高三数学知识点总结

合集下载

高三数学知识点总结(3篇)

高三数学知识点总结(3篇)

高三数学知识点总结第一章:集合与函数概念一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集:N-或N+整数集:Z有理数集:Q实数集:R1)列举法:{a,b,c……}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合二、集合间的基本关系1.“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.“相等”关系:A=B(5≥5,且5≤5,则5=5)实即:①任何一个集合是它本身的子集。

AíA②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)③如果AíB,BíC,那么AíC④如果AíB同时BíA那么A=B3.不含任何元素的集合叫做空集,记为Φ规定:空集是任何集合的子集,空集是任何非空集合的真子集。

4.子集个数:有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-1个非空子集,含有2n-1个非空真子集三、集合的运算运算类型交集并集补集第二章:基本初等函数一、指数函数(一)指数与指数幂的运算1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈-.当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。

高中数学知识点全总结(7篇)

高中数学知识点全总结(7篇)

高中数学知识点全总结(7篇)必背公式篇一1、一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a根与系数的关系x1+x2=-b/ax1x2=c/a注:韦达定理判别式b2-4a=0注:方程有相等的两实根b2-4ac>0注:方程有两个不相等的个实根b2-4ac0抛物线标准方程y2=2pxy2=-2px2=2pyx2=-2py直棱柱侧面积S=cxh斜棱柱侧面积S=c'xh正棱锥侧面积S=1/2cxh'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pixr2圆柱侧面积S=cxh=2pixh圆锥侧面积S=1/2xcxl=pixrxl弧长公式l=axra是圆心角的弧度数r>0扇形面积公式s=1/2xlxr锥体体积公式V=1/3xSxH圆锥体体积公式V=1/3xpixr2h斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=sxh圆柱体V=pixr2h3、图形周长、面积、体积公式长方形的周长=(长+宽)某2正方形的周长=边长某4长方形的面积=长某宽正方形的面积=边长某边长三角形的面积已知三角形底a,高h,则S=ah/2已知三角形三边a,b,c,半周长p,则S=√[p(p-a)(p-b)(p-c)](海伦公式)(p=(a+b+c)/2)和:(a+b+c)x(a+b-c)x1/4已知三角形两边a,b,这两边夹角C,则S=absinC/2设三角形三边分别为a、b、c,内切圆半径为r则三角形面积=(a+b+c)r/2设三角形三边分别为a、b、c,外接圆半径为r则三角形面积=abc/4r常用的三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB 高中复习数学方法篇二1.多动脑思考2.强化自己学习训练要是想学好高中数学,必须做的一件事就是做大量的题,数学不一定好,因袭要提高解题的效率,做题的目的在于检查你学的知识,方法是否掌握得很好。

高三数学知识点总结3篇

高三数学知识点总结3篇

高三数学知识点总结一、函数与极限函数的定义、函数的性质、基本初等函数的图像及性质、反函数、函数的运算、函数的极限及连续性、无穷小量和无穷大量、函数的单调性、函数的最值、函数的单侧极限与无穷小量、函数的间断点、洛必达法则、泰勒公式与函数的近似。

二、导数与微分导数的定义、求导公式、导数法则、高阶导数、隐函数求导、参数方程求导、函数的微分、中值定理、洛必达法则、泰勒公式与函数的近似、函数的单调性与极值点判定、函数图形的几何特征。

三、积分与微积分应用反导数、基本积分公式及换元法、分部积分法、有理函数的积分、三角函数的积分、定积分的定义、定积分的性质、定积分的计算、变限积分、微积分基本定理、换元积分法、分步积分法、无穷小量和无穷大量的比较、定积分的应用与面积计算、定积分的物理应用、微积分中值定理及其应用、微积分求极值点和最值的方法、微积分的物理和几何应用。

