设备冷却水系统正常运行工况下流量调节分析
换流站阀冷系统典型问题分析

图 3 均压电极垫圈腐蚀 Fig.3 Corrosion of voltage-sharing electrode washer
阀塔漏水暴露出阀塔内水管安装不规 范、工艺不精良等问题,进而导致水管与金 属构件距离过近而产生震动摩擦。正常情况 下,阀模件上的内冷水循环管道与金属构件 支架等刚性部件应保持一定距离以防止阀 塔振动下接触摩擦导致内冷水循环管道受 损。对于此类缺陷,需制订妥善的方案且在 停电时进行专项处理并在后期维护中预防 紧固带老化断裂。垫圈腐蚀则可利用停电机 会对阀厅均压电极及垫圈进行全面排查,及
对参数超限及设备故障将传感器判断 逻辑根据传感器的数量采取二取一、二取二 或者三取二的逻辑进行报警或者闭锁直流。 根据阀冷却系统的相关控制保护逻辑,导致 阀冷却系统告警的因素有:冷却水流量高/ 低、去离子水回路流量低、进阀压力高/低、 出阀压力高/低、进阀温度高/低、电加热器 温度高、高位水箱液位高/低、补水灌液位 低、缓冲水池液位高/低、内冷水电导率高、 去离子水电导率高、喷淋水电导率高、阀冷 系统渗漏;上述部分因素如进阀温度高、进 阀压力和出阀压力同时超低、两台主泵均故 障、流量低、高位水箱低、阀冷系统泄露、 冷却水电导率高等达到跳闸定值时经过相 关逻辑判断出口闭锁直流。
Abstract: Combined with the operation situation of the HVDC converter valve cooling system in China
Southern Power Grid,this paper introduces the principle basic principle of valve cooling system and its i
循环冷却水系统管道安装问题分析

循环冷却水系统管道安装问题分析摘要:近年来随着我国经济建设的高速发展,以及在一带一路思路的引导下,我国在海内外各地陆续投资兴建了大批大型工程项目。
各种项目所使用的机电机组、换热器等,都必定会使用到循环冷却水系统,虽然循环冷却水系统在整个项目中所占投资比例不大,但因每个项目投资总额基数高,所以循环冷却水系统的投资金额也是常大的,因此,在循环冷却水系统的设计和施工中,如果能够合理的安装和使用,维护好循环冷却水系统,将会为整个项目投资节约不少资金,缓解投资压力。
关键词:循环冷却水系统;冷却塔;蝶阀;沟槽式管道连接在大型工业与民用建筑中广泛的应用到了循环冷却水系统,如暖通空调的循环冷却水系统,化工车间的循环冷却水系统,电厂海水循环冷却系统等。
冷却塔、循环冷却水系统运行况正常与否,直接影响到机组水泵的运行能耗、冷水机组的正常出力和换热器换热效果。
1循环冷却水统的安装存在的问题(1)冷却水系统在启动时,循环冷却水泵在瞬间吸引大量水流,巨大的水流由进水管道进入进水口,巨大的水冲量对管道产生冲击,进水管产生强烈的振动,此冲量通过管道及冷却塔的传递慢消减。
同时振动的传递也将产生噪声并传递出去,使周围环境受到噪音的污染。
同时,在循环冷却水泵开机运转至系统正常运行的过程中,振动频率慢慢衰减,在某个时值达到与冷却塔相同的固有频率,进而产生了共振,将会直接影响冷却塔的运转性能,减少其使用寿命。
(2)冷却塔在运转时,管道内的水流量大速度快,管道压力巨大,并伴随着不停的振动,如果没有安装支架来固定管道,管道的振动会使管道之间的连接口产生磨损,管道的密封性破坏,发生泄漏,进而影响整个机组的运作,而且污染周围环境,这样会减少管道的使用寿命,增加投资成本,还会直接影响作效率,减缓工程进度。
