质谱在蛋白质中的应用

合集下载

质谱在蛋白质分析中的应用

质谱在蛋白质分析中的应用

质谱在蛋白质分析中的应用蛋白质是构成生命体的基本分子之一,承担着许多生物学过程的关键作用。

因此,研究蛋白质结构和功能对于理解生命体的本质、解决疾病治疗问题都有着非常重要的意义。

而质谱技术作为一种高精度、高灵敏度的分析手段,在蛋白质研究领域中有着广泛的应用。

质谱技术是利用质荷比或质量分布的差异来分离和测定化合物的一种分析方法。

蛋白质的分子量一般在几千到几百万之间,结构也非常复杂,因此需要先进行分离和纯化,然后用质谱技术进行进一步的分析和鉴定。

质谱在蛋白质分析中最常用的方法是质谱仪联用色谱技术(MS/MS)。

这种方法通过对蛋白质进行酶解得到多肽,再通过液相色谱分离得到单一的多肽物质,最后用质谱仪进行较为准确地分析。

质谱仪可以将多肽分子转化为气态离子,然后根据它们的质量-电荷比进行分离和检测。

质谱仪联用色谱技术可以用于鉴定蛋白质序列、确定多肽修饰、鉴定蛋白质相互作用等。

除了质谱仪联用色谱技术外,还有几种其他的质谱技术常用于蛋白质分析。

例如:飞行时间质谱(TOF-MS)可以用来测定多肽的分子量,以及定量分析,它的主要优点是灵敏度高,精度好;惊奇电场离子陷阱质谱(Q-TOF MS)可以用于高通量酶解和多肽鉴定,它对蛋白质结构和修饰也有较好的解析力;离子流动管质谱(IM-MS)可以用于气态蛋白质的分析,特别是对于具有高度异构体的蛋白质有很大的优势。

总的来说,质谱技术在蛋白质分析方面有着重要的应用,可以用于蛋白质质量的鉴定、氨基酸序列的鉴定、翻译后修饰的鉴定、蛋白质拓扑结构的鉴定、蛋白质互作的鉴定以及定量分析等。

