50道经典典型计算题解析

合集下载

有理数的除法计算题50道

有理数的除法计算题50道

50 道有理数的除法计算题一、整数的除法1. 12÷3 = 4- 解析:12 平均分成3 份,每份是4。

2. (-15)÷5 = -3- 解析:负数除以正数得负数,15 平均分成5 份是3,所以-15 平均分成5 份是-3。

3. 24÷(-6) = -4- 解析:正数除以负数得负数,24 平均分成6 份是4,所以24 平均分成-6 份是-4。

4. (-36)÷(-9) = 4- 解析:两个负数相除得正数,36 平均分成9 份是4,所以-36 平均分成-9 份是4。

5. 48÷(-8) = -6- 解析:正数除以负数得负数,48 平均分成8 份是6,所以48 平均分成-8 份是-6。

二、分数的除法1. 2/3 ÷ 1/3 = 2- 解析:除以一个数等于乘以它的倒数,2/3 ÷ 1/3 = 2/3 × 3/1 = 2。

2. (-3/4)÷1/2 = -3/2- 解析:(-3/4)÷1/2 = -3/4 × 2/1 = -3/2。

3. 4/5 ÷ (-2/5) = -2- 解析:4/5 ÷ (-2/5) = 4/5 × (-5/2) = -2。

4. (-5/6)÷(-1/3) = 5/2- 解析:两个负数相除得正数,(-5/6)÷(-1/3) = -5/6 × (-3/1) = 5/2。

5. 3/4 ÷ (-3/8) = -2- 解析:3/4 ÷ (-3/8) = 3/4 × (-8/3) = -2。

三、混合运算1. 12÷(-3/4) = -16- 解析:12÷(-3/4) = 12×(-4/3) = -16。

2. (-18)÷2/3 = -27- 解析:(-18)÷2/3 = -18×3/2 = -27。

整式乘法计算50题(含解析)

整式乘法计算50题(含解析)