(3)冷却塔进水管上安装作用低下的蝶阀与闸阀。
蝶阀具有一定的静态调节能力,其调节性能在系统的初调试中可以胜任,但在进水塔正常运转中却功能缺缺。
而闸阀却是一种典型的快开式阀门,调节能力微乎其微,只能当开关式双位阀来使用,不适合用在冷却塔进水管中,因为冷却塔对进塔水压要求较为精确。
中央空调水系统与制冷系统运行参数

一、机组工作电源机组工作电源一般要求是 380V/50Hz/3N,其波动范围在 360V~420V 之间。
但是机组运行对电源有严格要求:电源三相电压不平衡应不大于 2﹪;电源三相电流不平衡应不大于 10﹪。
电压过高或过低,都会造成机组电机运行电流偏大,严重时会烧坏机组电机。
三相电压不平衡的计算方法:举个例子,机组额定使用电压为380V,所测三相电压分别为:A-B=386V;A-C=385;B-C=382V;即386-380=6、385-380=5,382-380=2。
三相电压不平衡=6÷380×100﹪= 1.6﹪,即为正常(三相电流不平衡计算方法相同)。
二、循环水系统的运行参数开机前应检查冷冻水、冷却水的进、出水的压差,应在 0.08Mpa~0.15Mpa 之间。
如进水压力是 0.4Mpa,其出水压力就应为 0.32Mpa~0.25Mpa 之间。
压差过小,说明机组水流量不够,这时,我们应检查水泵运行是否正常、各阀门开启是否正常、水系统是否有空气、水系统上过滤器(Y 格)是否堵塞等。
确认供水正常后,才能开机。
如供水不正常,开机后时间不长机组就会因“低蒸发温度”报警而保护性停机。
机组正常运行的过程中:·我们应注意观察冷冻水、冷却水的进、出水的温差,应在3℃~5℃之间。
如冷冻进水温度是 15℃,其出水温度就应为 12℃~10℃之间。
温差过小,说明机组热交换器热交换效果较差,这时,我们应检查水质是否正常、热交换管是否有脏堵和结垢现象等;温差过大,说明机组水流量不够,这时,我们应检查水泵运行是否正常、各阀门开启是否正常、水系统是否有空气、水系统上过滤器(Y 格)是否堵塞等。
时间不长机组就会因“低蒸发温度”报警而保护性停机。
·我们应注意观察冷冻水、冷却水的出水温度与蒸发器冷媒温度、冷凝器冷媒温度的温差,应不大于 2.5℃。
如冷冻水的出水温度是 10℃,蒸发器冷媒温度就应为 8℃~10℃之间;冷却水的出水温度是 30℃,冷凝器冷媒温度就应为 28℃~30℃之间。
火电厂集控运行专业《知识点3 闭式循环冷却水系统》

调阀
进出口 门开
进出口 门关
闭在式机冷组却运水行系期统间停:运后,应 将各设备水室和管道的余水 1通.当过水放箱水水阀位排低尽于。下限值时 ,闭式冷却水泵自动跳闸。
2.当运行泵跳闸或水泵出口 母管压力低于限值,应自动 连锁启动备用泵。
跳 启
注意
பைடு நூலகம்
(1)当某一设备的冷却水因故中断时,如有备 用可投入备用设备,根据要求延时后停运该设备。
开 投
机正组常停运运行后:,一可台停闭止式闭冷式却冷水却泵水和系 统一运台行闭,式手冷动却停水止冷闭却式器冷运却行水,泵另运 行一,套其处进于、备出用口联阀锁门状保态持,开补启充。水可 以经手气动动关调闭节各阀设进备入冷膨却胀器水的箱进,、并出 口能阀自,动切控除制各膨冷胀却水器箱,水也位可。不切除。
出口阀全开 隔离阀开
开
手动开启膨胀水箱补充水管路上的
旁路阀,由补充水泵向水箱上水,
再通过水箱向系统各设备和管道充 水。当系统充满水,空气驱赶干净
开
后,关闭各放气阀。
膨胀水箱水位达到正常水位时,关