以上便是高三数学知识点总结的第一篇,其中包含了函数与极限、导数与微分、积分与微积分应用。

这些都是非常基础的数学知识点,在高三数学的课程中占据了相当的重要性,希望同学们掌握好这些基础知识,并且能够在这些知识的基础之上更好地学习高三的数学课程。

四、坐标系与空间几何平面直角坐标系、空间直角坐标系、极坐标系、柱面坐标系、球面坐标系、点的坐标表示、平面图形的方程、空间图形的方程、空间图形的投影、高中平面几何初步、直线的坐标表示与性质、平面的解析式及其方程、空间直线与平面的解析式、空间平面的方程。

五、解析几何与向量向量的概念及其表示、向量的运算、平面向量的坐标表示、向量的数量积与数量积的应用、向量积及其几何意义、坐标系中向量积的计算、空间向量及其坐标表示、混合积及其计算、多面体的体积、平面上的解析几何、立体几何初步。

六、概率与统计概率的基本概念、概率模型、条件概率、独立性、全概率公式与贝叶斯公式、离散型随机变量、连续型随机变量、期望与方差、正态分布、中心极限定理、参数估计、假设检验、相关系数、回归分析。

高三数学的知识点大全总结

高三数学的知识点大全总结

高三数学的知识点大全总结一、函数与方程1. 一次函数与二次函数1.1 一次函数的性质与图像1.2 二次函数的性质与图像2. 指数与对数函数2.1 指数函数的性质与图像2.2 对数函数的性质与图像3. 三角函数3.1 基本三角函数的定义与性质3.2 三角函数的图像与周期性4. 组合与逆函数4.1 组合函数的定义与性质4.2 逆函数的定义与性质5. 一元二次方程5.1 一元二次方程的解法及性质5.2 二次函数与一元二次方程的关系6. 高次方程与不等式6.1 高次方程的基本概念与解法6.2 不等式的基本概念与解法二、几何与向量1. 平面几何1.1 点、直线、平面的基本性质1.2 三角形、四边形的特性与性质2. 三维几何2.1 空间中的点、直线、平面2.2 空间图形的投影与旋转3. 二次曲线3.1 抛物线的性质与图像3.2 椭圆、双曲线的性质与图像4. 向量与坐标4.1 向量的定义与运算4.2 坐标系与向量的坐标表示5. 空间向量5.1 空间中的向量运算5.2 点、直线、平面与向量的关系三、概率与统计1. 概率1.1 事件与概率的基本概念1.2 条件概率与概率的加法规则2. 统计2.1 数据的收集与整理2.2 统计指标与统计图表的应用3. 随机变量与分布3.1 随机变量的概念与性质3.2 常见离散与连续分布的特点与应用四、数列与级数1. 数列1.1 数列的基本概念与性质1.2 等差数列与等比数列的应用2. 数列极限2.1 数列极限的定义与性质2.2 数列极限的计算方法与应用3. 级数3.1 级数的基本概念与性质3.2 等比级数与调和级数的求和五、导数与微分1. 导数的基本概念1.1 导数的定义与性质1.2 高阶导数与隐函数的导数2. 导数的计算与应用2.1 基本函数的导数2.2 最值与最优化问题的求解3. 微分学的应用3.1 泰勒展开与近似计算3.2 曲线的切线方程与法线方程六、积分与定积分1. 不定积分1.1 不定积分的基本概念与性质1.2 常见函数的不定积分公式2. 定积分2.1 定积分的基本概念与性质2.2 近似计算与定积分的应用3. 定积分的计算与应用3.1 函数的面积与曲线的长度3.2 物理问题与定积分的关系综上所述,以上是高三数学的知识点大全总结,包括函数与方程、几何与向量、概率与统计、数列与级数、导数与微分以及积分与定积分等内容。