整式乘除50题一、幂的运算1.计算:(1)x n﹣2•x n+2;(n是大于2的整数)(2)﹣(x3)5;(3)[(﹣2)2]3;(4)[(﹣a)3]2.2.若n为正整数且(m n)2=9,求.3.已知x a﹣3=2,x b+4=5,x c+1=10;求a、b、c间的关系.4.已知a n=2,b2n=3,求(a3b4)2n的值.5.计算:(1)﹣()1000×(﹣10)1001+()2013×(﹣3)2014(2)(8)100×(﹣)99×.6.化简:(x+y)5÷(﹣x﹣y)2÷(x+y)7.已知10x=a,10y=b,求103x+3y+103x﹣2y的值.8.己知53x+1÷5x﹣1=252x﹣3,求x的值.9.已知(x2n)2÷(x3n+2÷x3)与﹣x3是同类项,求4n2﹣1的值.10.我们约定:a⊗b=10a÷10b,如4⊗3=104÷103=10.(1)试求:12⊗3和10⊗4的值;(2)试求:21⊗5×103.二、整式乘法计算题11.计算:4xy2•(﹣x2yz3).12.计算:(a3b2)(﹣2a3b3c).13.计算:(3a2)3×b4﹣3(ab2)2×a4.14.计算:(a n•b n+1)3•(ab)n.15.计算:[﹣2a2(x+y)3]•[3a3•b(x+y)2].16.计算:﹣6a2b(x﹣y)3•ab2(y﹣x)2.17.计算:.18.计算:(﹣5x2y3)2•(﹣2x4y2)3•(xy2)4.19.计算:(﹣x3y2)3•(2xy2)2﹣(﹣x4y3)2•x3y4.20.计算:.21.计算:(x﹣2)(x2+4).22.计算:(﹣7x2﹣8y2)(﹣x2+3y2)23.计算:(2x﹣3y﹣1)(﹣2x﹣3y+5).24.计算:(2x﹣x2﹣3)(x3﹣x2﹣2).25.计算:(a﹣b+c﹣d)(c﹣a﹣d﹣b)26.计算:(x+3)(x﹣5)﹣(x﹣3)(x+5)27.计算:5x2﹣(x﹣2)(3x+1)﹣2(x+1)(x﹣5)28.计算:3(2x﹣1)(x+6)﹣5(x﹣3)(x+6)29.计算:(a+b)(a2﹣ab+b2)30.计算:(x﹣y)(x2+xy+y2)三、乘法公式及应用31.化简:(x+1)2﹣(x+2)(x﹣2).32.已知2x+2y=﹣5,求2x2+4xy+2y2﹣7的值.33.已知(a+b)2=17,ab=3.求(a﹣b)2的值.34.已知:x+y=﹣1,xy=﹣12,求x2+y2﹣xy和(x﹣y)2的值.35.已知x+y=2,x2+y2=10,求xy的值.36.已知实数x满足x+=3,则x2+的值为7.37.求代数式5x2﹣4xy+y2+6x+25的最小值.38.已知(a+1)2﹣(3a2+4ab+4b2+2)=0,求a,b的值.39.已知13x2﹣6xy+y2﹣4x+1=0,求(x+y)13•x10的值.40.已知a,b,c为实数,设.证明:A,B,C中至少有一个值大于零.41.计算:2(m+1)2﹣(2m+1)(2m﹣1).42.已知a﹣b=2,b﹣c=2,a+c=14,求a2﹣b2.43.若a=,b=,试不用将分数化小数的方法比较a、b的大小.44.用平方差公式计算:(1)99.8×100.2=(2)40×39=45.计算3001×2999的值.46.计算:(x+y)(x﹣y)(x2+y2)(x4+y4)47.计算:(x+2y)(x﹣2y)(x4﹣8x2y2+16y4)48.计算103×97×10009的值.49.对于算式2(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)+1.(1)计算出算式的结果;(2)结果的个位数字是几?50.计算12﹣22+32﹣42+52+62+…+20002﹣20012.参考答案与试题解析一、幂的运算1.计算:(1)x n﹣2•x n+2;(n是大于2的整数)(2)﹣(x3)5;(3)[(﹣2)2]3;(4)[(﹣a)3]2.解答:解:(1)原式=x n﹣2+n+2=x2n;(2)原式=﹣x15;(3)原式=43=64;(4)原式=a6.2.若n为正整数且(m n)2=9,求.解答:解:∵(m n)2=9,∴m n=±3,∴=m9n×m4n=m13n=(m n)13=±×313=±310.3.已知x a﹣3=2,x b+4=5,x c+1=10;求a、b、c间的关系.解答:解:∵2×5=10,∴x a﹣3×x b+4=x c+1,∴x a+b+1=x c+1,∴a+b=c.4.已知a n=2,b2n=3,求(a3b4)2n的值.解答:解:∵a n=2,b2n=3,∴(a3b4)2n=a6n b8n=(a n)6×(b2n)4=26×34=24×34×22=64×4=5184.5.计算:(1)﹣()1000×(﹣10)1001+()2013×(﹣3)2014(2)(8)100×(﹣)99×.解答:解:(1)原式=(×10)1000×(﹣10)+(×)2013×=﹣10+=﹣;(2)原式=﹣(×)99××=﹣.6.化简:(x+y)5÷(﹣x﹣y)2÷(x+y)解答:解:(x+y)5÷(﹣x﹣y)2÷(x+y)=(x+y)5÷(x+y)2÷(x+y)=(x+y)2.7.已知10x=a,10y=b,求103x+3y+103x﹣2y的值.解答:解:∵10x=a,10y=b,∴103x+3y+103x﹣2y=103x×103y+103x÷102y=a3×b3+a3÷b2=a3b3+=.8.己知53x+1÷5x﹣1=252x﹣3,求x的值.解答:解:原式等价于52x+2=54x﹣62x+2=4x﹣6x=4.故答案为:4.9.已知(x2n)2÷(x3n+2÷x3)与﹣x3是同类项,求4n2﹣1的值.解答:解:(x2n)2÷(x3n+2÷x3)=x n+1,可得x n+1与﹣x3是同类项,即n+1=3,解得:n=2,则原式=16﹣1=15.10.我们约定:a⊗b=10a÷10b,如4⊗3=104÷103=10.(1)试求:12⊗3和10⊗4的值;(2)试求:21⊗5×103.解答:解:(1)∵a⊗b=10a÷10b,如4⊗3=104÷103=10,∴12⊗3=1012÷103=109,10⊗4=1010÷104=106;(2)21⊗5×103=1021÷105×103=1019.二、整式乘法计算题11.计算:4xy2•(﹣x2yz3).解答:解:4xy2•(﹣x2yz3)=﹣x3y3z3.12.计算:(a3b2)(﹣2a3b3c).解答:解:(a3b2)(﹣2a3b3c)=﹣a6b5c.13.计算:(3a2)3×b4﹣3(ab2)2×a4.解答:解:(3a2)3×b4﹣3(ab2)2×a4=27a6×b4﹣3a2b4×a4=27a6b4﹣3a6b4=24a6b4.14.计算:(a n•b n+1)3•(ab)n.解答:解:原式=a3n×b3n+3×a n b n=a3n+n b3n+3+n=a4n b4n+3.15.计算:[﹣2a2(x+y)3]•[3a3•b(x+y)2].解答:解:原式=﹣6a5b(x+y)5.16.计算:﹣6a2b(x﹣y)3•ab2(y﹣x)2.解答:解:原式=﹣6a2b(x﹣y)3•ab2(x﹣y)2=﹣2a3b3(x﹣y)5.17.计算:.解答:解:原式=﹣x4y5.18.计算:(﹣5x2y3)2•(﹣2x4y2)3•(xy2)4.解答:解:原式=25x4y6•(﹣8x12y6)•(x4y8)=﹣x20y20.19.计算:(﹣x3y2)3•(2xy2)2﹣(﹣x4y3)2•x3y4.解答:解:(﹣x3y2)3•(2xy2)2﹣(﹣x4y3)2•x3y4=﹣x9y6•4x2y4﹣x8y6•x3y4=﹣x11y10﹣x11y10=﹣x11y10.20.计算:.解答:解:原式=﹣x4y4z﹣3x4y4z=﹣x4y4z.21.计算:(x﹣2)(x2+4).解答:解:原式=x3+4x﹣2x2﹣8.22.