计算理论与算法分析设计总复习2016年上共81页文档
算法分析与设计考试复习题及参考答案

15..最坏情况下快速排序退化成冒泡排序,需要比较n2次。 16. 是一种依据最优化量度依次选择输入的分级处理方法。基本思 路是:首先根据题意,选取一种量度标准;然后按这种量度标准对这n 个输入排序,依次选择输入量加入部分解中。如果当前这个输入量的加 入,不满足约束条件,则不把此输入加到这部分解中。 17.回溯法的解(x1,x2,……xn)的隐约束一般指个元素之间应满 足的某种关系。 18. 将数组一分为二,分别对每个集合单独排序,然后将已排序的 两个序列归并成一个含n个元素的分好类的序列。如果分割后子问题还 很大,则继续分治,直到一个元素。 19.快速排序的基本思想是在待排序的N个记录中任意取一个记录, 把该记录放在最终位置后,数据序列被此记录分成两部分。所有关键字 比该记录关键字小的放在前一部分,所有比它大的放置在后一部分,并 把该记录排在这两部分的中间,这个过程称作一次快速排序。之后重复 上述过程,直到每一部分内只有一个记录为止。 20.在定义一个过程或者函数的时候又出现了调用本过程或者函数 的成分,既调用它自己本身,这称为直接递归。如果过程或者函数P调 用过程或者函数Q,Q又调用P,这个称为间接递归。消除递归一般要用 到栈这种数据结构。 21.哈密顿环是指一条沿着图G的N条边环行的路径,它的访问每个 节点一次并且返回它的开始位置。 22.当前选择的节点X[k]是从未到过的节点,即X[k]≠X[i](i=1,2, …,k-1),且C(X[k-1], X[k])≠∞,如果k=-1,则C(X[k], X[1]) ≠∞。 23. 思路是:最初生成树T为空,依次向内加入与树有最小邻接边 的n-1条边。处理过程:首先加入最小代价的一条边到T,根据各节点到 T的邻接边排序,选择最小边加入,新边加入后,修改由于新边所改变 的邻接边排序,再选择下一条边加入,直至加入n-1条边。 二、复杂性分析 1、 递归方程
算法分析与设计部分含计算的复习题及参考答案

算法分析与设计部分含计算的复习题及参考答案(共16页)-本页仅作为预览文档封面,使用时请删除本页-二、简答题:1.备忘录方法和动态规划算法相比有何异同简述之。
2.简述回溯法解题的主要步骤。
3.简述动态规划算法求解的基本要素。
4.简述回溯法的基本思想。
5.简要分析在递归算法中消除递归调用,将递归算法转化为非递归算法的方法。
6.简要分析分支限界法与回溯法的异同。
7.简述算法复杂性的概念,算法复杂性度量主要指哪两个方面 8.贪心算法求解的问题主要具有哪些性质简述之。
9.分治法的基本思想是什么合并排序的基本思想是什么请分别简述之。
10.简述分析贪心算法与动态规划算法的异同。
三、算法编写及算法应用分析题:1.已知有3个物品:(w1,w2,w3)=(12,10,6),(p1,p2,p3)=(15,13,10),背包的容积M=20,根据0-1背包动态规划的递推式求出最优解。
2.按要求完成以下关于排序和查找的问题。
①对数组A={15,29,135,18,32,1,27,25,5},用快速排序方法将其排成递减序。
②请描述递减数组进行二分搜索的基本思想,并给出非递归算法。
③给出上述算法的递归算法。
④使用上述算法对①所得到的结果搜索如下元素,并给出搜索过程:18,31,135。
3.已知1()*()i i k k ijr r A a +=,k =1,2,3,4,5,6,r 1=5,r 2=10,r 3=3,r 4=12,r 5=5,r 6=50,r 7=6,求矩阵链积A 1×A 2×A 3×A 4×A 5×A 6的最佳求积顺序(要求给出计算步骤)。
4.根据分枝限界算法基本过程,求解0-1背包问题。
已知n=3,M=20,(w1,w2,w3)=(12,10,6),(p1,p2,p3)=(15,13,10)。
5.试用贪心算法求解汽车加油问题:已知一辆汽车加满油后可行驶n 公里,而旅途中有若干个加油站。
算法分析设计期末复习

通过解递归方程
logm n1
T (n) nlogm k k j f (n / m j ) j0
学习要点: 理解递归的概念。 掌握设计有效算法的分治策略。 通过下面的范例学习分治策略设计技巧。 (1)二分搜索技术; (2)大整数乘法; (3)Strassen矩阵乘法; (4)棋盘覆盖; (5)合并排序和快速排序; (6)线性时间选择; (7)最接近点对问题; (8)循环赛日程表。