高三数学知识点全集总结

高三数学知识点全集总结

高三数学知识点全集总结一、基本数学概念1. 数与数线数的分类:自然数、整数、有理数、无理数、实数数线上的点与坐标2. 运算与代数四则运算代数表达式与代数式的化简与计算方程与不等式的解与性质3. 几何基础知识点、线、面及其相互关系角度的概念及其相互关系平行线与垂直线的性质二、函数与方程1. 函数的概念与性质函数的定义域和值域奇函数与偶函数函数的图像和性质2. 一次函数线性函数的表示与性质函数方程的解法与应用3. 二次函数二次函数的表示与性质抛物线的图像与性质二次函数方程的解法与应用4. 指数与对数函数指数函数与对数函数的定义与性质对数函数的换底公式指数与对数的运算性质与应用5. 三角函数正弦函数、余弦函数、正切函数的定义与性质三角函数的图像与周期性质三角函数的运算与应用6. 三角方程与三角恒等式的证明与应用三角方程的解法三角恒等式的基本性质与应用三、平面几何1. 三角形的基本性质三角形的分类与性质三角形的内角和定理与外角和定理2. 三角形的相似与共线相似三角形的判定与性质利用相似三角形解决问题共线定理与应用3. 四边形的性质平行四边形的性质矩形、菱形和正方形的性质4. 圆与圆的相交性质圆的性质与定义切线与弦的性质圆内切与外切的性质四、空间几何1. 空间几何体的性质点、直线、平面与空间几何体的性质与关系空间几何体的投影与投影性质2. 空间向量的概念与运算空间向量的线性运算与数量积向量的共线与垂直性质3. 空间几何体的位置关系分析夹角的定义与判定直线与平面的位置关系平面与平面的位置关系五、概率与统计1. 随机事件与概率的概念样本空间、随机事件与概率概率的运算与应用2. 排列与组合排列与组合的定义与性质应用于实际问题的排列组合3. 统计与误差分析数据的收集与整理数据的表达与分析误差的来源与处理以上是高三数学知识点的全集总结,希望对你的学习有所帮助。

请按照自己的学习进度,在每个知识点上进行深入理解和掌握。

高三数学高考知识点总结

高三数学高考知识点总结

高三数学高考知识点总结1. 函数与方程1.1 一元二次函数及应用1.2 二次函数与一元二次方程1.3 三角函数与解三角形1.4 指数、对数与幂函数1.5 不等式1.6 等式与方程的应用1.7 参数方程与函数的图形2. 数列与数列极限2.1 数列的概念与性质2.2 等差数列与等比数列2.3 数列极限的定义与性质2.4 数列极限的计算方法2.5 无穷数列极限3. 三角函数与三角恒等变换3.1 三角函数的定义与性质3.2 三角函数的图像与变换3.3 三角函数的复合与反函数3.4 三角恒等式的证明与应用3.5 三角函数的基本计算4. 几何与空间几何4.1 平面几何基本概念与定理4.2 平面图形的性质与计算4.3 立体图形的基本概念与定理4.4 空间图形的性质与计算4.5 空间几何的向量与坐标表示4.6 空间几何的相交与平行关系5. 三角函数与向量5.1 向量的概念与性质5.2 平面向量的基本运算5.3 向量的数量积与向量积5.4 向量与空间图形的应用5.5 三角函数与向量的关系6. 概率与统计6.1 随机事件与概率6.2 概率的计算与性质6.3 组合与排列6.4 统计图与频率分布表6.5 参数估计与假设检验7. 导数与微分7.1 导数的概念与性质7.2 导数的计算及应用7.3 高阶导数与隐函数求导7.4 微分的概念与性质7.5 微分中值定理与泰勒展开7.6 极值与最值的判定8. 不定积分与定积分8.1 不定积分及其基本性质8.2 常用的积分公式与方法8.3 定积分的定义及性质8.4 定积分的计算方法8.5 定积分在几何与物理中的应用9. 空间解析几何9.1 空间直线与面的方程9.2 空间几何的两点形式与一般方程9.3 空间几何的交点、距离与投影9.4 空间直线与面的位置关系9.5 空间曲线及其方程10. 数学建模10.1 建模的基本思路与方法10.2 建模中的数学工具与技巧10.3 建模中的数据处理与分析10.4 建模中的模型建立与求解这些都是高中数学高考的核心知识点,在备考过程中需要掌握这些知识点的概念、性质、计算方法和应用。