闭旁路阀,开气动调节阀前后的手
动隔离阀,投入水位自动控制。
启动闭式冷却水泵,加药系 统投入。
对不设温度调节的各设备冷 却器,调节其出水管道上隔 离阀的开度控制通过冷却器 的冷却水量。
(2)当两台闭式冷却水泵和闭式水冷却器故障, 则需停运闭式冷却水系统,停止冷却水供应。
(3)当设备中断冷却水时,根据情况机组减负 荷或停运。
Thans For Watching
回水温度为47℃
冷却后的温度为38℃
开式冷却水的正常水温为15-30℃→最高为33℃; 闭式冷却水通过各设备冷却器的回水温度为47℃左右→ 进入闭式冷却水冷却器后的温度为38℃。
110kw空压机冷却水量计算公式

110kw空压机冷却水量计算公式1. 概述110kw空压机是工业生产中常用的设备之一,其正常运转需要大量的冷却水来保持温度稳定,防止设备过热。
为了保证110kw空压机的正常运转和延长设备的使用寿命,需要合理计算冷却水量,确保设备在运行过程中能够得到足够的冷却。
本文将介绍110kw空压机冷却水量的计算公式,以供工程师和相关人员参考。
2. 空压机冷却水量计算公式110kw空压机的冷却水量可以通过以下公式进行计算:\[Q = P \times \eta \times \rho \times V\]其中,- Q 为冷却水量,单位为m^3/h;- P 为空压机的功率,单位为kw;- η 为空压机的效率;- ρ 为冷却水的密度,单位为kg/m^3;- V 为空压机的排气容积流量,单位为m^3/min。
3. 参数说明- 空压机功率P:110kw空压机的功率是指110千瓦,可根据设备的技术参数或运行手册中获得;- 空压机效率η:空压机的效率可以通过设备的技术参数或相关资料中获得,一般在80到90之间;- 冷却水密度ρ:冷却水的密度可以根据水的温度和压力来计算,一般在1000kg/m^3到1030kg/m^3之间;- 排气容积流量V:110kw空压机的排气容积流量可以通过设备的技术参数或运行手册中获得,一般在45m^3/h到50m^3/h之间。
4. 计算示例假设110kw空压机的功率P为110kw,效率η为85,冷却水的密度ρ为1020kg/m^3,排气容积流量V为48m^3/h,则可以通过公式进行计算:\[Q = 110 \times 0.85 \times 1020 \times 48 = xxxm^3/h\]即110kw空压机的冷却水量为445.896m^3/h。
5. 结论通过以上公式和参数的计算,可以得到110kw空压机冷却水量的计算结果。
在实际工程中,还需要考虑到设备的实际运行情况和环境因素,对计算结果进行合理调整,以确保设备的正常运转和工作效率。
华北某城市污水源热泵系统的最优工况分析(高温水源热泵机组)

蒸发器面积是否合适,并提出修正建议。鉴于 2#机组总运行时间不多,且所记录数据中错误较多,所 以仅对 1#机组进行计算分析。
此时,公式 Q = F ∗ K ∗ ΔT
式中, Q -蒸发器的热负荷,kW;
该组数据冷凝器进出口温度为 44.5℃-53.6℃符合 45℃-55℃这一温度段,故:由 QS =228 kW,
ΔTs =6.3,得到 K S = (QS − N S ) / ΔTS =(228−55.4)/6.25=27.62 kW/㎡℃( N S 为机组在实际工况下的
额定功率)。 现假定实际制热量与样本制热量相等,即
考虑到样本实验是以同等温度、流量等条件下的清洁水进行的,且在实际情况下,由于各环节保 温条件不及实验室,热量散失较大、城市污水中污杂物降低换热系数等因素,可以认为机组工作正常, 样本数据可信。