但是质谱技术也有其局限性,例如对于大型蛋白质的分析、对于蛋白质结构的鉴定有一定的困难等,因此需要采用多种技术手段相结合的方法来进行分析。

随着质谱技术的发展和应用不断拓展,蛋白质研究的深度和广度也在不断提高。

质谱技术在蛋白质研究中的应用,对于人类生命健康和疾病治疗等方面都有着重要的意义。

生物质谱技术在蛋白质组学中的应用

生物质谱技术在蛋白质组学中的应用

生物质谱技术在蛋白质组学中的应用随着科技的不断发展,蛋白质组学领域的研究也在不断深入。

而生物质谱技术作为蛋白质组学研究的关键技术之一,对于研究蛋白质的结构、功能和变化等方面提供了重要的帮助。

下面将从生物质谱技术在蛋白质的定量分析、结构鉴定和功能研究等方面的应用,探讨它在蛋白质组学中的重要作用。

一、生物质谱技术在蛋白质的定量分析中的应用对于大量、复杂的蛋白质样品,生物质谱技术可以利用质谱图谱进行高通量的鉴定和定量分析。

其中,质谱定量分析技术主要包括同位素标记定量和区域积分定量。

同位素标记定量技术需要在不同状态下使用化学标签,例如ICAT(同位素标记反向标记试剂)、TMT(同位素标记标记试剂)等。

这些标记试剂可以标记样品中的不同组分,在质谱图上进行定量。

然而,这些标记试剂的数量有限,导致质谱定量的覆盖率不高。

此外,同位素标记定量技术在鉴定样品中未知蛋白质时性能较差。

相反,区域积分定量技术通过测量样品中蛋白质荷质比峰面积来进行直接定量,而不需要额外的标记试剂。

这种技术可用于定量低丰度蛋白质和鉴定未知的蛋白质,获得的定量结果更加准确和高覆盖率。

二、生物质谱技术在蛋白质的结构鉴定中的应用对于未知蛋白质样品,为了进行结构鉴定和功能研究,需要了解其氨基酸序列、翻译后修饰以及三级结构等信息。

生物质谱技术在这方面也提供了强大的支持。

质谱技术在测量样本时将重要的信息转换为荷质比,然后可以根据这些数据计算出蛋白质质量和序列中每个氨基酸的质量。

其中,两种主要的质谱技术是Q-TOF和LC-MS/MS。

Q-TOF是液体色谱-四极杆飞行时间质谱的缩写,是一种高分辨率、精确质量测量的质谱技术。

LC-MS/MS作为一种高通量技术,可以对复杂的样品进行快速、准确的鉴定和结构分析。

三、生物质谱技术在蛋白质的功能研究中的应用生物质谱技术可以用来很好地理解蛋白质分子的表面性质和与其他分子的相互作用。

例如,蛋白质的亲和性可通过质谱扫描技术进行测量。

质谱仪在生物医学研究领域中的应用

质谱仪在生物医学研究领域中的应用

质谱仪在生物医学研究领域中的应用引言:质谱仪作为一种高效、精确的分析仪器,在生物医学研究领域中扮演着重要的角色。

它能够对生物样品中的分子进行精确的检测和鉴定,为科学家们提供了宝贵的数据和信息。

本文将详细介绍质谱仪在生物医学研究中的应用,并探讨其在蛋白质组学、代谢组学和药物研发等方面的重要作用。

一、质谱仪在蛋白质组学研究中的应用1. 蛋白质鉴定和定量蛋白质是生物体内重要的功能分子,研究蛋白质的鉴定和定量对于理解生物体的功能和疾病机制至关重要。

质谱仪通过质量分析技术,可以快速且准确地鉴定样品中的蛋白质,并实现对其定量。

从而帮助科学家们在疾病相关蛋白的筛选和生物标志物的发现方面取得突破性进展。

2. 磷酸化和糖基化蛋白质的分析磷酸化和糖基化等修饰在蛋白质功能调控中起着至关重要的作用。

质谱仪可以通过磷酸化和糖基化特异性的质量分析技术,对蛋白质样品中的修饰位点进行鉴定,以揭示其功能和调控机制。

这为疾病的筛选和治疗提供了重要的线索。

二、质谱仪在代谢组学研究中的应用1. 代谢物的鉴定和定量代谢物是生物体内代谢过程的产物,对代谢物的鉴定和定量能够帮助科学家们深入了解代谢通路和生物体的生理状态。

质谱仪通过对代谢物进行质量分析,可以快速、高效地鉴定和定量代谢物,为代谢通路的研究和生物医学研究提供重要的信息。

2. 叶酸代谢的研究叶酸代谢在细胞分裂、DNA合成和蛋白质合成等生理过程中起着重要的作用。

质谱仪可以通过分析代谢物样品中的叶酸代谢产物,揭示叶酸代谢通路的变化,从而帮助科学家们了解叶酸代谢与疾病的关系,并为相关疾病的诊断和治疗提供重要依据。

三、质谱仪在药物研发中的应用1. 药物代谢动力学研究药物代谢动力学研究是药物研发过程中十分重要的环节之一。

质谱仪可以通过对生物体内药物及其代谢产物的质量分析,帮助科学家们了解药物在体内的代谢速率、代谢位点和代谢产物等信息,为药物的剂型设计和给药方案提供指导。

2. 药物残留的检测药物残留的检测对于确保食品和饮用水的安全至关重要。

质谱分析在蛋白质组研究中的应用

质谱分析在蛋白质组研究中的应用

质谱分析在蛋白质组研究中的应用蛋白质组学是以高通量技术为基础的研究生物体内所有蛋白质的种类、结构、功能和相互作用等方面的学科。

其中蛋白质组的定量分析是其中的重要研究方向之一。

质谱技术的发展和应用,使得蛋白质组学研究对蛋白质及其组分的定性、定量及质量雷达分析能力有了很大突破。

本文将对质谱分析在蛋白质组研究中的应用进行整理和介绍。

定性分析质谱分析可通过分析蛋白质化学成分、氨基酸序列以及蛋白质的结构信息等方面,实现蛋白质的定性分析。

其中,质谱分析在分析蛋白质翻译后修饰以及亚位点分析等方面表现出突出的优势。

例如,蛋白翻译后修饰是人们对蛋白质的一个重要关注点。

基于质谱分析的修饰特异性及位置信息定量可以对蛋白质进行有效的鉴定和分析。

这可以通过分析某些修饰化学反应后,所产生的质谱图来确定修饰类型和位置信息。

此外,质谱分析还可以实现蛋白质亚位点的分析,通过对蛋白质内部不同区域的工作作用分析,为分子生物学提供更精确的分子表达方式。

定量分析质谱分析可以测量样品中蛋白质的绝对或相对量,从而实现蛋白质的定量。

相对定量和绝对定量是质谱定量的两种主流方法。

在相对定量中,通过仪器检测并比较一组样品中蛋白质组分的丰度,可以得到相对的表达水平。

常用的LC-MS / MS和二维凝胶电泳联用方法,通过质谱技术分别测量样品中蛋白质含量并将数据进行比较,这种方法分辨率很高,对于样品数量较多、大量比较的高通量筛选非常有效。

