五种插值法的对比研究毕业论文
五种插值法的对比研究

学号:2013大学毕业论文五种插值法的对比研究A Comparative Study of Five Interpolation Methods学院: 理学院教学系:数学系专业班级: 信息与计算科学专业1301学生:指导教师: 讲师2017年6月7日目录容摘要...............................................................I Abstract.................................................................II 1 导言................................................................. 1 1.1 选题背景................................................. 11.2 研究的目的和意义................................................. 22 五种插值法.................................................3 2.1 拉格朗日插值................................................. 3 2.2 牛顿插值.................................................4 2.3 分段线性插值................................................. 4 2.4 分段三次Hermite插值................................................. 52.5 样条插值................................................. 53 五种插值法的对比研究................................................. 6 3.1 五种插值法的解题分析比较............................................. 63.2 五种插值法的实际应用.................................................154 结语.................................................20 参考文献...............................................................21 致...................................................................22容摘要:插值法是数值分析中最基本的方法之一。
几种插值法的对比研究1

几种插值法的对比研究1插值法是一种常用的数据处理方法,特别在数字信号处理和数值计算中广泛应用。
在实际应用中,选择合适的插值方法对数据的良好处理有着重要的作用。
本文将对几种常用的插值方法进行对比研究。
1. 线性插值法线性插值法是最简单也是最常用的插值方法。
它假设函数在两个已知点之间是一条直线,根据该直线与自变量的位置,即可得到插值的函数值。
线性插值法的计算简便,适用于各种连续变化的函数,但是对曲率较大的函数,有时可能会出现较大的误差。
2. 多项式插值法多项式插值法是一种高效的插值方法。
它通过已知的数据点和插值点,构造一个多项式函数。
这个多项式函数与所需求函数一样,在插值点处取相同的函数值。
多项式插值法插值精度较高,但对于高次多项式的构造和计算,不仅容易出现数值不稳定的问题,而且计算量也比较大,往往在实际应用中给计算机带来较大的负担。
样条插值法是一种优秀的插值方法。
样条插值法将整个插值区间划分为若干小区间,每个小区间内部通过一个样条函数连接在一起。
样条函数既可以满足插值的要求,又可以保持函数在区间内的连续性。
这样可以产生较好的插值效果。
相对于线性插值和多项式插值,样条插值法的误差一般较小,满足一定的平滑性要求,而且计算相对简单。
在实际应用中广泛使用。
4. 径向基函数插值法径向基函数插值法是一种数值稳定性较高的方法。
它利用径向基函数的性质,即可以逼近各种连续的函数,将一个函数表示为各个径向基函数的线性组合,建立待插值函数与径向基函数之间的关系。
当插值点趋近于数据点时,径向基函数插值法可以达到较高的精度。
径向基函数插值法的计算方法较为复杂,需要选取合适的径向基函数和其它参数,定位问题更加困难,但是计算结果却更为准确。
综合各种插值方法的优缺点,我们可以根据不同的实际需求选择不同的插值方法。
在插值研究中,需要注意插值方法的数值稳定性、计算效率、精度和平滑性等各个方面的综合考虑,以达到最优的插值效果。
各种插值法的对比研究

各种插值法的对比研究插值法是指通过已知数据点来估计两个数据点之间的未知数值。
在实际生活和科学研究中,经常会遇到需要插值的情况,例如气象预测、金融分析、图像处理等。
