1和负电源Vee1供电。
OPT1_A、OPT2_A和OPT3_A、OPT4_A 的电流构成差动放大输入。
R1和R2为运放的输入电阻,R3和R4可为四个光耦的发光二极管(LED)提供偏置和控制电流。
运放U1和光耦OPT1、OPT3组成了一个射级跟随器,R5上的电压即为运放的输入电压。
运放的带宽决定着构成隔离放大器的带宽。
现有的集成模拟隔离放大器的带宽均在100kHz以下,而常用运放的带宽是这个带宽的几倍到几十倍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中文摘要本文主要通过光耦隔离放大电路,对光电耦合器4N25及放大电路和电压跟随器中的放大器件TL084的特性进行简要描述和分析。
光耦隔离放大电路主要由电压串联负反馈放大电路光电耦合器和电压跟随器三部分组成。
其中光电耦合器是本次设计的关键。
光耦的工作原理包括:光的发射、光的接收及信号放大三个环节。
输入的电信号驱动发光二极管(LED),使之发出一定波长的光,被光探测器接收而产生光电流,再经过进一步放大后输出。
这就完成了电—光—电的转换,从而起到输入、输出、隔离的作用。
由于光耦合器输入输出间互相隔离,电信号传输具有单向性等特点,因而具有良好的电绝缘能力和抗干扰能力。
又由于光耦合器的输入端属于电流型工作的低阻元件,因而具有很强的共模抑制能力。
所以,它在长线传输信息中作为终端隔离元件可以大大提高信噪比,光耦合器的主要优点是:信号单向传输,输入端与输出端完全实现了电气隔离隔离,输出信号对输入端无影响,抗干扰能力强,工作稳定,无触点,使用寿命长,传输效率高。
在单片开关电源中,利用线性光耦合器可构成光耦反馈电路,通过调节控制端电流来改变占空比,达到精密稳压目的。
在放大电路中采用电压串联负反馈电路,对输入的信号进行比例放大输出,并且由于采用负反馈,这样就可以使电路具有较好的恒压输出特性。
在整个电路的输出端与电压更随器连接,以进一步使电路达到良好稳压输出效果。
关键词隔离放大器光耦电压放大电路电压跟随器目录课程设计任务书................................................................................................错误!未定义书签。
隔离放大电路的设计........................................................................................错误!未定义书签。
模拟电子技术课程设计成绩评定表............................................................错误!未定义书签。
中文摘要. (I)目录 (1)1.设计任务描述 (2)1.1 设计题目: (2)1.2 设计要求: (2)1.2.1 设计目的: (2)1.2.2 基本要求: (2)1.2.3发挥部分: (2)2.设计思路 (3)3.基本框架 (4)4.模块细节及各部分电路设计及参数计算 (5)4.1方波信号输入 (5)4.2电源提供电流进入光耦图 (6)4.2.1 光偶的一些参数 (6)4.2.2分析 (9)4.2.3放大电路的选择及计算 (9)4.2.4 光耦简图 (11)4.2.5 CTR的计算 (11)R的计算 (11)4.344.4 电压跟随器的设计图 (12)4.5 方波仿真信号输出 (12)4.6.注意的问题 (13)5.电路元件清单 (14)6.主要元器件介绍 (15)6.1光耦数据单 (15)6.2 TLO84的数据单 (17)7.小结 (19)8.参考文献 (21)9.附录 (22)1.设计任务描述1.1 设计题目:1.2 设计要求:1.2.1 设计目的:(1)掌握隔离放大电路的构成,原理与设计方法;(2)熟悉模拟元件的选择,使用方法。
1.2.2 基本要求:(1)输入信号为方波,幅度1V,频率100Hz~40kHz;(2)采用适当的隔离设备不影响信号提供者;(3)输出信号上升及下降时间占有方波周期的5%以下;(4)输出信号幅度不低于3V。
1.2.3发挥部分:<100μs;(1)tpd(2)幅度分段可调;(3)其他。
2.设计思路光耦合器(optical coupler,英文缩写为OC)亦称光电隔离器,简称光耦。
光耦合器以光为媒介传输电信号。
它对输入、输出电信号有良好的隔离作用,所以,它在各种电路中得到广泛的应用。
目前它已成为种类最多、用途最广的光电器件之一。
光耦合器一般由三部分组成:光的发射、光的接收及信号放大。
输入的电信号驱动发光二极管(LED),使之发出一定波长的光,被光探测器接收而产生光电流,再经过进一步放大后输出。
这就完成了电—光—电的转换,从而起到输入和输出隔离的作用。
光耦合器的主要优点是:信号单向传输,输入端与输出端完全实现了电气隔离隔离;输出信号对输入端无影响,抗干扰能力强;由于光耦合器的输入端属于电流型工作的低阻元件,因而具有很强的共模抑制能力;另外,它还有工作稳定,无触点,使用寿命长,传输效率高等优点。
而我的电路图设计步骤:(1)确定目标:设计整个系统是由哪些模块组成及明确他们的各自功能,通过各个模块之间的信号传输,实现信号的比例放大、光-电-光转化以及电压跟随等目的。
并画出线性直流稳压电源方框图。
(2)系统分析:根据系统功能,选择各模块所用电路形式。
(3)功能分析:分析各模块在此部分所起到的作用。
(4)参数选择:根据系统指标的要求,确定各模块电路中元件的参数。
(5)总电路图:连接各模块电路,整体分析。
基本设计思路为:1.利用放大电路提供光耦所需的电流2.通过光耦对输入信号进行隔离放大3.通过电压跟随器,使输出信号稳定3.基本框架→基本原理:1.通过电压提供电流,利用放大器改变电流的大小,从而使输入电流在所选光耦的线性区,使光耦起到隔离放大的作用。
2. 在光电耦合器输入端加的电流信号使发光源发光,光的强度取决于激励电流的大小,此光照射到封装在一起的受光器上后,因光电效应而产生了光电流,由受光器输出端引出,这样就实现了电一光一电的转换。
3. 在电路中加入电压跟随器使其在电路中不至于消耗电压。
4.模块细节及各部分电路设计及参数计算4.1方波信号输入输入信号仿真图4.2电源提供电流进入光耦图图4.2.14.2.1 光偶的一些参数Maximum Ratings T =25°CAEmitterReverse V oltage..........................................................................................6.0 V Forward Current ........................................................................................60 mA Surge Current (t≤10 μs)...............................................................................2.5 A Power Dissipation...................................................................................100 mW DetectorCollector-Emitter Breakdown V oltage...........................................................70 VEmitter-Base Breakdown V oltage................................................................7.0 V Collector Current.......................................................................................50 mA Collector Current(t <1.0 ms)....................................................................100 mA Power Dissipation...................................................................................150 mW PackageIsolation Test V oltage..........................................................................5300 V RMS Creepage.............................................................................................. ≥7.0 mm Clearance ............................................................................................. ≥7.0 mm Isolation Thickness between Emitter and Detector............................... ≥0.4 mm Comparative Tracking Index per DIN IEC 112/VDE0303, part 1 (175)Isolation Resistance12V=500 V, T =25°C...............................................................................10 ?IO A11V =500 V, T =100°C............................................................................ 10 ?IO AStorage Temperature................................................................–55°C to +150°C Operating Temperature............................................................–55°C to +100°C Junction Temperature................................................................................ 100°C Soldering Temperature (max. 10 s, dip soldering:distance to seating plane ≥1.5 mm)...................................................... 260°C4.2.2分析1.由上面的数据单可知,发光二极管的工作区域的电流为mA mA I F 60~5=为了使其工作在最佳状态只有加一个放大器。