在绝对定量方面,常用技术为同位素标记技术。

同位素标记化学乘法和四色标记化学乘法用于仪器检测样品中不同蛋白质的相对量。

质谱放射免疫分析法可以通过直接检测同位素标记化学成分来计算蛋白质的相对数量,因此它也是一种常用的同位素标记技术。

质量谱高分辨质谱是质谱分析的一种重要手段。

利用质谱仪与分离技术相结合,可以检测简单受体,多肽,大蛋白质和在细胞或体内的蛋白质组分。

现在的高分辨质谱仪通常具有高的质量分辨率、灵敏度和准确度,可以检测蛋白质的几乎所有特征。

质谱分析技术在蛋白纯化中的应用

质谱分析技术在蛋白纯化中的应用

质谱分析技术在蛋白纯化中的应用蛋白质是生物体中广泛存在的一类分子,其结构和功能对维持细胞的正常运作起着至关重要的作用。

在研究和应用领域,对蛋白质的纯化和定性分析成为了必不可少的工作。

质谱分析技术作为一种高效、准确的蛋白质分析手段,在蛋白纯化中发挥着重要的作用。

本文将简要介绍质谱分析技术在蛋白纯化中的应用。

一、质谱分析技术简介质谱分析技术是一种通过对样品中离子的质量和相对丰度进行测量和分析来研究样品成分和结构的方法。

它基于样品中化合物的离子化和离子分离的原理,通过对生成的离子进行质谱仪检测,获得样品化合物的质谱图谱。

质谱分析技术具有高灵敏度、高分辨率、高特异性和广泛的分析范围等特点,被广泛应用于生物医药、环境监测、食品安全等领域。

二、质谱分析技术在蛋白质纯化中的应用1. 质谱分析技术在蛋白质质量分析中的应用在蛋白质纯化过程中,通过质谱分析技术可以准确测定目标蛋白的相对分子质量。

通过使用质谱仪对蛋白质样品进行离子化,利用离子的质荷比对蛋白质进行精确质量测定。

这种方法可以用来判断蛋白纯化过程中是否出现了杂质,同时也可以帮助确定纯化后的目标蛋白是否符合预期。

2. 质谱分析技术在蛋白质结构研究中的应用质谱分析技术在蛋白质结构研究中发挥着重要的作用。

通过质谱分析技术,可以对蛋白质的肽段序列和肽段修饰进行分析和研究。

例如,通过质谱分析技术可以确定蛋白质中的氨基酸序列、糖基化修饰和磷酸化修饰等。

这些信息对于理解蛋白质的结构和功能具有重要意义。

3. 质谱分析技术在蛋白质相互作用研究中的应用蛋白质相互作用是细胞中重要的调控过程,也是许多疾病发生发展的关键环节。

通过质谱分析技术,可以研究蛋白质之间的相互作用关系。

例如,可以利用质谱分析技术鉴定和确定蛋白质相互作用所形成的复合物,并研究其结构和功能。

4. 质谱分析技术在蛋白质定量分析中的应用质谱分析技术具有高灵敏度和高特异性的特点,可以准确测定目标蛋白的含量。

在蛋白质纯化过程中,通过质谱分析技术可以定量目标蛋白质的浓度,评估纯化效果和纯度。

质谱技术在生物医药领域中的应用

质谱技术在生物医药领域中的应用

质谱技术在生物医药领域中的应用质谱技术是一种基于分子质量和结构的分析技术,被广泛应用于生物医药领域。

在这个领域中,质谱技术被用来鉴定、定量和分析蛋白质、多肽、小分子化合物等生物分子,以及研究它们之间的相互作用。

一、质谱技术在蛋白质鉴定中的应用蛋白质是生物体内最为复杂的分子之一,它们中的每一个氨基酸都具有不同的物理和化学性质。

质谱技术能够对蛋白质进行序列鉴定、修饰分析和定量分析。

目前最常用的方法是质谱分析的两个技术:MALDI-TOF谱和ESI-Q-TOF谱,这些方法可以在非常短的时间内,对蛋白质进行快速鉴定和定量。