本文将对比介绍几种常见的插值方法,包括线性插值、多项式插值、样条插值和逆距离加权插值。
1.线性插值:线性插值是最简单的插值方法,假设两个数据点之间的值变化是线性的。
根据已知数据点的坐标和对应的值,通过线性方程推断两个数据点之间的值。
优点是计算简单快速,但缺点是对数据变化较快的情况下估计效果较差。
2.多项式插值:多项式插值假设两个数据点之间的值变化是一个多项式函数。
通过已知数据点的坐标和对应的值,使用多项式拟合方法求解多项式函数的系数,再根据该多项式求解两个数据点之间的值。
多项式插值可以准确拟合已知数据点,但在插值点较多时容易出现振荡现象,且对数据点分布敏感。
3.样条插值:样条插值是一种平滑的插值方法,通过构建分段连续的多项式函数来逼近整个数据集。
根据已知数据点的坐标和对应的值,通过求解一组多项式函数的系数,使得在相邻区间之间函数值连续,导数连续。
样条插值可以减少振荡现象,对于插值点密集的情况能更好地逼近原始数据。
4.逆距离加权插值:逆距离加权插值是一种基于距离的加权插值方法,根据已知数据点与插值点之间的距离,对每个已知数据点进行加权平均得到插值点的值。
该方法认为距离较近的数据点对插值结果的影响更大。
逆距离加权插值简单易用,对数据点的分布不敏感,但对于距离较远的数据点容易受到较大的干扰。
在实际应用中,选择合适的插值方法需要根据数据的特点和要求来决定。
若数据变化较简单、平滑,可以选择线性插值或多项式插值;若数据变化复杂,存在振荡现象,可以选择样条插值;若数据点分布较稀疏,可以选择逆距离加权插值。
此外,还有一些其他的插值方法,如Kriging插值、径向基函数插值等,它们根据不同的假设和模型进行插值,具有一定的特点和适用范围。
综上所述,对于选择合适的插值方法,需要根据具体问题和数据特点来综合考虑,结合不同方法的优缺点进行比较研究,以得到更准确和可靠的插值结果。
插值方法比较范文

插值方法比较范文插值方法是数值计算中常用的一种数值逼近技术,用于通过已知数据点之间的关系来估计未知数据点的值。
在插值过程中,根据不同的插值方法,可以得到不同的近似函数,从而得到不同的结果。
常见的插值方法包括拉格朗日插值、牛顿插值、埃尔米特插值和样条插值等。
下面将对这些插值方法进行比较,包括优缺点。
首先是拉格朗日插值法,它是通过使用已知数据点的函数值来构建一个多项式,再利用这个多项式来估算未知数据点的函数值。
拉格朗日插值法的优点是简单易懂、计算简便,而且在已知数据点分布较为均匀的情况下效果较好。
然而,拉格朗日插值法的缺点是对于较多数据点的情况,构建的多项式会非常复杂,容易导致插值结果的振荡。
此外,拉格朗日插值法对于增加或减少一个数据点都需要重新计算,不够灵活。
其次是牛顿插值法,它也是通过已知数据点的函数值来构建一个多项式,但是与拉格朗日插值法不同,牛顿插值法利用差商的概念来简化多项式的计算。
牛顿插值法的优点是可以递推计算差商,避免了重复计算,因此对于增加或减少一个数据点时比较方便。
此外,牛顿插值法的插值多项式在已知数据点分布较为稀疏的情况下效果较好。
缺点是对于较多数据点的情况,插值多项式同样会变得复杂,容易导致插值结果的振荡。
再者是埃尔米特插值法,它是拉格朗日插值法的一种改进方法。
埃尔米特插值法不仅利用已知数据点的函数值,还利用已知数据点的导数值来构建插值函数,从而提高了插值的精度。
埃尔米特插值法的优点是可以通过已知数据点的导数值来更好地拟合函数的特点,从而得到更准确的插值结果。
缺点是在计算过程中需要求解一系列线性方程组,计算量较大。
最后是样条插值法,它是常用的插值方法之一、样条插值法通过将插值区间划分为若干小区间,在每个小区间上构建一个低次多项式,通过满足一定的光滑性条件来保证插值函数的平滑性。
样条插值法的优点是插值函数的平滑性较好,能够解决拉格朗日插值法和牛顿插值法的振荡问题。
缺点是在计算过程中需要求解大规模的线性方程组,计算量较大。
数据插值方法范文

数据插值方法范文数据插值是指利用已知数据点来估算或预测未知数据点的方法。
在实际应用中,数据插值常常用于填补缺失数据、估算缺失数据以及生成光滑曲线等任务。
本文将介绍常用的数据插值方法。
1.线性插值方法:线性插值是数据插值的一种简单且常用方法。
它假设在两个已知数据点之间的未知数据点的取值是线性变化的。
线性插值的计算公式可以表示为:y=y1+(x-x1)*(y2-y1)/(x2-x1),其中x1和x2是已知数据点的位置,y1和y2是对应的取值,x是待插值点的位置,y是对应的待插值的值。
2.拉格朗日插值方法:拉格朗日插值方法是一种高次插值方法。
它通过构造一个多项式函数来逼近已知数据点,然后利用多项式进行插值。
拉格朗日插值的计算公式可以表示为:y = Σ(yi * L(xi)),其中xi和yi是已知数据点的位置和取值,L(xi)是拉格朗日插值多项式的系数。
3.牛顿插值方法:牛顿插值方法也是一种高次插值方法。
与拉格朗日插值不同的是,牛顿插值使用了差商的概念来构造插值多项式。
牛顿插值的计算公式可以表示为:y=Σ(Di*ωi),其中Di是差商,ωi是权重。
牛顿插值可以通过迭代计算差商并更新权重来求解。