基本运算Oi的执行次数ei分别进行统计分析。 – T(N,I)还需进一步简化,只在某些有代表性的合法输
入中去统计相应的ei来评价其复杂性。 – 一般只考虑三种情况下的时间性:最坏情况、最好
情况和平均情况下的复杂性,分别记为Tmax(N)、 Tmin(N)和Tavg(N)
四种渐近意义下的符号
• 四种渐近意义下的符号 –O –Ω –θ –o
}
----------------------------------------------------------------------------------------
CheckNum( T , p , q , element): ▹计算T[p..q]中element出现的次数
{ cnt ← 0
• 思路二:直接统计各 元素出现的次数,用 某一线性数据结构 存储统计结果(例如 用一个辅助数组存 储统计结果,统计时 用数组下标对应相 应元素)
第三章:动态规划
动态规划算法的基本思想
• 动态规划算法的基本思想
– 其基本思想与分治算法的思想类似——分而治之 – 与分治法的不同之处
• 分解后的子问题往往不互相独立; • 采用记录表的方法来保存所有已解决问题的答案
考虑时间 资源
算法设计与分析复习要点

算法设计与分析复习要点一、单项选择题(本大题共15小题,每小题2分,共30分)二、填空题(本大题共15空,每空1分,共15分)三、分析题(本大题共5小题,每小题5分,共25分)四、综合题(本大题共4小题,1、2题每题6分,3题8分,4题10分,共30分)第2章,导引与基本数据结构:1、什么是算法, 算法的5个特性;对一个算法作出全面分析的两个阶段。
P245个特性:确定性、能行性、输入、输出、有穷性两个阶段:事前分析、事后测试2、O(g(n)),Ω(g(n)), (g(n))的含义。
3、多项式时间算法:可用多项式(函数)对其计算时间限界的算法。
4、常见的多项式限界函数所表示算法时间复杂度的排序:Ο(1) <Ο(logn) < Ο(n) < Ο(nlogn) < Ο(n2) < Ο(n3)5、指数时间算法:计算时间用指数函数限界的算法6、常见的指数时间限界函数:Ο(2n) < Ο(n!) < Ο(n n)11()2(1)11()21nn T n T n n T n =⎧=⎨-+>⎩⇒=-7、什么是算法的复杂性:是该算法所需要的计算机资源的多少,它包括时间和空间资源。
8、复习栈和队列、树、图的基本知识,了解二元树、完全二元树,满二元树、二分检索树、了解图的邻接矩阵和邻接表存储方法。
9、能写出图的深度优先序列和广度优先序列。
10、会求如下一些简单的函数的上界表达式: 3n 2+10n =O(n 2)第3、4章 递归与分治算法1、理解递归算法的优缺点,深刻理解递归算法的执行过程。
如能写出解决n 阶汉诺塔问题的解,并能分析写出3阶汉诺塔问题的递归执行轨迹。
2、递归算法的优点:结构清晰,可读性强,容易用数学归纳法来证明算法的正确性,因此它为设计算法、调试程序带来很大方便。
3、递归算法的缺点:运行效率较低,耗费的计算时间和占用的存储空间都多。
为了达到此目的,根据具体程序的特点对递归调用工作栈进行简化,尽量减少栈操作,压缩栈存储空间以达到节省计算时间和存储空间的目的。
算法设计与分析复习资料

1.什么是算法?算法是一系列解决问题的指令,对符合规范的输入,能在有限时间内获得预期的输出。
2.算法的特点?有穷性-有限步内完成;确定性-每一步是确定的,不能有二义性;可行性-每一步有意义,每一步能求解;输入-须检查输入值值域合法性;输出-输出问题的解,无输出的算法没有意义。
补:排序算法的特点:稳定性,在位性。
稳定性:如果一个排序算法保留了等值元素在输入中的相对顺序,他被称为是稳定的。
换句话说,如果一个输入列表包含两个相等的元素,他们的位置分别是i和j。
i<j。
而在排好序的列表中,他们的位置分别是i`和j`,那么i`<j`肯定成立。
在位性:如果一个算法不需要额外的存储空间(除了个别存储单元外),我们称它是在位的。
3.求最大公约数的伪码?Euclid(m,n)//计算m和n最大公约数的欧式算法//输入:两个不全为0的非负整数m>=n//输出:m和n的最大公约数while n≠0 do{r←m mod nm←nn←r}return m4.问题求解过程理解问题;了解设备性能选择计算方法,精确或近似接法高效的数据结构算法的设计技术;设计算法;正确性证明;分析算法;编程实现算法。