二、质谱技术在代谢组学中的应用代谢组学是一种研究生物体内代谢产物及其整个代谢网络的综合性学科。

生物代谢过程的异常往往与生物体内代谢产物到目标物的变化有关,而质谱技术能够完整地覆盖代谢产物的谱图,实现对代谢物质的鉴定、定量和分析。

例如,气-质联用谱(GC-MS)和液-质联用谱(LC-MS)等技术,已经成为代谢组学研究中最为常用的分析工具。

三、质谱技术在药物代谢中的应用质谱技术能够发现药物代谢性质、药物结构、代谢途径和代谢产物等信息,有助于发现新的、更有效的药物。

它通过研究药物在体内的输送、转化和排出过程,为药物代谢机理的研究提供了可靠的数据。

因此在新药研发过程中,质谱技术几乎已经成为了药物代谢研究中不可或缺的工具。

四、质谱技术在生物标志物鉴定中的应用生物标志物是指能够诊断某种疾病、指示疾病进展、预测病情、预测治疗反应或者评价治疗效果的物质。

它们可以是蛋白质、代谢物或其他组分。

质谱技术是确定生物标志物的快捷而可靠的方法之一。

研究人员可以利用质谱技术鉴定并研究特定的生物标志物。

总之,质谱技术在生物医药领域中具有关键性的作用。

它不仅可以帮助科学家们了解生物分子的性质和功能,同时也为药物研发、疾病早期诊断和治疗提供了有力的支持。

因此,随着生物医药领域的不断发展,质谱技术将继续发挥其重要的作用。

质谱鉴定蛋白质

质谱鉴定蛋白质

百泰派克生物科技
质谱鉴定蛋白质
质谱鉴定蛋白质,是利用质谱的相关方法对蛋白质进行鉴定工作。

百泰派克生物科技提供质谱鉴定蛋白质服务。

质谱鉴定蛋白质
质谱法是精确测定蛋白质质量和表征蛋白质的一个重要方法。

质谱鉴定蛋白质的应用包括蛋白质的鉴定、蛋白质翻译后修饰的鉴定,蛋白质复合体分析,蛋白质的亚基和功能互作的鉴定,以及蛋白质组学中蛋白质的整体测量。

它也可用于将蛋白质定位于各种细胞器,并确定不同蛋白质之间以及蛋白质与膜脂之间的相互作用。

质谱鉴定蛋白质的基础
质谱仪的核心包括离子化源、质量分析器和离子检测器。

其中,蛋白质样品离子化是质谱能够应用于鉴定蛋白质的重要基础。

质谱鉴定蛋白质,要求将溶液或固态蛋白质在注入并在电场或磁场中加速分析之前,先在气相中转变成离子化形式。

蛋白质电离的两种主要方法是电喷雾电离(ESI)和基质辅助激光解吸电离(MALDI),MALDI是在激光脉冲激发下使分析物从基质晶体中挥发出来并离子化,ESI则是使分析物从溶液相中电离。

ESI适合与液相分离技术联用,如ESI-MS与液相色谱联用可用于复杂样品的分析。

MALDI适用于较简单样品的分析。

MALDI TOF质谱技术在蛋白质分析中的应用

MALDI TOF质谱技术在蛋白质分析中的应用

MALDI TOF质谱技术在蛋白质分析中的应用蛋白质是生物体中最为重要的分子之一,具有着广泛的功能和作用。

因此,研究蛋白质的结构、功能和相互作用对于理解生命活动和疾病机制至关重要。

MALDI TOF质谱技术作为一种高效、快速、准确且灵敏的蛋白质分析方法,已经在生物医学研究领域得到广泛应用。

首先,MALDI TOF质谱技术在蛋白质分析中的应用主要体现在蛋白质识别和定量方面。

通过对待测蛋白质样品进行加质子化或去氧分解等预处理操作,利用MALDI TOF质谱仪的激光脱附和离子化功能,可以将蛋白质样品中的蛋白质分子转化为带电离子,然后根据质量/电荷比对离子进行质量分析。