4.三次样条插值方法:三次样条插值方法是一种光滑插值方法,其主要思想是以每两个已知数据点为节点,通过拟合三次多项式来进行插值。
三次样条插值的计算公式可以表示为:S(x) = ai + bi(x-xi) + ci(x-xi)^2 + di(x-xi)^3,其中ai、bi、ci、di是多项式的系数,xi是已知数据点的位置。
5.克里金插值方法:克里金插值方法是一种空间插值方法,主要用于地质学、气象学等领域。
它假设未知点的取值是由已知点的取值通过一定的权重加权求和得到的。
克里金插值的计算公式可以表示为:Z(x)=Σ(λi*Zi),其中Z(x)是待插值点的取值,Zi是已知数据点的取值,λi是权重。
除了以上介绍的几种常用的数据插值方法外,还有一些其他的插值方法,如最邻近插值、反距离权重插值、径向基函数插值等。
各种插值法的对比研究

各种插值法的对比研究目录1.引言 (1)2.插值法的历史背景 (1)3.五种插值法的基本思想 (2)3.1拉格朗日插值 (2)3.2牛顿插值 (3)3.3埃尔米特插值 (3)3.4分段线性插值 (4)3.5三次样条插值 (5)4.五种插值法的对比研究 (5)4.1拉格朗日插值与牛顿插值的比较 (5)4.2多项式插值法与埃尔米特插值的比较 (6)4.3多项式插值法与分段线性插值的比较 (6)4.4 分段线性插值与样条插值的比较 (6)5.插值法在实际生活中的应用 (6)6.结束语 (6)致谢 (7)参考文献 (7)各种插值法的对比研究摘要:插值法是一种古老的数学方法,也是数值计算中的一个算法.插值法不仅是微分方程、数值积分、数值微分等计算方法的基础,而且在医学、通讯、精密机械加工等领域都涉及到了它.本文首先介绍了插值的背景以及常用的五种插值法的基本思想,然后通过拉格朗日插值与牛顿插值、多项式插值与埃尔米特插值、多项式插值与分段线性插值、分段线性插值和样条函数插值给出相应的算法与MATLAB 程序,根据已学的知识对五种插值方法与被插函数的逼近程度进行对比研究,找出不同方法间的联系与区别,分析出它们的优缺点,最后在此基础上进一步研究插值法的实际应用,以提高插值法的实用性,从而能让我们在以后的应用中看到一个问题,就知道哪种方法更适合于它,然后大大地快速的提高效率.关键词:多项式插值;样条函数插值;MATLAB 程序;应用1.引言在很多解题以及应用生活中,常常需要用数量关系来反映问题,但是有时没有办法通过数学语言准确地表达出来.已知有些变量之间存在一种函数关系,但没法用函数的表达式表示出来.比如,)(x f 在某个区间上[]b a ,是存在某种数量关系的,但是根据观察和测量或者实验只能得到有限个函数值,我们可以利用这几点来确定函数表达式.或者有一些函数表达式是已经知道的,但是它们的计算是十分繁琐复杂的,不容易发现它的本质,而且它的使用方法也比较局限.函数是表达数与数之间的联系,为了能很好地用数学语言表达出函数的关系,一般通过给定的数据构造一个函数)(x P ,这样既能反映函数)(x f 的特点,又方便计算,用)(x P 近似)(x f .通常选一个简单的函数)(x P ,而且=)(i x P )(i x f ()n i ,...,2,1,0=成立,这个时候的)(x P ,从要表达的函数规律来看,就是我们需要的插值函数[1].所用方法就是插值法,由于所选用的)(x P 的多样化,得到不同的插值法.2.插值法的历史背景插值法的历史源远流长,在很早的时候就涉及到了它.它是数值计算中一个古老的分支,它来源于生产实践.因为牛顿力学的物理理论知识在一千年前没有出现,所以我们的祖先没有办法用很准确的数学解析式来表达日月五星的运行规律.后来,古代的人们有着聪慧的头脑,想出了插值方法,然后发现了日月五星的运行规律.例如唐朝数学家张遂提出了插值法的概念以及不等距节点的插值,并将其应用在天文历法观测中.现代工业革命以后欧洲著名的数学家拉格朗日给出了拉格朗日插值法的概念以及应用.微积分产生后,插值法的基本理论和结果进一步得到改善.3.五种插值法的基本思想如果一个函数)(x f y =在区间[]b a ,上有定义,且已知在点b x x x a n ≤<<<≤...10上的值0y ,1y ,2y , ,n y ,若存在一简单函数)(x P ,使得成立,)(x P 为插值函数,点0x ,1x ,2x , ,n x 称为插值节点,插值节点的区间[]b a ,称为插值区间,求插值函数)(x P 的方法称为插值法.若)(x P 的多项式次数不超过n ,即有)(x P n n x a x a x a a ++++= (2210)3.1拉格朗日插值拉格朗日插值是n 次多项式插值,它是用构造插值基函数的办法来解决n 次多项式插值的问题.拉格朗日插值多项式可以表示为=)(x L n ∑=n k k k x ly 0)(,)(x l k 为插值基函数,表达式为=)(x l k ))...()()...(())...()()...((110110n k k k k k k n k k x x x x x x x x x x x x x x x x --------+-+-,n k ,,1,0 = 截断误差为)()()(x L x f x R n n -=,也是插值余项.