1-2-3-4-5-6.4-3,4-2,5-3,5-2(理解问题;决定:计算方法:精确或近似方法:数据结构:算法设计技术;设计算法;正确性证明;分析算法;根据算法写代码.)5.算法分析主要步骤(框架)算法的运行效率也称为计算复杂性(计算复杂度);计算复杂性:时间复杂性(时间效率)空间复杂性(空间效率)时间效率-算法运行所耗费的时间。
空间效率-算法运行所需的存储空间。
输入规模事实:几乎所有算法对更大规模的输入都要耗费更长的时间!即算法耗时随输入规模增大而增大;增长函数定义为输入规模的函数,用它来研究算法;输入规模的选择它的选择比较直接容易。
6.n元列表查找最大值-数组实现列表MaxElement(A[0..n-1])maxval←0for i←1 to n-1 doif A[i]>maxvalmaxval←A[i]return maxval7.检查数组元素是否唯一UniqueElement(A[0..n-1])for i←0 to n-2 dofor j←i+1 to n-1 doif A[i]=A[j] return falsereturn true8.计算方阵A B的矩阵乘积MatrixMultiplication(A[0..n-1][0..n-1],B[0..n-1][0..n-1])for i←0 to n-1 do//行循环for j←0 to n-1 do//列循环M[i][j]←0.0 //积矩阵初始化for k←0 to n-1 do//用变量k表示变化的脚标M[i][j]←M[i][j]+A[i][k]*B[k][j]return M9.计算十进制正整数n的二进制位数b算法的时间复杂性分析Binary(n)count←1while n>1 docount++n←「n/2「return count10.求m,n最大公约数gcd(int m,int n)//求m,n最大公约数的欧式递归版本//输入:两个正整数m≥n//输出:最大公约数{if(n=0)//递归出口,结束递归write(M);//输出结果elsegcd(n,m mod n);}11.选择排序(每次从数组中选取最小的按顺序插入) SelectionSort(A[1..n]){for i←1 to n-1 domin←ifor j←i+1 to n doif(A[j]<A[min])min←jA[i]↔A[min]}12.冒泡排序(相邻的比较,a<b则交换,最后一位则为最大) BubbleSort(A[1..n]{ for i←1 to n-1 dofor j←1 to n-i doif(A[j]>A[j+1])A[j]↔A[j+1]}13.顺序查找SequentialSearch(A[n..n],k){ A[n]←Ki←0while(A[i]≠k) i←i+1if(i<n)return(i)else return(-1)}14.串匹配BruteForceStringMatch(T[0..n-1],P[0..m-1]){for i←0 to n-m do{ j←0while j<m and P[j]=T[i+j] doj←j+1if i=m return i}return -1}15.最近对BruteForceCloserPoints(Object P[1..n]){ dmin←∞for i←1 to n-1 dofor j←1 to n dod←sqrt((Xi-Xj)2+(Yi-Yj)2)if(d<dmin){dmin←d,index1←i,index2←j}return(index1,index2)}16.分治算法DivideandConquer(s){if(|s|≤t)then adhocery(s)else{ divide s into smaller subset s1,s2,skfor i←1 to k do{Yi←DivideandConquer(Si)}return merge(Y1,Y2,Yk)}}17.分治法查找最大元素DivideandConquerSearchMax(S){ t←2if(|S|≤t)then return max(S1,S2)else{divide S into two smaller subset S1 and S2,|S1|=|S2|}=|S|/2 max1=DivideandConquerSearchMax(S1)max2=DivideandConquerSearchMax(S2)return max(max1,max2)}}18.