通过与数据库中已知的蛋白质质谱图谱进行比对,可以准确定位和鉴定待测蛋白质。

其次,MALDI TOF质谱技术在蛋白质分析中的应用还包括研究蛋白质的修饰和结构。

蛋白质修饰是指蛋白质分子中存在的翻译后修饰或附加分子,如磷酸化、甲基化、糖基化等。

MALDI TOF质谱技术可以通过质量差异对不同修饰状态的蛋白质分子进行鉴定和定量,从而揭示不同修饰对蛋白质功能和相互作用的影响。

此外,通过对蛋白质样品进行酸性或碱性水解反应,再经MALDI TOF质谱分析,可以得到蛋白质的部分酸性或碱性肽段质谱图,从而推测蛋白质的序列和结构信息。

再次,MALDI TOF质谱技术在蛋白质分析中的应用还包括蛋白质组学研究。

蛋白质组学是研究生物体内所有蛋白质组成和功能的科学,涉及到大规模的蛋白质样品分析。

MALDI TOF质谱技术可以利用其高通量和高灵敏度的特点,对复杂的蛋白质混合物进行快速筛选和分析。

通过MALDI TOF质谱技术的快速扫描速度和峰群的精确分辨,可以在较短的时间内获取大量的蛋白质质谱数据,进一步用于蛋白质组学的定性和定量研究。

总之,MALDI TOF质谱技术作为一种高效、快速、准确且灵敏的蛋白质分析方法,已经广泛应用于蛋白质识别、定量、修饰和蛋白质组学研究领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