计算:(﹣7x2﹣8y2)(﹣x2+3y2)解答:解:原式=﹣7x2•(﹣x2)+(﹣7x2)•3y2﹣8y2•(﹣x2)﹣8y2•3y2 =7x4﹣21x2y2+8x2y2﹣24y4=7x4﹣13x2y2﹣24y4.23.计算:(2x﹣3y﹣1)(﹣2x﹣3y+5).解答:解:原式=﹣4x2﹣6xy+10x+6xy+9y2﹣15y+2x+3y﹣5=﹣4x2+(﹣6xy+6xy)+(10x+2x)+9y2+(3y﹣15y)﹣5=﹣4x2+12x+9y2﹣12y﹣5.24.计算:(2x﹣x2﹣3)(x3﹣x2﹣2).解答:解:原式=2x4﹣2x3﹣4x﹣x5+x4+2x2﹣3x3+3x2+6=3x4﹣x5﹣5x3++5x2﹣4x+6.25.计算:(a﹣b+c﹣d)(c﹣a﹣d﹣b)解答:解:原式=[(c﹣b﹣d)+a][(c﹣b﹣d)﹣a]=(c﹣b﹣d)2﹣a2=(c﹣b)2﹣2(c﹣b)d+d2﹣a2=c2﹣2cb+b2﹣2cd+2bd+d2﹣a2 26.计算:(x+3)(x﹣5)﹣(x﹣3)(x+5)解答:解:(x+3)(x﹣5)﹣(x﹣3)(x+5)=x2﹣2x﹣15﹣(x2+2x﹣15)=x2﹣2x﹣15﹣x2﹣2x+15=﹣4x.27.计算:5x2﹣(x﹣2)(3x+1)﹣2(x+1)(x﹣5)解答:解:原式=5x2﹣(3x2﹣5x﹣2)﹣2(x2﹣4x﹣5),=5x2﹣3x2+5x+2﹣2x2+8x+10,=13x+12.28.计算:3(2x﹣1)(x+6)﹣5(x﹣3)(x+6)解答:解:3(2x﹣1)(x+6)﹣5(x﹣3)(x+6)=3(2x2+12x﹣x﹣6)﹣5(x2+6x﹣3x﹣18)=6x2+33x﹣18﹣5x2﹣15x+90=x2+18x+7229.计算:(a+b)(a2﹣ab+b2)解答:解:原式=a3+a2b﹣a2b﹣ab2+ab2+b3,=a3+b3.30.计算:(x﹣y)(x2+xy+y2)解答:解:原式=x3+x2y+xy2﹣x2y﹣xy2﹣y3=x3﹣y3.三、乘法公式及应用31.化简:(x+1)2﹣(x+2)(x﹣2).解答:解:原式=x2+2x+1﹣x2+4=2x+5.32.已知2x+2y=﹣5,求2x2+4xy+2y2﹣7的值.解答:解:∵2x+2y=﹣5,∴x+y=,∴2x2+4xy+2y2﹣7=2(x+y)2﹣7,当x+y=时,原式=2×()2﹣7=.33.已知(a+b)2=17,ab=3.求(a﹣b)2的值.解答:解:∵(a+b)2=17,ab=3,∴a2+2ab+b2=17,则a2+b2=17﹣2ab=17﹣6=11,∴(a﹣b)2=a2﹣2ab+b2=11﹣6=5.34.已知:x+y=﹣1,xy=﹣12,求x2+y2﹣xy和(x﹣y)2的值.解答:解:∵x+y=﹣1,xy=﹣12,∴x2+y2﹣xy=(x+y)2﹣3xy=1+36=37;(x﹣y)2=(x+y)2﹣4xy=1+48=49.35.已知x+y=2,x2+y2=10,求xy的值.解答:解:将x+y=2进行平方得,x2+2xy+y2=4,∵x2+y2=10,∴10+2xy=4,解得:xy=﹣3.36.已知实数x满足x+=3,则x2+的值为7.解答:解:由题意得,x+=3,两边平方得:x2+2+=9,故x2+=7.故答案为:7.37.求代数式5x2﹣4xy+y2+6x+25的最小值.解答:解:5x2﹣4xy+y2+6x+25=4x2﹣4xy+y2+x2+6x+9+16=(2x﹣y)2+(x+3)2+16而(2x﹣y)2+(x+3)2≥0,∴代数式5x2﹣4xy+y2+6x+25的最小值是16.38.已知(a+1)2﹣(3a2+4ab+4b2+2)=0,求a,b的值.解答:解:∵(a+1)2﹣(3a2+4ab+4b2+2)=0,∴2a2﹣2a+4b2+4ab+1=0,∴(a﹣1)2+(a+2b)2=0,∴a﹣1=0,a+2b=0,解得a=1,b=﹣.故a=1,b=﹣.39.已知13x2﹣6xy+y2﹣4x+1=0,求(x+y)13•x10的值.解答:解:∵13x2﹣6xy+y2﹣4x+1=0,∴9x2﹣6xy+y2+4x2﹣4x+1=0,即(3x﹣y)2+(2x﹣1)2=0,∴3x﹣y=0,2x﹣1=0,解得x=,y=,当x=,y=时,原式=(+)13•()10=(2×)10×23=8.40.已知a,b,c为实数,设.证明:A,B,C中至少有一个值大于零.解答:证明:由题设有A+B+C=()+()+(),=(a2﹣2a+1)+(b2﹣2b+1)+(c2+2c+1)+π﹣3,=(a﹣1)2+(b﹣1)2+(c+1)2+(π﹣3),∵(a﹣1)2≥0,(b﹣1)2≥0,(c+1)2≥0,π﹣3>0,∴A+B+C>0.若A≤0,B≤0,C≤0,则A+B+C≤0与A+B+C>0不符,∴A,B,C中至少有一个大于零.41.计算:2(m+1)2﹣(2m+1)(2m﹣1).解答:解:2(m+1)2﹣(2m+1)(2m﹣1),=2(m2+2m+1)﹣(4m2﹣1),=2m2+4m+2﹣4m2+1,=﹣2m2+4m+3.42.已知a﹣b=2,b﹣c=2,a+c=14,求a2﹣b2.解答:解:∵b﹣c=2,a+c=14,∴a+b=16,∵a﹣b=2,∴a2﹣b2=(a+b)(a﹣b)=16×2=32.43.若a=,b=,试不用将分数化小数的方法比较a、b的大小.解答:解:∵a==(3分)b=(4分)20082﹣12<20082(5分)∴a<b(6分)说明:求差通分,参考此标准给分.若只写结论a<b,给(1分).44.用平方差公式计算:(1)99.8×100.2=(2)40×39=解答:解:(1)99.8×100.2,=(100﹣0.2)(100+0.2),=1002﹣0.22,=9999.96.(2)40×39,=(40+)(40﹣),=402﹣()2,=1599.45.计算3001×2999的值.解答:解:3001×2999=(3000+1)(3000﹣1)=30002﹣12=8999999.46.计算:(x+y)(x﹣y)(x2+y2)(x4+y4)解答:解:原式=(x2﹣y2))(x2+y2)(x4+y4)=(x4﹣y4)(x4+y4)=x8﹣y8.47.计算:(x+2y)(x﹣2y)(x4﹣8x2y2+16y4)解答:解:原式=(x2﹣4y2)(x2﹣4y2)2=(x2﹣4y2)3=x6﹣12x4y2+48x2y4﹣64y6.48.计算103×97×10009的值.解答:解:103×97×10009,=(100+3)(100﹣3)(10000+9),=(1002﹣9)(1002+9),=1004﹣92,=99999919.49.对于算式2(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)+1.(1)计算出算式的结果;(2)结果的个位数字是几?解答:解:(1)原式=(3﹣1)×(3+1)×(32+1)×(34+1)×(38+1)×(316+1)×(332+1)+1 =(32﹣1)×(32+1)×(34+1)×(38+1)×(316+1)×(332+1)+1=(34﹣1)×(34+1)×(38+1)×(316+1)×(332+1)+1=(332﹣1)×(332+1)+1=364;②∵31=3,32=9,33=27,34=8135=243,36=729,…∴每3个数一循环,∵64÷3=21…1,∴364的个位数字是3.50.计算12﹣22+32﹣42+52+62+…+20002﹣20012.解答:解:原式=﹣[(20012﹣20002)+(19992﹣19982)+…+(62﹣52)+(42﹣32)+(22﹣12)] =﹣[(2001+2000)×1+(1999+1998)×1+…+(6+5)×1+(4+3)+(2+1)×1]=﹣(2001+2000+1999+1998+…+6+5+4+3+2+1)=﹣2003001.。