合并排序之分治算法MergeSort(A[0..n-1]){ if(n>1){copy A[0..」n/2」-1]to B[0..」n/2」-1]copy A[」n/2」..n-1]to C[0..」n/2」]MergeSort(B)MergeSort(C)Merge(B,C,A)}}Merge(B[0..p-1],C[0..q-1],A[0..p+q-1]){i←0,j←0,k←0while i<p and j<q doif(B[i]≤C[j])A[k]←B[i],i←i+1else A[k]←B[j],j←j+1k←k+1if(i=p)copy C[j..q-1]to A[k..p+q-1]else copy B[j..q-1]to A[k..p+q-1]}19.快速排序QuickSort(A[L..R]){ if(L<R)S←Partition(A[L..R])QuickSort(A[L..S-1])QuickSort(A[S+1..R])}Partition(A[l..r])p←A[l] i←l; j←r+1repeatrepeat i←i+1 until A[i]≥prepeat j←j-1 until A[j]≥pswap(A[i],A[j])until i≥jswap(A[i],A[j]swap(A[l],A[j]return j20.两次扫描确定分区算法Partition(A[L..R]){ p←A[L]i←L+1,j←Rwhile(true){ while(A[i]<p)and(i≤R)do i←i+1while(A[j]>q)and(j≥R)do j←j-1if(i≥j)then breakswap(A[i],A[j])}swap(A[L],A[j])return (j)}21.折半查找BinarySearch(A[0..n-1],K){L←0,R←n-1while(L<R) dom←」(L+R)/2」if(K=A[m])return melse if(K<A[m])R←m-1else L←m+1return(-1)}22.插入排序(比较两个相邻的数,依次从小到大插入) InsertionSort(A[0..n-1]){ for(i←1 to n-1) doj←i-1,V←A[i]while(j≥0 and A[j]>V)A[j+1]←A[j]j←j-1A[j+1]←V}23.DFS递归版DFSRecursion(vertex v){ count←count+1visit(v)Mark[v]←countfor each vertex w adjacent to v doif Mark[w]=0 thenDFSRecursion(w)}非递归:DFS(Graph G,Vertex v){ count←0virst(v)Initialize(S)Push(v)while(isEmpty(S)=FALSE)x←Pop(S)for each vertex w adjacent to x doif Mark[w]=0 thenvirst(w),count←count+1,Mark[w]←countPush(w)}23.BFS非递归算法BFS(Graph G,Vertex v){ count←0 virst(v) Initialize(Q) Enqueue(v)while(isEmpty(Q)=FALSE)x←Dequeue(Q)for each vertex w adjacent to x doif Mark[w]=0 then virst(w),count++,Mark[w]←count Enqueue(w)}24.预排序检验数组中元素唯一性PresortElementUniqueness(A[0..n-1])For i←0 to n-2 doif A[i]=A[i+1]return falsereturn true时间效率蛮力法:2n变治法:T(n)=Tsort(n)+Tscan(n)∈O(nlogn)+O(n)∈O(nlogn)25.变治法预排序蛮力法效率:T(n)=1+…+n-1∈Θ(n*n)变治法预排序:T(n)=n-1PresortMode_1(A[0..N-1])//行程算法,对数组排序i←0,ModeFrequency←0//最大频率while(i≤n-1)runlength←1,runvalue←A[i]while(i+runlength≤n-1 and A[i+runlength]=runvalue)runlength ++if(runlength>ModeFrequency)ModeFrequency←runlength,modeValue←runvaluei←i+runlengthreturn(ModeValue,ModeFrequency26.