关于插值余项,估计有以下定理[2]:设)(x f n 在[]b a ,上连续,)(1x f n +在()b a ,内存在,节点b x x x x a n≤<<<<≤ 210,)(x L n 是满足条件(1.4)的插值多项式,则对任何[]b a x ,∈,插值余项)()!1()()()()(1)1(x n f x L x f x R n n n n +++=-=ωξ 余项表达式的应用有它的局限性,一般只适合于)(x f 高阶导数存在的情况下.若设1)1()(max ++≤≤=n n b x a M x f ,则误差为)()!1()(11x w n M x R n n n +++≤.3.2牛顿插值牛顿插值的基本思想是对n 次插值多项式)(x P n 进行逐次生成,然后用插值条件求出)(x P n 系数[3].因此,提出了均差(即差商)的概念.设 称有函数)(x f ,1x ,2x ,3x , ,n x 是一系列不相等的点,则[]=k x x f ,000)()(x x x f x f k k --为函数)(x f 关于点0x ,2x 的一阶均差; []=k x x x f ,,10[]1100],[,x x x x f x x f k k -- 称为)(x f 的二阶均差; []=k x x x f ,...,,10[][]1110210,...,,,,...,,-----k k k k k x x x x x f x x x x f 为)(x f )的k 阶均差. 我们先求出1次多项式,2次多项式,然后类推出n 次多项式,构造出n 次代数插值多项式的另外一种表达形式—牛顿插值多项式=)(x P n +)(0x f []10,x x f +-)(0x x []210,,x x x f )(0x x -+-)(1x x … []n x x x x f ,...,,,210+)(0x x -))...((11---n x x x x ,=)(x R n []n x x x x x f ,...,,,,210)(0x x -))...((1n x x x x --, =)(x f +)(x P n )(x R n . )(x P n 为牛顿插值多项式,)(x R n 为余项.3.3埃尔米特插值有的时候解决函数)(x f 的问题,不仅要在某些点上知道函数值,而且已知在一些点上的导数值.那么这时插值函数)(x P ,它在某些点处的导数值和函数值与原表达式的值相等的.那么我们从几何这个方面来思考这个问题,求出插值多项式的曲线,不但通过已知点组,而且在这些点处与原曲线"相切"[4].(一)、泰勒插值定义 [][])(,lim ,0'0000x f x x f x x f x x ==→为一阶重节点均差;[][])(21,,lim ,,0''2100000201x f x x x f x x x f x x x x ==→→为二阶重节点均差; 则n 阶重节点均差为[][])(!1,,,lim ,,,0100000x f n x x x f x x x f n n x x i ==→ . 当0x x i →时,牛顿插值公式的极限为=)(x P n +)(0x f )(0'x f +-)(0x x ...!n x f n )(0)(nx x )(0-. 称为泰勒插值多项式.它满足条件=)(0)(x P k n )(0)(x f k ,),...,2,1,0(n k =(二)、两点三次埃尔米特插值若)(x f 在k x ,1+k x 的函数值为k y ,1+k y ,k k m x f =)(',11')(++=k k m x f ,我们可以构造出一个次数不超过3的多项式,)(3x H 为插值函数.设=)(3x H +k k y x a )(+++11)(k k y x a +k k m x )(β11)(++k k m x β,k a ,1+k a ,k β,1+k β为插值基函数.可得结果 =)(3x H 2111))(21(+++----+k k k k k k x x x x x x x x k y 2111))(21(kk k k k k x x x x x x x x ----+++++++1k y )(k x x -+--++k k k k m x x x x 211)(121)(++--k k k k m x x x x , =)(3x R 2124)())((41+--k k x x x x f ξ!,),(1+∈k k x x ξ. 3.4分段线性插值分段线性插值:一般描述,如给定[]上b a ,1+n 个节点b x x x x a n =<<<<= 210和相应的函数值)(i f f i =),...,2,1,0(n i =,记k k k x x h -=+1,k kh h max =. 构造)(x I h 满足:(1)[]b a C x I h ,)(∈;(2)k k h f x I =)(),,2,1,0(n k =;(3))(x I h 在每个小区间[]1,+k k x x 上是线性函数.由以上条件直接可得)(x I h 在小区间[]1,+k k x x 上的表达式为=)(x I h +--++k k k k f x x x x 1111++--k kk k f x x x x , )1,,2,1,0(-=n k 误差估计 -)(x f =)(x I h ))((!2)(1)(''+--k k k x x x x x f ξ))((max 2121+≤≤--≤+k k x x x x x x x M k k . 