高考高三数学总复习知识点归纳总结

高考高三数学总复习知识点归纳总结一、函数与方程1. 一次函数- 定义及性质- 斜率公式- 常见应用2. 二次函数- 定义及性质- 抛物线及图像特点- 判别式与根的情况- 常见应用3. 指数函数与对数函数- 定义及性质- 指数函数的图像特点- 对数函数的定义与性质- 常见应用4. 三角函数- 基本概念及性质- 常用三角函数的周期性、奇偶性、函数值范围- 三角函数的图像特点- 常见应用5. 方程与不等式- 一元一次方程与一元一次不等式- 一元二次方程与一元二次不等式- 三角方程与三角不等式- 常见应用二、数列与数学归纳法1. 等差数列- 定义及性质- 常见应用2. 等比数列- 定义及性质- 常见应用3. 斐波那契数列- 定义及性质- 常见应用4. 数学归纳法- 原理及应用步骤- 常见应用三、几何与三角形1. 直线与角- 基本概念及性质- 常见应用2. 三角形- 定义及性质- 各类三角形的特点- 常见应用3. 圆- 基本概念及性质- 圆的切线与切点- 弧度制- 常见应用4. 三角函数与解三角形- 正弦定理- 余弦定理- 解三角形的步骤与技巧- 常见应用四、概率与统计1. 随机事件与概率- 基本概念及性质- 概率计算方法- 常见应用2. 排列与组合- 基本概念及性质- 常见应用3. 统计与统计图- 数据的收集与整理- 统计图的绘制与分析- 常见应用五、导数与微分1. 导数的概念与性质- 导数的定义- 常见函数的导数- 常见应用2. 微分的概念与性质- 微分的定义- 高阶导数- 常见应用3. 函数的极值与最值- 极值与最值的概念- 极值与最值的判定条件- 常见应用总结本文档对高考高三数学总复习的知识点进行了归纳总结,涵盖了函数与方程、数列与数学归纳法、几何与三角形、概率与统计、导数与微分等内容。

希望能帮助您系统复习数学知识,取得优异的成绩!。

高三数学必考知识点总结【五篇】

高三数学必考知识点总结【五篇】学习任何一门科目都离不开对知识点的总结,尤其是同学们在学习数学时,更要总结各个方程式知识点,这样也方便同学们日后的复习。

高三数学知识点11、直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。

特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。

因此,倾斜角的取值范围是0°≤α180°2、直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。

直线的斜率常用k表示。

即。

斜率反映直线与轴的倾斜程度。

②过两点的直线的斜率公式:注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

3、直线方程点斜式:直线斜率k,且过点注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。

当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。

高三数学知识点2a(1)=a,a(n)为公差为r的等差数列通项公式:a(n)=a(n-1)+r=a(n-2)+2r=...=a[n-(n-1)]+(n-1)r=a(1)+(n-1)r=a+(n-1)r.可用归纳法证明。

n=1时,a(1)=a+(1-1)r=a。

成立。

假设n=k时,等差数列的通项公式成立。

a(k)=a+(k-1)r则,n=k+1时,a(k+1)=a(k)+r=a+(k-1)r+r=a+[(k+1)-1]r.通项公式也成立。

因此,由归纳法知,等差数列的通项公式是正确的。

求和公式:S(n)=a(1)+a(2)+...+a(n)=a+(a+r)+...+[a+(n-1)r]=na+r[1+2+...+(n-1)]=na+n(n-1)r/2n-1)]r不等于1时,S(n)=a[1-r]/[1-r]r=1时,S(n)=na.同样,可用归纳法证明求和公式。