实际参数越接近样本参数、系统效能越高;热源流量越大、系统效能越高,但最佳工况下单位流量 污水放热量大大低于样本值,造成一定的热量浪费,建议此时进行再循环利用。
我国对城市污水热源热泵技术的推广和应用刚刚起步,处于试验和研究阶段,虽然完成了几项实际 工程,但每项工程所选用的机组以及与污水的换热方式均不相同[3],这说明目前尚缺乏用以指导新建污 水热泵项目的实用图表和计算式,本文将华北某城市污水热泵项目为基础,开展针对性的研究,希望能 够有所突破。
2 工程背景 本文测试工程为华北某污水处理厂,工程中所选用的污水热泵系统为清华同方生产的HGHP高温型
6.2
223.2
1.03
15.0
7.2
40.0 48.6
20.63
循环冷却水系统节能方案设计实践

循环冷却水系统节能方案设计实践导读:从能量守恒定律出发,分析了循环冷却水系统各构成单元的能量转化过程。
以降低循环冷却水系统运行能耗为目标,剖析了可采用的三种节能技术。
结合钢铁生产工艺中的循环冷却水系统现场,通过数据采集、运行状况诊断、技术方案设计及节能评估,完整阐述了循环冷却水系统节能方案实践过程。
1、前言钢铁工业是国民经济的重要基础产业,包括从采矿、选矿、烧结(球团)、焦化、炼铁、炼钢、轧钢,直到金属制品及辅料等生产工序。
为推动钢铁工业转型升级,走中国特色的新型工业化道路,工业和信息化部印发《钢铁工业“十二五”发展规划》,规划明确指出要深入推进钢铁工业节能减排。
在钢铁工业链上各生产工序中,工业冷却水的循环使用非常普遍。
循环冷却水系统是工艺生产主线的生命保障线,对于生产正常运行及设备安全运转起着至关重要的作用。
因此,有必要对循环冷却水系统的节能技术进行分析,促进系统安全、节能运行。
中冶南方(武汉)威仕工业炉有限公司以为客户提供“用能设备的全生命周期服务”的理念,提供包括工业炉及钢铁全流程中终端用能设备的节能技术服务。
2、循环冷却水系统能量使用2.1循环冷却水系统构成循环冷却水系统依据系统输送介质不同,有密闭式和敞开式两种系统。
以较常用的敞开式系统为例,包括电源装置、传动系统、循环水泵组、管网、换热装置、冷却塔等,其系统构成如图1所示。
其中电源装置提供了整个系统的能源供给,如机械输送设备、传动控制系统及自动化控制系统等;自动化控制系统包括电气自动化(如变频调速控制)及仪表自动化(如管网上流量调节阀);冷却塔通常有风机及驱动电机等子设备;冷却水使用设备包括在广义的循环系统管网中,没有分别列出。
图1典型循环冷却水系统示意图2.2系统能量输入与转化电能输入。
如图1中的电源装置,通过工厂电网将电能输入到循环冷却水系统。
水泵配用的电机、风机配用电机、以及系统中自动化控制设备均需输入电能来保证设备运行与运转。
发电机定子冷却水系统

氢气和空气、水、油之间的冷却性能表
介质 空气 氢气 比热容 1.0 14.35 密度 1.0 0.35 所需流量 1.0 1.0 冷却效果 1.0 5.0
油
水
2.09
4.16
0.848
1.0
0.012
0.012
21
50
二、系统流程及设备
本装置包括水箱、两台水泵、两台冷却器、气动温度、压力调节 装置(包括电/气定位器、阀位变送器、空气过滤减压阀、手轮机构 等)、主过滤器、补水过滤器及其之间的相互连接管路、阀门及其部 分就地压力表、测温元件。装置上还设置有仪表箱,装有电导率发送 器和与内外电气接口相连的端子。
•
•
•
四、系统运行与维护
DCS画面监视内容:
发电机定冷水系统画面 定冷水泵运行状态、泵电机电流、压力/温度调节阀状态和开度、定冷水电导率、定冷 水进水压力和温度及流量、定冷水回水温度、定冷水箱液位等,是否有参数越限或报 警信号。 发电机本体温度监视画面 发电机定子线圈层间温度(42个测点)、发电机定子线圈出水温度(42个测点)。
六、异常工况及处理
定冷水压力降低: 现象: 1) 定冷水压力下降。2)定冷水流量下降。3)定子进水压力低并报警。 4) 定冷水回水温度及定子线圈温度升高。 原因: 1) 运行定冷水泵故障。2)定冷水箱水位过低。3)定冷水滤网堵。4)定冷水压力调节阀故障。 5) 表计失灵。6)定冷水系统泄漏。7)定冷水溢流阀故障。 8) 运行定冷水泵跳闸,备用定冷水泵联动不成功或联动后跳闸。 处理: 1) 发现定冷水压力降低,立即检查原因并采取措施果断进行处理,设法恢复正常运行,必要时依据发 电机风温及线圈温度及时减负荷。 2) 检查系统有无泄漏、阀门有无误关、滤网有无堵塞、定冷泵运行是否正常,并设法处理。 3) 若定冷水箱水位低引起则将水位补至正常。 4)若定冷水压力调节阀故障,应手动调节,并维持定子线圈的进水压力在196kPa且流量不低于92m3/h。 5) 若经上述处理无效,定子进水集管压力低至0.089MPa或定子线圈进水流量63t/h,延时30s,保护动 作跳机,否则应手动停机。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设备冷却水系统正常运行工况下流量调节分析
发表时间:2019-06-05T16:13:42.960Z 来源:《防护工程》2019年第5期作者:陈奎岳晗
[导读] 设备冷却水系统是核岛重要的冷源系统,其主要功能是冷却核岛内各种热交换器,并通过重要厂用水系统将负荷传送给最终的热阱——海水。
中国核电工程有限公司中国北京 100840
摘要:,正常运行工况下,设备冷却水系统需要带公共列运行,由于设备冷却水系统用户多,在调试过程中出现了流量偏差的问题。
因此,本文主要研究了设备冷却水系统在正常运行工况下用户流量偏差出现的原因及解决方法,为后续核电调试工作提供参考。
关键词:核电调试;设备冷却水系统;流量调节
Flow Adjustment Analysis for Component Cooling System under Nominal operating condition CHEN Kui,YUE Han
(China Nuclear Power Engineering Co.,Ltd. Beijing 100840,China)
Abstract:Under nominal operating conditions,the component cooling system needs to run with a common train. Due to the large number of users of the component cooling system,the problem of flow deviation appears in the commissioning process. Therefore,this paper mainly studies the causes and solutions of user flow deviation in component cooling system under normal operation conditions,which can provide reference for the follow-up nuclear power commissioning work.