当∞→h 时,0)()()(→-=x I x f x R h ,)(x I h 在[]b a ,上一致收敛到)(x f .3.5三次样条插值三次样条插值(Spline 插值)的具体要求是:函数[]b a C x S ,)(2∈,并在每个小区间[]1,+j j x x 上是一个三次多项式,其中b x x x x a n =<<<<=...210是给定节点,如果对给定的节点函数值有j y )(j x f =),...,2,1,0(n j =,并且=)(j x S j y ,),...,2,1,0(n j =成立,这时我们就把)(x S 称为三次样条插值函数.4.五种插值法的对比研究通过讨论插值法的相关内容,可以让我们更好的了解插值法.现在我们先从插值多项式的形式上、用途上、计算方法上、精确度上等进行对比研究,比较各自优缺点,然后再通过实例验证之.4.1拉格朗日插值与牛顿插值的比较(一)拉格朗日插值多项式步骤衔接紧密,条理清晰,在理论中十分重要.但是计算比较复杂,因为每添加一个点,所以的公式都要重新计算,这样计算步骤较多会导致计算量变大,反而会导致出现误差与原来的目的背道而驰.(二)牛顿插值多项式的计算量小,步骤简洁.当添加一个节点时,它仍然可以使用,即具有“承袭性”也叫“继承”,所以此类方法应用灵活.但是我们根据正常的想象和观察插值余项,我们一般局部地总是认为当原函数给出的点是越来越多时,我们借助的辅助函数的次数越高,它就和原函数越来越近,误差越来越小.然而事实并非如此,当遇到插值节点等距分布的情况时,只要求函数点值相等不能够充分反映插值函数的性质[5].4.2多项式插值法与埃尔米特插值的比较多项式插值要求在插值节点上函数值相等,计算简单,条件不怎么苛刻.但是如果有的时候一方面要在节点处函数值相等,另一方面要导数值相等,这时多项式插值否则不满足此类情况.埃尔米特插值不仅算法简单而且它具有强烈收敛性.但是它的光滑度不高,而且它的使用条件,也有局限性.在一些特定的限制条件下,有时函数的导数值在这点是完全没有必要知道的.因此,知道节点处的导数的插值函数成为能否运用Hermite插值的一个重要因素[6].4.3多项式插值法与分段线性插值的比较多项式插计算简单,比较方便,但是节点增加的同时就会出现龙格现象,图形波动较大[7].分段线性插值能够克服龙格现象,有收敛性,但是在区间内有转折点,光滑性不好.4.4 分段线性插值与样条插值的比较样条插值的插值函数算法稳定,而且插值函数光滑,收敛性强,误差小.但是它不能局部确定,常常需要解线性方程组.5.插值法在实际生活中的应用插值法是数值逼近中一个非常重要的部分,其次它在实际生活中起着不容小觑的作用,比如天文学以及数学.6.结束语插值法在解决实际问题中有很大的应用.插值方法是各种各样的,它包含拉格朗日插值法、牛顿插值法、Hermite插值法、分段线性插值法以及三次样条插值法等.我们不论使用哪个插值法,它的原理都是一样的.本课题首先介绍了插值的背景以及各类方法的基本思想;然后通过解题、画图、一道题用几种不同方法来解答,让我们哪种方法适合解答哪种类型的题,再然后进行对比,探讨出它们的优缺点,最后文章举个例子来说明插值法有很大的作用,它和我们是相连的,同时利用MATLAB给出了模拟图,通过这种数与形的结合,更好地了解各类插值法的应用于特征.致谢本论文在苏晓琴老师的悉心指导下完成的,同样也是我第一次写这样的文章。
各种插值方法比较

各种插值方法比较插值是一种常见的数据处理技术,用于估计缺失数据或填充数据空缺。
在数据分析、统计学和机器学习等领域中,插值可以帮助我们处理缺失数据或者对连续数据进行平滑处理。
常见的插值方法包括线性插值、多项式插值、样条插值、Kriging插值等。
1.线性插值:线性插值是一种简单但广泛使用的插值方法,基于原始数据中的两个点之间的直线来估计缺失点的值。
这种方法适用于数据分布较为均匀的情况,但对于非线性的数据,可能会导致估计值与实际值之间的较大误差。
2.多项式插值:多项式插值是通过使用多项式函数来拟合原始数据,从而估计缺失点的值。
多项式插值方法具有较高的灵活性,可以在不同的数据点之间产生平滑曲线,但在数据点较多时,可能会导致过拟合问题。
3.样条插值:样条插值是一种常见的插值方法,它通过使用分段多项式函数来拟合数据,从而在数据点之间产生平滑曲线。
样条插值方法克服了多项式插值的一些问题,同时在数据点较少的情况下也能有效地估计缺失点的值。
4. Kriging插值:Kriging插值是一种基于统计学和地理学原理的插值方法,它考虑了数据点之间的空间关系,并使用半变异函数来估计缺失点的值。
Kriging插值方法适用于具有空间相关性的数据,例如地理信息系统中的地形数据或环境监测数据。
除了上述常见的插值方法之外,还有一些其他的插值方法,如逆距离加权插值、最近邻插值、高阶插值等。
5.逆距离加权插值:逆距离加权插值方法假设距离越近的数据点对估计值的贡献越大,它根据数据点之间的距离来计算权重,并将其与对应数据点的值进行加权平均来估计缺失点的值。