堆构造的值交换算法HeapValueExchange(H[1..n])For i←」n/2」downto 1 dok←I,v←H[k]heap←FALSEwhile(not heap)and(2*k≤n)doj←2*k if(j+1≤n)if(H[j]<H[j+1])j←j+1if(v≥H[j] heap←TRUEelse{H[k] ←H[j],k←j}H[k] ←v时间效率T(n)=Ε(n=o,h-1)[2(h-k)2k次方]=2hΕ(k=0,h-1)2k次方-2Ε(k=1,h-1)2k次方=2(n-log2(n+1))<2n,n>027.三种贪婪策略解决01背包的过程和结果价值最大:满足约束条件下,每次装入价值最大的物品----不一定能找到最优解(背包称重量消耗过快)重量最小:满足约束条件下,每次装入重量最轻的物品---不一定找到最优解(装入总价值增加太慢)单位价值最大:满足约束条件下,每次装入价值/重量最大的物品---能找到最优解28.连续背包的贪婪算法GreedyKnapsack(n,w[1..n],v[1..n],x[1..n],W,V)X[1..n] ←0 Wo←W V←0MergeSort(v[1..n]/w[1..n])For(i←1 to n)doIf(w[i]<Wo)then x[i]←1Wo←Wo←w[i]V←V+v[i]Else x[i]←Wo/w[i], V←V+x[i]*v[i]BreakReturn V29.贪婪算法Prim算法:PrimMST(G)Vt←{vo}Et←ΦFor(i←1 to|V|-1)do在V-Vt中选与当前树最小距离的边e*=(v*,u*)Vt←Vt∪{u*}Et←Et∪{e*}Return EtDijkstra算法伪码:Dijkstre(G,s)Initialize(Q)For(each vertex v∈V)dv←∞Isert (Q,v,dv)ds←0,Decrease(Q,s,ds)Vt←ΦFor(i←0 to |V|-1)U*←DeleteMin(Q)Vt←Vt∪{u*}For(each vertex u∈(V-Vt)adjacent to u*∈Vt)If(dn*+w(u*,u)<du)du←du*+w(u*,u)Decrease(Q,u,dn)Kruskal算法:Kruskal(G)Et←∅;ecounter←0k←0while ecounter<|V|-1 dok←k+1if Et∪{Eik}无回路ET←Et∪{Eik};ecounter←ecounter+1Return Eta.设计一个蛮力算法,对于给定的x0,计算下面多项式的值:P(x)=a n x n+a n-1x n-1+…+a1x+a0并确定该算法的最差效率类型.b.如果你设计的算法属于Θ(n2),请你为该算法设计一个线性的算法.。
计算机算法设计与分析 复习资料

第一章(1)最坏情况下的时间复杂性Tmax(n) = max{ T(I) | size(I)=n }(2)最好情况下的时间复杂性Tmin(n) = min{ T(I) | size(I)=n }(3)平均情况下的时间复杂性Tavg(n) =其中I 是问题的规模为n 的实例,p (I)是实 例I 出现的概率。
规则O(f(n))+O(g(n)) = O(max{f(n),g(n)}) 的证明:对于任意f1(n) ∈ O(f(n)) ,存在正常数c1和自然数n1,使得对所有n ≥ n1,有f1(n) ≤ c1f(n) 。
类似地,对于任意g1(n) ∈ O(g(n)) ,存在正常数c2和自然数n2,使得对所有n ≥ n2,有g1(n) ≤ c2g(n) 。
令c3=max{c1, c2}, n3 =max{n1, n2},h(n)= max{f(n),g(n)} 。
则对所有的 n ≥ n3,有f1(n) +g1(n) ≤ c1f(n) + c2g(n)≤ c3f(n) + c3g(n)= c3(f(n) + g(n))≤ c32 max{f(n),g(n)}= 2c3h(n) = O(max{f(n),g(n)}) .算法分析的基本法则非递归算法:(1)for / while 循环循环体内计算时间*循环次数;(2)嵌套循环循环体内计算时间*所有循环次数;(3)顺序语句各语句计算时间相加;(4)if-else 语句if 语句计算时间和else 语句计算时间的较大者。