专题 有理数的混合运算计算题(50题)(解析版)-七年级数学上册

专题 有理数的混合运算计算题(50题)(解析版)-七年级数学上册

七年级上册数学《第一章有理数》专题有理数的混合运算的计算题(50题)1.(2022秋•晋安区期末)计算:(1)7﹣(﹣6)+(﹣4)×(﹣3);(2)﹣3×(﹣2)2﹣1+(−12)3.【分析】(1)根据有理数的乘法和加减法可以解答本题;(2)根据有理数的乘方、有理数的乘法和加减法可以解答本题.【解答】解:(1)7﹣(﹣6)+(﹣4)×(﹣3)=7+6+12=25;(2)﹣3×(﹣2)2﹣1+(−12)3=﹣3×4﹣1+(−18)=﹣12﹣1+(−18)=﹣1318.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.2.(2022春•香坊区校级期中)计算:(1)(−23)﹣(+13)﹣|−34|﹣(−14);(2)﹣12−15×[2﹣(﹣3)2].【分析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘法和加减法可以解答本题.【解答】解:(1)(−23)﹣(+13)﹣|−34|﹣(−14)=(−23)+(−13)−34+14=−32;(2)﹣12−15×[2﹣(﹣3)2]=﹣1−15×(﹣7)=﹣1+75=25.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.3.(2023春•香坊区校级期中)计算:(1)(13−12+14)×24(2)﹣23×34−(−3)3÷9【分析】(1)根据乘法分配律简便计算即可求解.;(2)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【解答】解:(1)(13−12+14)×24=13×24−12×24+14×24=8﹣12+6=2;(2)﹣23×34−(−3)3÷9=﹣8×34+27÷9=﹣6+3=﹣3.【点评】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.4.(2023•西乡塘区二模)计算:6×(3−5)+(−2)2+14.【分析】先算乘方,再算乘法,然后算加减法即可.【解答】解:6×(3−5)+(−2)2+14=6×(﹣2)+4+14=﹣12+4+14=﹣734.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.5.(2023•南宁三模)计算:(﹣1)3+8÷22+|4﹣7|×13.【分析】先算乘方,再算乘除法,最后算加法即可.【解答】解:(﹣1)3+8÷22+|4﹣7|×13=(﹣1)+8÷4+3×13=(﹣1)+2+1=2.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.6.(2023•柳州三模)计算(−1)2−6÷(−2)×|−13|.【分析】先算乘方和绝对值,再算乘除,最后算加减.【解答】解:原式=1﹣(﹣3)×13=1+1=2.【点评】本题考查了有理数的混合运算,掌握有理数的运算顺序是解决本题的关键.7.(2023春•浦东新区期末)计算:﹣23+|﹣5|﹣18×(−13)2.【分析】先计算立方、绝对值和平方,再计算乘法,最后计算加减.【解答】解:﹣23+|﹣5|﹣18×(−13)2.=﹣8+5﹣18×19=﹣8+5﹣2=﹣5.【点评】此题考查了有理数的混合运算能力,关键是能准确理解运算顺序,并能进行正确地计算.8.(2023•武鸣区二模)计算:−12023+(−4)÷12−(1−32).【分析】先算括号里面的,再算乘方,除法,最后算加减即可.【解答】解:原式=﹣12023+(﹣4)÷12−(1﹣9)=﹣12023+(﹣4)÷12−(﹣8)=﹣1+(﹣4)×2+8=﹣1﹣8+8=﹣1.【点评】本题考查的是有理数的混合运算,熟知有理数混合运算的法则是解题的关键.9.(2023春•松江区期中)计算:−32−42÷|−6|+8×(−12)3.【分析】利用乘方运算、绝对值的定义和有理数的混合运算法则计算.【解答】解:−32−42÷|−6|+8×(−12)3=﹣9﹣42÷6+8×(−18)=﹣9﹣7﹣1=﹣17.【点评】本题考查了有理数的混合运算,解题的关键是掌握乘方运算、绝对值的定义和有理数的混合运算法则.10.(2022秋•万源市校级期末)﹣22+|5﹣8|+24÷(﹣3)×13.【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:原式=﹣4+3−83=−113.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.11.(2022春•徐汇区校级期末)计算:−24−14×[2−(−2)2].【分析】利用有理数的混合运算法则进行计算即可.【解答】解:原式=﹣16−14×(2﹣4)=﹣16−14×(﹣2)=﹣16+12=﹣1512.【点评】本题考查有理数的混合运算,熟练掌握相关运算法则是解题的关键.12.(2023春•黄浦区期中)计算:(−1112+34)×(−42)+(−213)÷3.5【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:原式=(−1112+912)×(﹣16)−73×27=−16×(﹣16)−23=83−23=2.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.13.(2023春•闵行区期中)计算:2×(−12)3−3×(−12)2+3×(−12)−1.【分析】先算乘方,再算乘法,最后算加减;同级运算,应按从左到右的顺序进行计算.【解答】解:原式=2×(−18)﹣3×14−32−1=−14−34−32−1=﹣312.【点评】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.14.(2023春•黄浦区期中)计算:(−1112−34)×(−42)+(−213)÷3.5.【分析】先算括号里面的,再算乘除,最后算加减即可.【解答】解:原式=(−1112−912)×(﹣16)+(﹣213)÷3.5=−53×(﹣16)−73×27=803−23=783=26.【点评】本题考查的是有理数的混合运算,熟知有理数混合运算的法则是解题的关键.15.(2023春•雁峰区校级期末)计算:(−3)4÷[2−(−7)]+6×(12−1).【分析】先算乘方和括号内的式子,再算括号外的乘除法,最后算加法即可.【解答】解:(−3)4÷[2−(−7)]+6×(12−1)=81÷(2+7)+6×(−12)=81÷9+(﹣3)=9+(﹣3)=6.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.16.(2023春•黄浦区期末)计算:(−56+34)×(−42)+(−213)÷3.5.【分析】有理数的混合运算,先算乘方,再算乘除再算加减,有括号的先算括号的,从而可求出最后结果.【解答】解:(−56+34)×(−42)+(−213)÷3.5=−10+912×(−16)+(−73)×27=−13×(−4)−23=43−23=23.【点评】本题主要考查了有理数的混合运算.本题的易错点是对于负号的计算处理.17.(2023•贺州一模)计算:﹣12023+8÷(﹣2)2﹣|﹣4|×5.【分析】按照有理数的运算法则和运算顺序进行计算即可.【解答】解:原式=﹣1+8÷4﹣4×5=﹣1+2﹣20=﹣19.【点评】本题考查了绝对值和含有乘方的有理数的混合运算,掌握相关运算法则是解题的关键.