逆距离加权插值方法适用于数据点密集、分布不均匀的情况,但对于噪声较大或异常值较多的数据,可能会导致估计值的不准确。
6.最近邻插值:最近邻插值方法简单和直观,它假设与缺失点距离最近的已知点的值与缺失点的值相同。
这种方法适用于数据点之间的空间相关性较强,但在数据点分布不均匀或者缺失点周围的数据点值变化较大的情况下,可能会导致估计值的不准确。
五种插值法的对比研究毕业论文

五种插值法的对⽐研究毕业论⽂题⽬:五种插值法的对⽐研究xxx⼤学本科⽣毕业论⽂开题报告表论⽂(设计)类型:A—理论研究;B—应⽤研究;C—软件设计等;五种插值法的对⽐研究 (3)⼀插值法的历史背景 (5)⼆五种插值法的基本思想 (5)(⼀)拉格朗⽇插值 (5)(⼆)⽜顿插值 (6)(三)埃尔⽶特插值 (7)(四)分段线性插值 (7)(五)样条插值 (8)三五种插值法的对⽐研究 (9)四插值法在matlab中的应⽤ (15)五参考⽂献 (17)五种插值法的对⽐研究摘要:插值法是数值分析中最基本的⽅法之⼀。
在实际问题中碰到的函数是各种各样的,有的甚⾄给不出表达式,只提供了⼀些离散数据,例如,在查对数表时,要查的数据在表中找不到,就先找出它相邻的数,再从旁边找出它的修正值,按⼀定关系把相邻的数加以修正,从⽽找出要找的数,这种修正关系实际上就是⼀种插值。
在实际应⽤中选⽤不同类型的插值函数,逼近的效果也不同。
本⽂详细介绍了拉格朗⽇插值、⽜顿插值、分段插值、埃尔⽶特插值、样条插值法,并从五种插值法的基本思想和具体实例⼊⼿,探讨了五种插值法的优缺点和适⽤范围。
.通过对五种插值法的对⽐研究及实际应⽤的总结,从⽽使我们在以后的应⽤中能够更好、更快的解决问题。
关键词:插值法对⽐实际应⽤Abstract: interpolation numerical analysis of one of the most basic method. Function is a wide variety of practical problems encountered, and some even not give expression provides only a number of discrete data, e.g., in the the checker number table, to check the data is not found in the table , first find out the number next to it, from the side to find the correction value, a certain relationship between the adjacent number to be amended, and to find to find the number, this correction relationship is actually an interpolation . Selection of different types of interpolation functions in practical applications, the approximation of the effect is different. This paper describes the Lagrange interpolation, Newton interpolation, piecewise interpolation, Hermite interpolation, spline interpolation, and start from the basic idea of the five interpolation and specific examples to explore the advantages of the five interpolation shortcomings and the scope of application. The comparative study and practical application of the summary by the the five interpolation method of application so that we can better and faster to solve the problem.引⾔在许多实际问题中,常常需要根据⼀张函数表推算该函数在某些点上的函数值,或要求解决与该函数有关的⼀些问题,例如分析函数的性态,求导数、积分、零点与极值点等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题目:五种插值法的对比研究xxx大学本科生毕业论文开题报告表论文(设计)类型:A—理论研究;B—应用研究;C—软件设计等;五种插值法的对比研究 (3)一插值法的历史背景 (5)二五种插值法的基本思想 (5)(一)拉格朗日插值 (5)(二)牛顿插值 (6)(三)埃尔米特插值 (7)(四)分段线性插值 (7)(五)样条插值 (8)三五种插值法的对比研究 (9)四插值法在matlab中的应用 (15)五参考文献 (17)五种插值法的对比研究摘要:插值法是数值分析中最基本的方法之一。