蛋白质组学研究中个典型研究流程
蛋白质研究中个典型研究流程
现代质谱简介
质谱分析蛋白优点: 1. 可用于分析大分子。 2.可用于分析不纯化合物。因为生物体系相对较复杂,物 质提纯不易,因此新型质谱的出现使一些研究成为可能。 3.样品消耗量很低。 4.仪器操作简便,检测速度快,适用于大批量的样品研究 。
质谱质谱中氨基酸残基的元素组成和精确质量数中常 见氨基酸残基的元素组成和质量数
质谱在蛋白质研究中的其他应用
除了前面介绍的肽与蛋白质序列测定以外 ,还包括质谱与其他分离手段连接(如与毛细 管电泳、HPLC相连等)以加快测样速、度,提 高质谱检测精度(如使用傅立叶回旋分析器与 ESI和MALDI相连等。 其中有一项工作是非常重要的,即蛋白质 的定量
差一个氨基酸残基的系列肽,名为梯状测序(Ladding sequencing),经质谱检测,由相邻峰的质量差知道相应氨基酸 残基。
质谱中常见氨基酸残基的元素组成和质量数
待测离子经活化后具有较高的能量,诱发碎裂 ,产生多组不同类型的碎片峰。所以首先需要区分 出各组峰的类型归属,才能通过比较相邻的同种离 子的质量差,判断相应的氨基酸残基.质谱中常见 氨基酸残基的元素组成和质量数见下表。
质谱在小肽与蛋白质序列测定中的应用
质谱在蛋白质研究中的主要作用在于检测确定相应蛋白质 的归属,其中测定小肽及蛋白质序列是确定蛋白质的根本。 质谱用于肽和蛋白质的序列测定方法有3种。主要如下:
质谱用于肽和蛋白质的序列测定方法
第一种方法叫蛋白图谱(protein mapping),用特异性的酶解 或化学水解的方法将蛋白切成小的片段,然后用质谱检测各产 物肽分子质量,将所得到的肽谱数据输入数据库,搜索与之相 对应的已知蛋白,从而获取待测蛋白序列. 第二种方法是利用待测分子在电离及飞行过程中产生的亚 稳离子,通过分析相邻同种类型峰的质量差,识别相应的氨基 酸残基. 第三种方法与Edman法有相似之处,即用化学探针或酶解 使蛋白质或肽从N端或C端逐一降解下氨基酸残基,形成相互间
蛋白质的定量
这方面的工作进行得非常多,而且也获得了很大的成功。这 其中最成功也最巧妙的是Gygi等人于1999年发明的一种新的蛋白 质定量方法:他们合成了一种新的化合物,其上连有与Avidine 蛋白特异性结合的的化合物Biotin(用于纯化),碘(用于与蛋 白半胱氨酸上巯基反应使化合物结合到某些小肽片段)。通过用 氘代氢替换中间烷基链上的氢原子,可合成两种物化性质相同而 分子质量相差8u的化合物(分别为重链和轻链)。将两个须比较 的细胞体系中的蛋白质分离后分别与重链和轻链反应,使以上化 合物结合到蛋白上的半胱氨酸残基位点。然后将两个体系合并, 用蛋白酶降解。酶解产物通过固定有Avidine蛋白的亲和柱分离 去除多余片段。用质谱分析分离产物,用多级质谱确定每一肽片 段来源,对比各种蛋白质量的变化,从而研究体系中对外界某种 影响敏感的蛋白质。这种方法的优点在于重链和轻链的物化性质 完全相同,不会在量测定上引入其他误差。而且通过碘与蛋白巯 基反应可大大简化质谱谱图和分析工作量(蛋白上巯基含量相对 氨基等可衍生化功能团含量较少)。
电喷雾电离(ESI-MS)
多级质谱分析是鉴定化合物结构的一 种十分重要的方法,该法可直接用于混合 物分析,将混合物的质谱中某一质荷比的 峰分离出来进行串联质谱分析,就有可能 确认它的结构。这样就能省去大量的分离 、纯化工作。目前用于多级质谱分析的质 量分析器主要有串联四极杆和离子阱两种 。
基质辅助激光诱导解吸质谱(MALDI-MS)
方法:将被分析物质(u mol/L级的浓度)的 溶液和某种基质( m mol/L级的浓度)溶液相混 合;蒸发溶剂,被分析物质与基质成为晶体或半 晶体 ;用一定波长的脉冲式激光照射。基质分 子为可吸收激光光能物质,从而获取能量,使基 质分子和样品雾化进入气相并得到电离。
优点
1.使难于电离的样品电离,且无明显碎裂,得到完整的被分析物分子的电离 产物,特别是在肽类化合物研究中取得很大成功; 2.由于应用的是脉冲式激光,适合于与飞行时间质谱计(TOF)相连,从而 使检测在原理上不受待测分析物分子质量的限制,即分子质量可无限大; MALDI-TOF结构示意图
质谱在蛋白质中的应用
周小雪 2013342020
质谱在蛋白质中的应用
待研究生物体系中表达的蛋白质经过凝胶电 泳( 或高效液相色谱及毛细管电泳)分离后,从 中提取出感兴趣的蛋白点,然后经过蛋白酶水解 成为小肽片断,分离后应用质谱(电喷雾质谱、 基质辅助激光诱导解吸质谱);然后研究某一小 肽片断的序列,并重复此步骤得到多个片断序列 ,输入数据库即可获知此为哪一蛋白质。明确了 蛋白质归属后,可以研究此蛋白质随生物体系环 境变化的变化情况,从而了解此蛋白质在生物体 中的功能。 在这个过程中,蛋白质的水解及肽的质谱 序列研究起着很重要的作用。
电喷雾电离(ESI-MS)
原理: 样品溶液通过一根毛细管进入雾化室雾化,形成带 有多电荷的液滴,仪器的电离源处于高真空状态,液滴进入时溶 剂挥发,液滴的体积变小,的分子就以离子的形式逸出。 蛋白(肽),都是高度亲水性分子,高温下易分解, 因而电喷雾这种电离方式非常适用于这类分子的研究。
质谱在蛋白质研究中的其他应用
1.质谱研究磷酰化氨基酸及磷酰化小肽
2.抗HIV前药与蛋白的非共价键复合物的ESI-MS研究
3.二肽类似物在质谱中的重排反应及其机制的研究等等。
《生物有机质谱》赵玉芬
《蛋白质组学研究的新分析技术及其应用》陈执中
End!
相关文档
最新文档