高三数学知识点大全总结归纳

高三数学知识点大全总结归纳一、函数与方程1. 一次函数1.1 定义与性质1.2 解一次方程1.3 求一次函数的图像2. 二次函数2.1 定义与性质2.2 解二次方程2.3 求二次函数的图像3. 指数与对数函数3.1 定义与性质3.2 指数方程与对数方程3.3 指数函数与对数函数的图像4. 三角函数4.1 基本概念与性质4.2 弧度与角度的转换4.3 常用三角函数图像5. 三角方程5.1 基本概念与性质5.2 解三角方程的基本方法二、数列与数列的表示1. 等差数列1.1 定义与性质1.2 求等差数列的通项公式1.3 求等差数列前n项和2. 等比数列2.1 定义与性质2.2 求等比数列的通项公式2.3 求等比数列前n项和3. 递推数列3.1 定义与性质3.2 求递推数列的通项公式 3.3 求递推数列前n项和三、解析几何1. 直线与平面1.1 直线的方程与性质1.2 平面的方程与性质1.3 直线与平面的位置关系2. 空间几何体2.1 球与球面方程2.2 平行六面体与正方体2.3 圆锥曲线四、概率论1. 随机事件1.1 基本概念与性质1.2 随机事件的运算1.3 条件概率与乘法定理2. 随机变量与概率分布2.1 随机变量及其性质2.2 离散型随机变量与分布律2.3 连续型随机变量与概率密度函数3. 期望与方差3.1 期望的定义与性质3.2 方差的定义与性质3.3 两个随机变量的相关性与协方差五、数理统计1. 样本调查与总体参数估计1.1 样本与样本调查的基本概念1.2 总体参数的估计方法1.3 构造区间估计2. 假设检验2.1 假设检验的基本概念2.2 单总体均值的检验2.3 两个总体均值的检验3. 相关与回归分析3.1 相关分析的基本概念3.2 相关系数的计算与判断3.3 简单线性回归分析的基本原理六、立体几何1. 空间直角坐标系1.1 空间点的坐标1.2 距离公式与中点公式1.3 空间图形的方程2. 球与球面2.1 球的方程与性质2.2 球面上点与球面上线段2.3 球与平面的位置关系3. 空间向量3.1 向量的定义与性质3.2 向量的线性运算与数量积3.3 平面与向量的夹角以上是高三数学知识点的大致分类以及每个知识点的相应内容概要。

高三数学知识点归纳总结(优秀8篇)

高三数学知识点归纳总结(优秀8篇)高三数学知识点归纳篇一高三上册数学知识点整理1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。

即:方程有实数根函数的图象与轴有交点函数有零点。

3、函数零点的求法:求函数的零点:(1)(代数法)求方程的实数根;(2)(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点。

4、二次函数的零点:二次函数。

1)△0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点。

2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点。

3)△0,方程无实根,二次函数的图象与轴无交点,二次函数无零点。

人教版高三数学知识点总结1、定义:用符号〉,=,〈号连接的式子叫不等式。

2、性质:①不等式的两边都加上或减去同一个整式,不等号方向不变。

②不等式的两边都乘以或者除以一个正数,不等号方向不变。

③不等式的两边都乘以或除以同一个负数,不等号方向相反。

3、分类:①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。

②一元一次不等式组:a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

4、考点:①解一元一次不等式(组)②根据具体问题中的数量关系列不等式(组)并解决简单实际问题③用数轴表示一元一次不等式(组)的解集高三数学知识点归纳总结篇二线线平行常用方法(1)定义:在同一平面内没有公共点的两条直线是平行直线。

(2)公理:在空间中平行于同一条直线的两只直线互相平行。

(3)初中所学平面几何中判断直线平行的方法(4)线面平行的性质:如果一条直线和一个平面平行,经过这条直线的平面和这个平面的相交,那么这条直线就和两平面的交线平行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学知识点总结1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。

{}{}{}如:集合,,,、、A x y x B y y x C x y y x A B C ======|lg |lg (,)|lg中元素各表示什么?2. 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况。

∅注重借助于数轴和文氏图解集合问题。

空集是一切集合的子集,是一切非空集合的真子集。

{}{}如:集合,A x x x B x ax =--===||22301若,则实数的值构成的集合为B A a ⊂(答:,,)-⎧⎨⎩⎫⎬⎭10133. 注意下列性质:{}()集合,,……,的所有子集的个数是;1212a a a n n()若,;2A B A B A A B B ⊆⇔==(3)德摩根定律:()()()()()()C C C C C C U U U U U U A B A B A B A B ==,4. 你会用补集思想解决问题吗?(排除法、间接法)如:已知关于的不等式的解集为,若且,求实数x ax x aM M M a --<∈∉50352的取值范围。