第二章 递归与分治策略递归算法总体思想:将求出的小规模的问题的解合并为一个更大规模的问题的解,自底向上逐步求出原来问题的解。
分治法的设计思想是,将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。
直接或间接地调用自身的算法称为递归算法。
用函数自身给出定义的函数称为递归函数。
∑=n I size I T I p )()()(边界条件与递归方程是递归函数的二个要素优点:结构清晰,可读性强,而且容易用数学归纳法来证明算法的正确性,因此它为设计算法、调试程序带来很大方便。
算法设计与分析 复习整理汇编

《算法设计与分析》复习要点2.算法的概念:答:算法是求解一类问题的任意一种特殊的方法。
一个算法是对特定问题求解步骤的一种描述,它是指令的有限序列。
注:算法三要素:1、操作2、控制结构3、数据结构3.算法有5大特性:答:输入、输出、确定性、能行性、有穷性。
注:输入:一个算法有0个或多个输入;输出:一个算法将产生一个或多个输出。
确定性:一个算法中每一步运算的含义必须是确切的、无二义性的;可行性:一个算法中要执行的运算都是相当基本的操作,能在有限的时间内完成;有穷性:一个算法必须在执行了有穷步运算之后终止;4.算法按计算时间可分为两类:答:多项式时间算法的渐进时间复杂度:O(1)<O(logn)<O(n)<O(nlogn)<O(n^2)<O(n^3),具有此特征的问题称为P为题。
有效算法。
指数时间算法的渐进时间复杂度之间的关系为:O(2^n)<O(n!)< O(n^n),具有此特征的问题称为NP问题。
注:可以带1或2这些数字来判断它们之间的大小关系。
5.一个好算法的4大特性:答:正确性、简明性、效率、最优性。
注:正确性:算法的执行结果应当满足预先规定的功能和性能要求。
简明性:算法应思路清晰、层次分明、容易理解。
利于编码和调试。
效率:时间代价和空间代价应该尽可能的小。
最优性:算法的执行时间已经到求解该类问题所需要时间的下界。
6.影响程序运行时间的因素:1、答:程序所以来的算法。
问题规模和输入数据。
计算机系统系能。
注:算法运行的时间代价的度量不应依赖于算法运行的软件平台,算法运行的软件包括操作系统和采用的编程语言及其编译系统。
时间代价用执行基本操作(即关键操作)的次数来度量,这是进行算法分析的基础。
7.关键操作的概念答:指算法运行中起主要作用且花费最多时间的操作。
1.简述分治法是怎样的一种算法设计策略:答:将一个问题分解为若干个规模较小的子问题,且这些子问题互相独立且与原问题类型相同,递归地处理这些子问题,直到这些子问题的规模小到可以直接求解,然后将各个子问题的解合并得到原问题的解。
计算机算法设计与分析总复习

第三步
[13 27 38 49 65 76 97]
快速排序
private static void qSort(int p, int r) { if (p<r) { int q=partition(p,r); //以a[p]为基准元素将a[p:r]划分成3段a[p:q-1],a[q]和a[q+1:r],使得a[p:q-1]中任何元素小于等于a[q],a[q+1:r]中任何元素大于等于a[q]。下标q在划分过程中确定。 qSort (p,q-1); //对左半段排序 qSort (q+1,r); //对右半段排序 } }
=时间复杂性+空间复杂性
= 算法所需要的计算机资源
算法复杂性
算法渐近复杂性
1)上界函数
定义1 如果存在两个正常数c和n0,对于所有的n≥n0,有 |f(n)| ≤ c|g(n)| 则记作f(n) = Ο(g(n)) 含义: 如果算法用n值不变的同一类数据在某台机器上运行时,所用的时间总是小于|g(n)|的一个常数倍。所以g(n)是计算时间f(n)的一个上界函数。 f(n)的数量级就是g(n)。 f(n)的增长最多像g(n)的增长那样快 试图求出最小的g(n),使得f(n) = Ο(g(n))。
3)“平均情况”限界函数
问题的计算时间下界为(f(n)),则计算时间复杂性为O(f(n))的算法是最优算法。
01
例如,排序问题的计算时间下界为(nlogn),计算时间复杂性为O(nlogn)的排序算法是最优算法。
02
最优算法
第2章 递归与分治策略
单击此处添加文本具体内容,简明扼要的阐述您的观点,以便观者准确的理解您传达的思想。
复杂度分析 T(n)=O(nlogn) 渐进意义下的最优算法