在实际问题中碰到的函数是各种各样的,有的甚至给不出表达式,只提供了一些离散数据,例如,在查对数表时,要查的数据在表中找不到,就先找出它相邻的数,再从旁边找出它的修正值,按一定关系把相邻的数加以修正,从而找出要找的数,这种修正关系实际上就是一种插值。
在实际应用中选用不同类型的插值函数,逼近的效果也不同。
本文详细介绍了拉格朗日插值、牛顿插值、分段插值、埃尔米特插值、样条插值法,并从五种插值法的基本思想和具体实例入手,探讨了五种插值法的优缺点和适用范围。
.通过对五种插值法的对比研究及实际应用的总结,从而使我们在以后的应用中能够更好、更快的解决问题。
关键词:插值法对比实际应用Abstract: interpolation numerical analysis of one of the most basic method. Function is a wide variety of practical problems encountered, and some even not give expression provides only a number of discrete data, e.g., in the the checker number table, to check the data is not found in the table , first find out the number next to it, from the side to find the correction value, a certain relationship between the adjacent number to be amended, and to find to find the number, this correction relationship is actually an interpolation . Selection of different types of interpolation functions in practical applications, the approximation of the effect is different. This paper describes the Lagrange interpolation, Newton interpolation, piecewise interpolation, Hermite interpolation, spline interpolation, and start from the basic idea of the five interpolation and specific examples to explore the advantages of the five interpolation shortcomings and the scope of application. The comparative study and practical application of the summary by the the five interpolation method of application so that we can better and faster to solve the problem.引言在许多实际问题中,常常需要根据一张函数表推算该函数在某些点上的函数值,或要求解决与该函数有关的一些问题,例如分析函数的性态,求导数、积分、零点与极值点等。
解决此类问题的简单途径之一是:根据函数表中给出的数据,选择一个比较合理且易计算的近似函数代替原来的函数。
虽然()x f 在某个区间[]b a ,上是存在的,有的还是连续的,但却只能给出[]b a ,上一系列点i x 的函数值()() 2,1,0==i x f y i i ,这只是一张函数表,如大家熟悉的三角函数表、对数表、平方根和立方根表,为了研究函数的变化规律,往往需要求出不在表中的函数值。
因此,我们希望根据给定的函数表做一个既能反映函数()x f 的特性,又便于计算简单函数()x p ,用()x p 近似()x f .通常选一类较简单的函数(如代数多项式或分段代数多项式)作为()x f ,并使()()i i x f x p =对() 2,1,0=i 成立.这样确定的()x p 就是我们希望得到的插值函数.一 插值法的历史背景插值法是一种古老的数学方法,插值法历史悠久。
据考证,在公元六世纪时,我国刘焯(zhuo)已经把等距二次插值法应用于天文计算。
十七世纪时,Newton 和Gregory(格雷格里)建立了等距节点上的一般插值公式,十八世纪时,Lagrange(拉格朗日)给出了更一般的非等距节点插值公式。
而它的基本理论是在微积分产生以后逐渐完善的,它的实际应用也日益增多,特别是在计算机工程中。
许多库函数的计算实际上归结于对逼近函数的计算。