()(∵,∴·∵,∴·,,)335305555015392522∈--<∉--≥⇒∈⎡⎣⎢⎫⎭⎪M a a M a aa5. 可以判断真假的语句叫做命题,逻辑连接词有“或”,“且”和()()∨∧ “非”().⌝若为真,当且仅当、均为真p q p q ∧若为真,当且仅当、至少有一个为真p q p q ∨若为真,当且仅当为假⌝p p6. 命题的四种形式及其相互关系是什么? (互为逆否关系的命题是等价命题。

)原命题与逆否命题同真、同假;逆命题与否命题同真同假。

7. 对映射的概念了解吗?映射f:A→B ,是否注意到A 中元素的任意性和B 中与之对应元素的唯一性,哪几种对应能构成映射?(一对一,多对一,允许B 中有元素无原象。

)8. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域)9. 求函数的定义域有哪些常见类型?()()例:函数的定义域是y x x x =--432lg()()()(答:,,,)02233410. 如何求复合函数的定义域?[]如:函数的定义域是,,,则函数的定f x a b b a F(x f x f x ())()()>->=+-0义域是_____________。

[](答:,)a a -11. 求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗?()如:,求fx e x f x x +=+1().令,则t x t =+≥10∴x t =-21 ∴f t e t t()=+--2121()∴f x e x x x()=+-≥-2121012. 反函数存在的条件是什么? (一一对应函数)求反函数的步骤掌握了吗?(①反解x ;②互换x 、y;③注明定义域)()()如:求函数的反函数f x xx xx ()=+≥-<⎧⎨⎪⎩⎪1002()()(答:)f x x x x x -=->--<⎧⎨⎪⎩⎪1110() 13. 反函数的性质有哪些?①互为反函数的图象关于直线y=x 对称; ②保存了原来函数的单调性、奇函数性;③设的定义域为,值域为,,,则y f(x)A C a A b C f(a)=b f 1=∈∈⇔=-()b a[][]∴====---f f a f b a f f b f a b 111()()()(),14. 如何用定义证明函数的单调性? (取值、作差、判正负)如何判断复合函数的单调性?[](,,则(外层)(内层)y f u u x y f x ===()()()ϕϕ[][]当内、外层函数单调性相同时为增函数,否则为减函数。

)f x f x ϕϕ()()()如:求的单调区间y x x =-+log 1222(设,由则u x x u x =-+><<22002()且,,如图:log 12211u u x ↓=--+当,时,,又,∴x u u y ∈↑↓↓(]log 0112当,时,,又,∴x u u y ∈↓↓↑[)log 1212∴……)15. 如何利用导数判断函数的单调性?()在区间,内,若总有则为增函数。

(在个别点上导数等于a b f x f x '()()≥0零,不影响函数的单调性),反之也对,若呢?f x '()≤0[)如:已知,函数在,上是单调增函数,则的最大a f x x ax a >=-+∞013()值是()A. 0ﻩﻩﻩB. 1ﻩﻩC. 2 ﻩﻩD. 3(令f x x a x a x a '()=-=+⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪≥333302则或x ax a ≤-≥33由已知在,上为增函数,则,即f x aa ()[)1313+∞≤≤ ∴a 的最大值为3)16. 函数f(x )具有奇偶性的必要(非充分)条件是什么? (f(x)定义域关于原点对称)若总成立为奇函数函数图象关于原点对称f x f x f x ()()()-=-⇔⇔ 若总成立为偶函数函数图象关于轴对称f x f x f x y ()()()-=⇔⇔注意如下结论:(1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个偶函数与奇函数的乘积是奇函数。

()若是奇函数且定义域中有原点,则。

2f(x)f(0)0= 如:若·为奇函数,则实数f x a a a x x()=+-+=2221(∵为奇函数,,又,∴f x x R R f ()()∈∈=000 即·,∴)a a a 22210100+-+== 又如:为定义在,上的奇函数,当,时,,f x x f x xx ()()()()-∈=+1101241()求在,上的解析式。

f x ()-11()()(令,,则,,x x f x xx ∈--∈-=+--1001241()又为奇函数,∴f x f x x x xx()()=-+=-+--241214()又,∴,,)f f x x x x xxxx ()()()0024110024101==-+∈-=+∈⎧⎨⎪⎪⎩⎪⎪17. 你熟悉周期函数的定义吗?()(若存在实数(),在定义域内总有,则为周期T T f x T f x f x ≠+=0()()函数,T 是一个周期。