最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.18.(2023•防城港二模)计算:−14×[(−8)+2÷12]−|−3|.【分析】根据有理数的混合运算法则进行计算即可.【解答】解:原式=﹣1×(﹣8+2×2)﹣3=﹣1×(﹣8+4)﹣3=﹣1×(﹣4)﹣3=4﹣3=1.【点评】本题考查有理数的混合运算,其相关运算法则是基础且重要知识点,必须熟练掌握.19.(2023春•浦东新区期末)计算:﹣14+(1﹣0.5)×13×(﹣2)2.【分析】首先计算乘方和小括号里面的减法,然后计算乘法,最后计算加法,求出算式的值即可.【解答】解:﹣14+(1﹣0.5)×13×(﹣2)2=﹣1+12×13×4=﹣1+23=−13.【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.20.(2022秋•泸县期末)计算:−23÷(−2−14)×(−13)2−3281+1.【分析】根据有理数的运算法则和顺序计算.注意同级运算中的先后顺序.【解答】解:−23÷(−2−14)×(−13)2−3281+1=−8÷(−94)×19−3281+1=−8×(−49)×19−3281+1=3281−3281+1=1.【点评】本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算;(2)在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.21.(2022秋•汝阳县期末)−14−(1−0.5)×(−113)×[2−(−3)2].【分析】原式先计算乘方运算以及括号中的运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:原式=﹣1−12×(−43)×(2﹣9)=﹣1−143=−173.【点评】此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算,有时可以利用运算律来简化运算.22.(2022秋•泸县期末)计算:−23÷(−2−14)×(−13)2−3281+1.【分析】根据有理数的运算法则和顺序计算.注意同级运算中的先后顺序.【解答】解:−23÷(−2−14)×(−13)2−3281+1=−8÷(−94)×19−3281+1=−8×(−49)×19−3281+1=3281−3281+1=1.【点评】本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算;(2)在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.23.(2023春•吉林月考)计算:(−1)2022+|(−2)3+(−3)2|−(−14+16)×(−24).【分析】先算乘方,再算乘法,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号和绝对值,要先做括号和绝对值内的运算.注意乘法分配律的运用.【解答】解:(−1)2022+|(−2)3+(−3)2|−(−14+16)×(−24)=1+|﹣8+9|−14×24+16×24=1+1﹣6+4=0.【点评】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,24.(2022秋•易县期末)计算:(1)25÷23−25×(−12);(2)(﹣3)2×(12−56)+|﹣4|.【分析】(1)先把除法转化为乘法,再逆用乘法的分配律进行求解即可;(2)先算乘方,括号里的减法,绝对值,再算乘法,最后算加法即可.【解答】解:(1)25÷23−25×(−12)=25×32+25×12=25×(32+12)=25×2=50;(2)(﹣3)2×(12−56)+|﹣4|=9×(−13)+4=﹣3+4=1.【点评】本题主要考查有理数的混合运算,解答的关键是对相应的运算法则的掌握.25.(2022秋•广宗县期末)计算(1)(14−13−1)×(﹣12)(2)﹣22×14+(﹣3)3×(−827)【分析】(1)利用乘法分配律展开,再计算乘法,最后计算加减可得;(2)先计算乘方,再计算乘法,最后计算加减可得.【解答】解:(1)原式=14×(﹣12)−13×(﹣12)﹣1×(﹣12)=﹣3+4+12=13;(2)原式=﹣4×14+(﹣27)×(−827)=﹣1+8=7.【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.26.(2022秋•黄石港区期末)计算与化简:(1)﹣22+|﹣18﹣(﹣3)×2|÷4;(2)(14−49)×(﹣6)2+7÷(−12).【分析】(1)根据有理数的乘除法和加法可以解答本题;(2)根据乘法分配律、有理数的乘除法和加法可以解答本题.【解答】解:(1)﹣22+|﹣18﹣(﹣3)×2|÷4=﹣4+|﹣18+6|÷4=﹣4+12÷4=﹣4+3=﹣1;(2)(14−49)×(﹣6)2+7÷(−12)=(14−49)×36+7×(﹣2)=9+(﹣16)+(﹣14)=﹣21.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.27.(2022秋•通川区校级期末)计算:(1)(﹣72)+37﹣(﹣22)+(﹣17)(2)﹣32×(−13)2+(34−16+38)÷(−124)【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣72+37+22﹣17=﹣89+59=﹣30;(2)原式=﹣9×19+(34−16+38)×(﹣24)=﹣1﹣18+4﹣9=﹣28+4=﹣24.【点评】此题考查了有理数的混合运算,以及乘法分配律,熟练掌握运算法则是解本题的关键.28.(2022秋•翠屏区期末)计算:(1)12×(116−13−34);(2)−22−13÷5×|1−(−4)2|.【分析】(1)根据乘法分配律计算即可;(2)先算乘方和去绝对值,然后算乘除法,最后算减法即可.【解答】解:(1)12×(116−13−34)=12×116−12×13−12×34=22﹣4﹣9=9;(2)−22−13÷5×|1−(−4)2|=﹣4−13×15×|1﹣16|=﹣4−13×15×15=﹣4﹣1=﹣5.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.29.(2022秋•通川区校级期末)计算:(1)(﹣72)+37﹣(﹣22)+(﹣17)(2)﹣32×(−13)2+(34−16+38)÷(−124)【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣72+37+22﹣17=﹣89+59=﹣30;(2)原式=﹣9×19+(34−16+38)×(﹣24)=﹣1﹣18+4﹣9=﹣28+4=﹣24.【点评】此题考查了有理数的混合运算,以及乘法分配律,熟练掌握运算法则是解本题的关键.30.(2022秋•和平区校级期末)计算(1)(13−18+16)×24;(2)(﹣2)4÷(﹣223)2+512×(−16)﹣0.25.【分析】(1)根据乘法分配律计算即可;(2)先算乘方,再算乘除法,最后算加减法即可.【解答】解:(1)(13−18+16)×24=13×24−18×24+16×24=8﹣3+4=9;(2)(﹣2)4÷(﹣223)2+512×(−16)﹣0.25=16÷649+112×(−16)−14=16×964+(−1112)−14=2712+(−1112)−312=1312.