二 五种插值法的基本思想 (一) 拉格朗日插值对某个多项式函数,已知有给定的1+k 个取值点:),(00y x ,……,),(k k y x , 其中i x 对应着自变量的位置,而i y对应着函数在这个位置的取值。
假设任意两个不同的i x都互不相同,那么应用拉格朗日插值公式所得到的拉格朗日插值多项式为: )()(0x l y x L j kj j ∑==,其中每个)(x l j 为拉格朗日基本多项式(或称插值基函数),其表达式为:)()()()()()()()()(111100,0k j k j j j j j j j kj i i ij i j x x x x x x x x x x x x x x x x x x x x x l --------=--=++--≠=∏,拉格朗日基本多项式()x l i 的特点是在jx 上取值为1,在其它的点ix ,j i ≠ 上取值为0.(二) 牛顿插值 1 差商定义一般地,k 阶差商为:[][][]10110,,,,,,,x x x x f x x f x x x f k k k k --=-我们知道差商的值只与节点有关而于节点的顺序无关,所以有:[][][]11202010,,,,,,,,,------=k k k k k k k x x x x x f x x x f x x x f2 牛顿插值公式下面我们从差商的定义来构造n 次代数插值多项式的另一种表达式—牛顿插值多项式。
由一阶差商的定义[],)()(,000x x x f x f x x f --=得[]000,)()()(x x f x x x f x f -+=类似地,由二阶差商至n 阶差商的定义可得到下列方程组[][][][][][][]⎪⎪⎩⎪⎪⎨⎧-+=-+=-+=-n n n n x x x f x x x x x f x x x f x x x f x x x x f x x f x x f x x x f x f ,,,)(,,,,,,..............................................,,)(,,,)()()(01010101100000 解这个方程即得:[][][])()(,,,)()(,,)())((,)()()(0001101000x R x N x x x f x x x x x x f x x x x x x x x f x x x f x f n n n n +=--+---++-+=- [][]n n x x x f x x x x x x f x x x f x N ,,,)()(,)()()(10101000 ---++-+=其中为不高于n 次的多项式,可验证)()(i i x f x N =,称)(x N 是过n+1个插值点的n 阶Newton 插值多项式 (三) 埃尔米特插值对于函数f (x ),常常不仅知道它在一些点的函数值,而且还知道它在这些点的导数值。
这时的插值函数P (x ),自然不仅要求在这些点等于f(x )的函数值,而且要求P (x )的导数在这些点也等于f (x)的导数值。
这就是埃尔米特插值问题,也称带导数的插值问题。
从几何上看,这种插值要寻求的多项式曲线不仅要通过平面上的已知点组,而且在这些点(或者其中一部分)与原曲线“密切”,即它们有相同的斜率。
设已知函数f(x)在插值区间[a,b]上n+1个互异的节点xi(i=0,1,…,n) 处的函数值f(xi)=fi 及一阶导数值()i x f ' = 'i f (i=0,1,2,…,n ),若存在函数H(x)满足条件:(1)H (x )是一个次数不超过2n+1次的多项式; (2)H (ix )=f (ix ),'H (ix )='f (i x ) (i=0,1,2,…,n ).则称H (x )为f (x )在n+1个节点xi 上的埃尔米特插值多项式。
(四) 分段线性插值给定区间[]b a ,, 将其分割成bx x x a n =<<<= 10,已知函数)(x f y =在这些插值结点的函数值为),1,0)((n k x f y k k ==;求一个分段函数)(x I k ,使其满足:(1)kk h y x I =)(,),1,0(n k =;(2) 在每个区间[]1,+k k x x 上, )(x I h 是个一次函数.易知,)(x I h 是个折线函数, 在每个区间[]1,+k k x x 上,),1,0(n k =1111)(++++--+--=k kk kk k k k k h y x x x x y x x x x x I ,于是,)(x I h 在[]b a ,上是连续的,但其一阶导数是不连续的.于是即可得到如下分段线性插值函数:)()(0x l y x I ni i i n ∑==,其中⎪⎪⎪⎩⎪⎪⎪⎨⎧=≤≤--=≤≤--=+++---.,0;,;0,111111其他时舍去时,且当时舍去时,且当n i x x x x x x x i x x x xx x x l i i i i i i i i ii i(五) 样条插值分段低次插值函数都有一致收敛性,但光滑性较差;对于像高速飞机的机翼形线,船体放样等等型值线往往要求有二阶光滑度,即有二阶连续导数,早期工程师制图时,把富有弹性的细长木条用压铁固定在样点上,在其他地方让它自由弯曲,然后画下长条的曲线,称为样条曲线。