)()如:若,则f x a f x +=-()(答:是周期函数,为的一个周期)f x T a f x ()()=2 ()又如:若图象有两条对称轴,f x x a x b ()==⇔即,f a x f a x f b x f b x ()()()()+=-+=- 则是周期函数,为一个周期f x a b ()2-如:18. 你掌握常用的图象变换了吗?f x f x y ()()与的图象关于轴对称- f x f x x ()()与的图象关于轴对称-f x f x ()()与的图象关于原点对称-- f x f x y x ()()与的图象关于直线对称-=1f x f a x x a ()()与的图象关于直线对称2-=f x f a x a ()()()与的图象关于点,对称--20 将图象左移个单位右移个单位y f x a a a a y f x a y f x a =>−→−−−−−−−−>=+=-()()()()()00上移个单位下移个单位b b b b y f x a by f x a b ()()()()>−→−−−−−−−−>=++=+-00 注意如下“翻折”变换:f x f x f x f x ()()()(||)−→−−→−()如:f x x ()log =+21()作出及的图象y x y x =+=+log log 2211y=log 2x19. 你熟练掌握常用函数的图象和性质了吗?()()一次函数:10y kx b k =+≠()()()反比例函数:推广为是中心,200y k x k y b k x ak O a b =≠=+-≠'() 的双曲线。

()()二次函数图象为抛物线30244222y ax bx c a a x b a ac b a=++≠=+⎛⎝ ⎫⎭⎪+-顶点坐标为,,对称轴--⎛⎝ ⎫⎭⎪=-b aac b a x ba 24422 开口方向:,向上,函数a y acb a>=-0442mina y acb a<=-0442,向下,max应用:①“三个二次”(二次函数、二次方程、二次不等式)的关系——二次方程ax bx c x x y ax bx c x 212200++=>=++,时,两根、为二次函数的图象与轴∆ 的两个交点,也是二次不等式解集的端点值。

ax bx c 200++><()②求闭区间[m,n]上的最值。

③求区间定(动),对称轴动(定)的最值问题。

④一元二次方程根的分布问题。

如:二次方程的两根都大于ax bx c k b a k f k 20020++=⇔≥->>⎧⎨⎪⎪⎩⎪⎪∆()一根大于,一根小于k k f k ⇔<()0()()指数函数:,401y a a a x =>≠ ()()对数函数,501y x a a a =>≠log由图象记性质!(注意底数的限定!)a x(a>1)()()“对勾函数”60y x kxk =+> 利用它的单调性求最值与利用均值不等式求最值的区别是什么?20. 你在基本运算上常出现错误吗?指数运算:,a a a aa p p 01010=≠=≠-(()) aaa aaa m nmn m nmn=≥=>-((010)),()对数运算:·,log log log a a a M N M N M N =+>>00log log log log log aa a a n a M N M N M nM =-=,1对数恒等式:a x a x log =对数换底公式:log log log log log a c c a n a b b a b nmb m =⇒=21. 如何解抽象函数问题?(赋值法、结构变换法)如:(),满足,证明为奇函数。

1x R f x f x y f x f y f x ∈+=+()()()()() (先令再令,……)x y f y x ==⇒==-000()(),满足,证明是偶函数。

2x R f x f xy f x f y f x ∈=+()()()()() [](先令·x y t f t t f t t ==-⇒--=()()()∴f t f t f t f t ()()()()-+-=+ ∴……)f t f t ()()-=()[]()证明单调性:……32212f x f x x x ()=-+=22. 掌握求函数值域的常用方法了吗?(二次函数法(配方法),反函数法,换元法,均值定理法,判别式法,利用函数单调性法,导数法等。

相关文档
最新文档