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.31.(2023•章贡区校级模拟)计算:(1)﹣12008﹣[5×(﹣2)﹣(﹣4)2÷(﹣8)];(2)(514−78−712)÷(﹣134).【分析】(1)先算乘方和括号内的式子,然后计算括号外的减法即可;(2)先把除法转化为乘法,然后根据乘法分配律计算即可.【解答】解:(1)﹣12008﹣[5×(﹣2)﹣(﹣4)2÷(﹣8)]=﹣1﹣[(﹣10)﹣16÷(﹣8)]=﹣1﹣[(﹣10)+2]=﹣1﹣(﹣8)=﹣1+8=7;(2)(514−78−712)÷(﹣134)=(214−78−712)×(−47)=214×(−47)−78×(−47)−712×(−47)=﹣3+12+13=−186+36+26=−136.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.32.(2023•长阳县一模)计算:(1)(12−13)×6÷|−15|;(2)(−1)2018+(−10)÷12×2−[2−(−3)3].【分析】(1)根据有理数的加减乘除混合运算法则计算即可;(2)根据有理数的加减乘除乘法混合运算法则计算即可.【解答】解:(1)(12−13)×6÷|−15|=(12−13)×6×5=(12−13)×30=12×30−13×30=15﹣10=5;(2)(−1)2018+(−10)÷12×2−[2−(−3)3]=1+(﹣10)×2×2﹣(2+27)=1﹣40﹣29=﹣68.【点评】本题考查有理数的混合运算,关键在于熟练掌握基础运算法则.33.(2022秋•定远县期中)计算:(1)−22−|0.5−1|×13×[3−(−3)2];(2)(−4.66)×49−5.34÷94+5×(23)2.【分析】(1)先计算绝对值里面的式子和中括号里面的式子,然后再计算出括号外的式子;(2)先把除法转化为乘法、然后根据有理数的乘方和乘法分配律即可解答本题.【解答】解:(1)−22−|0.5−1|×13×[3−(−3)2]=﹣4−12×13×(3﹣9)=﹣4−16×(﹣6)=﹣4+1=﹣3;(2)(−4.66)×49−5.34÷94+5×(23)2=(﹣4.66)×49−5.34×49+5×49=[(﹣4.66)﹣5.34+5]×49=﹣5×49=−209.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算法则和运算顺序.34.(2022秋•鞍山期末)计算:(1)(134−78−712)÷(−78)+(−34);(2)(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2).【分析】(1)先把除法转为乘法,再利用乘法的分配律进行运算,最后算加减即可;(2)先算乘方,再算括号里的运算,接着算乘法与除法,最后算加减即可.【解答】解:(1)(134−78−712)÷(−78)+(−34)=(74−78−712)×(−87)+(−34)=74×(−87)−78×(−87)−712×(−87)−34=﹣2+1+23−34=−1312;(2)(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2)=﹣8﹣3×(16+2)﹣9÷(﹣2)=﹣8﹣3×18﹣9×(−12)=﹣8﹣54+4.5=﹣57.5.【点评】本题主要考查有理数的混合运算,解答的关键是对相应的运算法则的掌握.35.(2022秋•正阳县期中)计算:(1)(1112−76+34−1324)×(﹣48);(2)﹣9+5×|﹣3|﹣(﹣2)2÷4;(3)﹣18+(﹣4)2÷14−(1﹣32)×(13−0.5).【分析】(1)根据乘法分配律计算即可;(2)先算乘方,再算乘除法,最后算加减法即可;(3)先算乘方和括号内的式子,然后计算括号外的乘除法,最后算加减法即可.【解答】解:(1)(1112−76+34−1324)×(﹣48)=1112×(﹣48)−76×(﹣48)+34×(﹣48)−1324×(﹣48)=﹣44+56+(﹣36)+26=2;(2)﹣9+5×|﹣3|﹣(﹣2)2÷4=﹣9+5×3﹣4÷4=﹣9+15﹣1=5;(3)﹣18+(﹣4)2÷14−(1﹣32)×(13−0.5)=﹣1+16×4﹣(1﹣9)×(−16)=﹣1+64﹣(﹣8)×(−16)=﹣1+64−43=6123.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键,注意乘法分配律的应用.36.(2022秋•临邑县期中)计算:(1)(﹣0.5)﹣(﹣314)+2.75﹣(+712);(2)(−49)÷75×57÷(−25).(3)﹣22÷43−[22﹣(1−12×13)]×12;【分析】(1)先把减法转化为加法,然后根据加法法则计算即可;(2)先把除法转化为乘法,然后根据乘法法则计算即可;(3)先算乘方和括号内的式子,然后括号外的乘除法,最后算加减法即可.【解答】解:(1)(﹣0.5)﹣(﹣314)+2.75﹣(+712)=(−12)+314+234+(﹣712)=﹣2;(2)(−49)÷75×57÷(−25)=49×57×57×125=1;(3)﹣22÷43−[22﹣(1−12×13)]×12=﹣4×34−[4﹣(1−16)]×12=﹣3﹣(4−56)×12=﹣3﹣4×12+56×12=﹣3﹣48+10=﹣41.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.37.(2022秋•南票区期中)计算(1)(﹣0.8)+1.2+(﹣0.7)+(﹣2.1)+0.8+3.5;(2)(﹣5)×6×(−45)÷(﹣4);(3)﹣11×(−227)+19×(−227)+6×(−227);(4)﹣32×(﹣2)+42÷(﹣2)3﹣|﹣22|.【分析】(1)去括号,进行加减运算;(2)把除法变成乘法,再进行计算;(3)先提公因数,再计算;(4)先乘方,再乘除,最后加减运算.【解答】解:(1)(﹣0.8)+1.2+(﹣0.7)+(﹣2.1)+0.8+3.5=(﹣0.8)+0.8﹣0.7﹣2.1+1.2+3.5=0﹣2.8+4.7=1.9;(2)(﹣5)×6×(−45)÷(﹣4)=(﹣5)×6×(−45)×(−14)=﹣6;(3)﹣11×(−227)+19×(−227)+6×(−227)=(−227)×(﹣11+19+6)=(−227)×14=﹣44;(4)﹣32×(﹣2)+42÷(﹣2)3﹣|﹣22|=﹣9×(﹣2)+16÷(﹣8)﹣4=18+(﹣2)﹣4=18﹣2﹣4=12.【点评】本题考查了有理数的混合运算,解题的关键是掌握有理数的运算法则和运算顺序.38.(2022秋•库车市期中)计算:(1)(﹣53)+(+21)﹣(﹣69)﹣(+37);(2)﹣54×219+(﹣412)×29;(3)(12+56−712)×(﹣24);(4)﹣12022÷(−52)×(﹣5)2﹣|2﹣9|.【分析】(1)先去括号,再进行加减运算;(2)(3)先算乘除,再算加减;(4)先算乘方和绝对值,再算乘除,最后算加减.【解答】解:(1)(﹣53)+(+21)﹣(﹣69)﹣(+37)=﹣53+21+69﹣37=﹣53﹣37+21+69=﹣90+90=0;(2)﹣54×219+(﹣412)×29=﹣54×199+(−92)×29=﹣115;(3)(12+56−712)×(﹣24)=12×(﹣24)+56×(﹣24)−712×(﹣24)=﹣12﹣20+14=﹣32+14=﹣18;(4)﹣12022÷(−52)×(﹣5)2﹣|2﹣9|=﹣1÷(−52)×25﹣7=﹣1×(−25)×25﹣7=10﹣7=3.