Key words:commissioning of nuclear power;component cooling water system;flow rate adjusting 引言
设备冷却水系统是核岛重要的冷源系统,其主要功能是冷却核岛内各种热交换器,并通过重要厂用水系统将负荷传送给最终的热阱——海水。
设备冷却水系统为核岛内的用户设备提供冷却水,由于各个用户运行期间产生的热量各不相同,因此用户的流量调节是调试阶段最关键的工作内容,只有保证各个用户流量满足设计需求,才能发挥设备冷却水系统的功能,为核电安全运行提供保障。
1 用户设备流量调节
1.1 流量调节原理
设备冷却水系统在正常运行工况下,由一系列的一台泵运行,冷却安全列和公共列上所带的用户。
另一系列处于停运状态。
在管道安装的条件下,用户的流量调节由限流孔板和流量调节阀进行调节,限流孔板可以粗略地调节流量,一般认为在调节阀全开的情况下,通过孔板流经用户的流量应不小于给定流量的设计值,而流量调节阀可以精确地调节用户的流量,使用户的流量完全符合设计给定的定值,流量由安装在用户设备上游的流量表进行监测。
在进行用户流量调节的调试过程中,先进行流量孔板试验,保证孔板的孔径大小满足设计要。
在限流孔板满足设计要求的前提下,进行用户流量的精确分配。
1.2 流量调节中问题
在进行正常运行工况下,设备冷却水泵额定流量能够满足各用户流量需求的总和。
然而在用户流量调节的过程中,当用户流量通过调节阀调整到设计给定流量时,在进行接下来其他用户流量的调节过程中,这一用户的流量出现了偏差,其之前满足设计的流量在其他用户流量调节之后出现了下降,导致了这一用户的流量不足的情况出现。
因此,在总流量总体满足要求用户流量总和需求的前提下,需要对出现的问题进行分析。
1.3 流量失配问题分析
流量是个动态量,时刻处于变化之中,流量的测量还会受到温度、压力、流量范围、流体相态和流动状态等多种因素的影响。
设备冷却水系统由设备冷却水泵、板式换热器、试验管路、阀门、流量计,孔板等相关设备组成。
在进行流量调节的过程中,对流体的稳定性有一定的要求,如果用平均流量表示瞬时流量值会产生较大的重复性误差,会直接影响流量的准确值,因此对各种影响流量的参数进行分析是十分必要的。
(1)管道和阀门
在设备冷却水系统中,弯道,阀门是管道系统的重要组成部分,在流量监测的过程中,水在封闭管道中循环流动,当流经弯道时水流的速度大小、方向都会发生改变,造成水流流量、压力的损失,产生的二次螺旋流动还会沿管道方向传播;当流经阀门时可能产生漩涡、气穴、死水区等危害管道工况的流动现象,特别是当阀门突然关闭或打开时,流量的流速迅速发生变化,在流体惯性的作用下,管内的压强会产生剧烈波动,并在整个管长范围传播,出现水击现象。
水击发生时流量的冲击与振荡使流动损失加剧。
此外,管道变径,空气浮力等也会对流量产生影响,造成测量结果不准确的后果。
(2)流量不稳定性
离心泵是设备冷却水系统中的动力源,也是造成流量不稳定的原因之一,离心泵在工作过程中产生的压力不是静态的,而是随时间变化的,表现为有规律的周期脉动和混有周期信号的随机脉动两种形式。
随机脉动一般认为由叶片转动造成的流动紊乱和汽蚀引起的。
离心泵压力脉动幅度与其工作状态有关,随着流量的增大,各类压力脉动值都相应增大。
此外,离心泵电机电源压力不稳定引起离心泵转速变化,叶片泵端面磨损及密封处液体漏失等因素也会造成压力波动,使流量不稳定。
(3)阀门启闭过程
在管道中阀门的快速开启和关闭会引起水击现象的发生,管道中压强急剧升高和降低,交替变化,对流量表的检测产生影响。
2 结论
经过各个因素的分析以及研究发现,在离主管道位置远的用户出现了流量降低的情况,此外弯管布置多的用户也出现了此现象,考虑到在流量调节的过程中,不需要对阀门进行启闭操作以及设备冷却水泵的稳定性。
因此认为管道布置和弯管对流量调节造成了影响,离主管道远的用户在其他用户流量供给后,由于管道过长或弯管过多,管阻增大,用户流量出现降低。
3 措施
综上所述,在流量调节过程中,对于管道布置离主管道特别远用户,可以在其他用户流量调节完了之后再进行调节,同时在流量调节的过程中,可以将流量调节到比设计值偏大,以防止在其他用户调节过程中,对此用户的流量的影响,从而使流量出现不合格的情况。
参考文献:
[1]湛含辉,成浩等.二次流原理 [M].长沙:中南大学出版社,2006
[2]赵昕等.水利学[M].北京:中国电力出版社,2009
[3]程稳,范霞飞.秦山核电厂设备冷却水系统流量分配试验.核动力工程,1993(1):20-26
[4]华绍曾,杨学宁.实用流体阻力手册[M].国防工业出版社,1985。