【点评】本题考查了有理数的混合运算,解题的关键是掌握有理数混合运算的顺序.39.(2022秋•南山区校级期中)计算:(1)(﹣12)﹣5+(﹣14)﹣(﹣39);(2)(23−112−415)×(−60);(3)−14−16×[2−(−3)2];(4)(−2)2−[(−23)+(−14)]÷112.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式利用乘法分配律计算计算即可得到结果;(3)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(4)原式先计算乘方运算及括号里面的,再计算除法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣12﹣5﹣14+39=﹣31+39=8;(2)原式=﹣40+5+16=﹣19;(3)原式=−1−16×(2−9)=−1+76=16;(4)原式=4−(−23−14)×12=4+8+3=15.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.40.计算:(1)4﹣(﹣28)+(﹣2);(2)(13−16)×(﹣24);(3)(﹣2)3﹣(﹣13)÷(−12);(4)﹣12﹣(1﹣0.5)÷52×15.【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式利用乘法分配律计算即可求出值;(3)原式先计算乘方运算,再计算除法运算,最后算加减运算即可求出值;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:(1)原式=4+28﹣2=30;(2)原式=﹣8+4=﹣4;(3)原式=﹣8﹣26=﹣34;(4)原式=﹣1−12×25×15=−1−125=−1125.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.41.计算:(1)3+(﹣6)﹣(﹣7);(2)(﹣22)×(﹣114)÷13;(3)(34−13−56)×(﹣12);(4)﹣12021﹣(−13)×(﹣22+3)+12×|3﹣1|.【分析】(1)先把减法转化为加法,然后根据有理数加法法则计算即可;(2)先算乘方、再算乘除法即可;(3)根据乘法分配律可以解答本题;(4)先算乘方和括号内的式子,再算括号外的乘法和加减法即可.【解答】解:(1)3+(﹣6)﹣(﹣7)=3+(﹣6)+7=4;(2)(﹣22)×(﹣114)÷13=(﹣4)×(−54)×3=15;(3)(34−13−56)×(﹣12)=34×(﹣12)−13×(﹣12)−56×(﹣12)=(﹣9)+4+10=5;(4)﹣12021﹣(−13)×(﹣22+3)+12×|3﹣1|=﹣1﹣(−13)×(﹣4+3)+12×2=﹣1+13×(﹣1)+1=﹣1+(−13)+1=−13.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算法则和运算顺序.42.计算:(1)(﹣5)+(﹣4)﹣(+101)﹣(﹣9);(2)−12021×[4−(−3)2]+3÷(−34);(3)(512−79+23)÷136;(4)−316×7−316×(−9)+(−196)×(−8).【分析】(1)先把减法转化为加法,然后根据有理数的加法法则计算即可;(2)先算乘方和括号内的式子,然后计算括号外的乘除法、最后算加法即可;(3)先把除法转化为乘法、然后根据乘法分配律计算即可;(4)先将带分数化为假分数,然后根据乘法分配律计算即可.【解答】解:(1)(﹣5)+(﹣4)﹣(+101)﹣(﹣9)=(﹣5)+(﹣4)+(﹣101)+9=﹣101;(2)−12021×[4−(−3)2]+3÷(−34)=﹣1×(4﹣9)+3×(−43)=﹣1×(﹣5)+(﹣4)=5+(﹣4)=1;(3)(512−79+23)÷136=(512−79+23)×36=512×36−79×36+23×36=15﹣28+24=11;(4)−316×7−316×(−9)+(−196)×(−8)=−196×7−196×(﹣9)−196×(﹣8)=−196×[7+(﹣9)+(﹣8)]=−196×(﹣10)=953.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算法则和运算顺序,注意乘法分配律的应用.43.(2022秋•西城区校级期中)计算:(1)﹣2+8﹣36﹣(﹣30);(2)﹣24÷(﹣6)×(−14);(3)(−34+56+716)×(﹣48);(4)|12−1|×(﹣1)2021﹣[1﹣(﹣6)2].【分析】(1)先把减法转化为加法,然后根据加法法则计算即可;(2)先把除法转化为乘法,然后根据乘法法则计算即可;(3)根据乘法分配律计算即可;(4)先算乘方和括号内的式子,然后算乘法,最后算减法即可.【解答】解:(1)﹣2+8﹣36﹣(﹣30)=﹣2+8+(﹣36)+30=0;(2)﹣24÷(﹣6)×(−14)=﹣24×16×14=﹣1;(3)(−34+56+716)×(﹣48)=−34×(﹣48)+56×(﹣48)+716×(﹣48)=36+(﹣40)+(﹣21)=﹣25;(4)|12−1|×(﹣1)2021﹣[1﹣(﹣6)2]=12×(﹣1)﹣(1﹣36)=−12−(﹣35)=−12+35=3412.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.44.计算:(1)(−58)÷143×(−165)÷(−67)(2)﹣3﹣[﹣5+(1﹣0.2×35)÷(﹣2)](3)(413−312)×(﹣2)﹣223÷(−12)(4)[50﹣(79−1112+16)×(﹣6)2]÷(﹣7)2.【分析】(1)原式从左到右依次计算即可得到结果;(2)原式先计算乘除运算,再计算加减运算即可得到结果;(3)原式先计算乘除运算,再计算加减运算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=−58×314×165×76=−12;(2)原式=﹣3+5+(1−325)×12=−3+5+1125=21125;(3)原式=−263+7+163=323;(4)原式=(50﹣28+33﹣6)×149=49×149=1.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.45.计算:(1)﹣4﹣28﹣(﹣29)+(﹣24);(2)4×(﹣3)2﹣5×(﹣2)+6;(3)(−34+712−59)÷(−136);(4)﹣14﹣(1﹣0.5)÷213×[2﹣(﹣3)2].【分析】(1)先化简,再计算加减法即可求解;(2)(4)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算;(3)将除法变为乘法,再根据乘法分配律简便计算.【解答】解:(1)﹣4﹣28﹣(﹣29)+(﹣24)=﹣4﹣28+29﹣24=﹣56+29=﹣27;(2)4×(﹣3)2﹣5×(﹣2)+6=4×9+10+6=36+10+6=52;(3)(−34+712−59)÷(−136)=(−34+712−59)×(﹣36)=34×36−712×36+59×36=27﹣21+20=26;(4)﹣14﹣(1﹣0.5)÷213×[2﹣(﹣3)2]=﹣1−12÷213×[2﹣9]=﹣1−12÷213×(﹣7)=﹣1+112=12.【点评】考查了有理数的混合运算,进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.46.(2022秋•汤阴县期中)计算:(1)−22×|−5|−6÷(12−13)×56;(2)(−56+13−34)×(−24);(3)(−1)2023×[−24×(−34)2−1];(4)24−12022×(−2)3−5.5÷415×(−815).【分析】(1)先算乘方、括号内的式子和去绝对值,然后计算括号外的乘除法,再算减法即可;(2)根据乘法分配律计算即可;(3)先算乘方和括号内的式子,再算括号外的乘法即可;(4)先算乘方,再算乘除法,最后算加减法即可.【解答】解:(1)−22×|−5|−6÷(12−13)×56=﹣4×5﹣6÷16×56=﹣20﹣6×6×56=﹣20﹣30=﹣50;(2)(−56+13−34)×(−24)=−56×(﹣24)+13×(﹣24)−34×(﹣24)=20+(﹣8)+18=30;(3)(−1)2023×[−24×(−34)2−1]=(﹣1)×(﹣16×916−1)=(﹣1)×(﹣9﹣1)=(﹣1)×(﹣10)=10;(4)24−12022×(−2)3−5.5÷415×(−815)=24﹣1×(﹣8)−112×154×(−815)=24+8+11=43.【点评】本题考查有理数的混合运算,熟练掌握运算法则和运算顺序是解答本题的关键,注意乘法分配律的应用.47.(2022秋•丰泽区校级期中)计算:(1)﹣20+(﹣14)﹣(﹣18)﹣13;(2)(−38−16+34)×(﹣24);(3)(−14)×42﹣0.25×(﹣8)×(﹣1)2017;(4)﹣22÷43−[22﹣(1−12×13)]×12.【分析】(1)先把减法转化为加法,然后根据加法法则计算即可;(2)根据乘法分配律计算即可;(3)先算乘方,再算乘法,最后算减法即可;(4)先算乘方和括号内的式子,然后计算括号外的乘除法,最后算减法即可.【解答】解:(1)﹣20+(﹣14)﹣(﹣18)﹣13=﹣20+(﹣14)+18+(﹣13)=﹣29;(2)(−38−16+34)×(﹣24)=−38×(﹣24)−16×(﹣24)+34×(﹣24)=9+4+(﹣18)=﹣5;(3)(−14)×42﹣0.25×(﹣8)×(﹣1)2017=(−14)×16−14×(﹣8)×(﹣1)=﹣4﹣2=﹣6;(4)﹣22÷43−[22﹣(1−12×13)]×12=﹣4×34−(4﹣1+16)×12=﹣3﹣(3+16)×12=﹣3﹣36﹣2=﹣41.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.48.计算:(1)2﹣5+4﹣(﹣7)+(﹣6)(2)(﹣2467)÷6(3)(﹣18)÷214×49÷(﹣16)(4)43−{(−3)4−[(−1)÷2.5+214×(−4)]÷(24815−27815)}.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式变形后,利用乘法分配律计算即可得到结果;(3)原式利用除法法则变形,约分即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=2﹣5+4+7﹣6=2;(2)原式=(﹣24−67)×16=−4−17=−417;(3)原式=﹣18×49×49×(−116)=29;(4)原式=64﹣81+(﹣925)÷(﹣3)=64﹣81+4715=−131315.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.49.(2023春•沈阳月考)计算:(1)3﹣(+63)﹣(﹣259)﹣(﹣41);(2)213−(+1013)+(−815)⋅(+325);(3)(−292324)×12;(4)(−24)×(1−34+16−58);(5)−32−(−2)3×(−4)÷(−14);(6)(−32+3)×[(−1)2022−(1−0.5×13)].【分析】(1)先把减法转化为加法,再根据加法法则计算即可;(2)先算乘法,再算加减法即可;(3)先变形,然后根据乘法分配律计算即可;(4)根据乘法分配律计算即可;(5)先算乘方,再算乘除法,最后算减法即可;(6)先算括号内的式子,再算括号外的乘法即可.【解答】解:(1)3﹣(+63)﹣(﹣259)﹣(﹣41)=3+(﹣63)+259+41=240;(2)213−(+1013)+(−815)⋅(+325);=213+(﹣1013)+(−415)×175=213+(﹣1013)+(−69725)=﹣8+(−69725)=−89725;(3)(−292324)×12=(﹣30+124)×12=﹣30×12+124×12=﹣360+12=﹣35912;(4)(−24)×(1−34+16−58)=﹣24×1+24×34−24×16+24×58=﹣24+18﹣4+15=5;(5)−32−(−2)3×(−4)÷(−14)=﹣9﹣(﹣8)×(﹣4)×(﹣4)=﹣9+128=119;(6)(−32+3)×[(−1)2022−(1−0.5×13)]=(﹣9+3)×[1﹣(1−16)]=(﹣6)×(1−56)=(﹣6)×16=﹣1.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.50.(2022秋•朝阳区校级月考)计算.(1)﹣32﹣(+11)+(﹣9)﹣(﹣16);(2)﹣9+0.8+(﹣1)+(−45)−(−10);(3)﹣212÷(−5)×(−313)÷0.75;(4)(−16−512+13)×(−72);(5)−12023+27×(−13)2−|﹣5|;(6)(−12+34)×(﹣2)3+(﹣4)2+2×12.【分析】(1)先把减法统一成加法,写成省略括号和的形式,再把负数、正数分别相加;(2)先把分数化成小数,再把和为0的放一起先加;(3)先把除法统一成乘法,再算乘法;(4)利用乘法的分配律计算比较简便;(5)先算乘方化简绝对值,再算乘法,最后算加减;(6)先算乘方,再算括号里面的,最后算乘法、加减.【解答】解:(1)﹣32﹣(+11)+(﹣9)﹣(﹣16)=﹣32﹣11﹣9+16=﹣52+16=﹣36;(2)﹣9+0.8+(﹣1)+(−45)−(−10)=﹣9+0.8﹣1﹣0.8+10=(﹣9﹣1+10)+(0.8﹣0.8)=0+0=0;(3)﹣212÷(−5)×(−313)÷0.75=−52×(−15)×(−103)÷34=−52×15×103×43=−209;(4)(−16−512+13)×(−72)=(−16)×(﹣72)−512×(﹣72)+13×(﹣72)=12+30﹣24=18;(5)−12023+27×(−13)2−|﹣5|=﹣1+27×19−5=﹣1+3﹣5=﹣3;(6)(−12+34)×(﹣2)3+(﹣4)2+2×12=(−24+34)×(﹣8)+16+2×12=14×(﹣8)+16+1=﹣2+16+1=15.【点评】本题考查了有理数的混合运算,掌握有理数的运算律、运算法则是解决本题的关键.。

四年级50道计算题

四年级50道计算题

四年级50道计算题一、整数四则运算(25道)1. 公式- 解析:按照从左到右的顺序计算。

先算公式,再算公式。

2. 公式- 解析:乘除法属于同级运算,按照从左到右的顺序计算。

先算公式,再算公式。

3. 公式- 解析:有括号先算括号里面的,公式,再算公式。

4. 公式- 解析:根据乘法分配律公式,这里公式,公式,公式。

先算公式,公式,最后公式。

5. 公式- 解析:先算乘法公式,再算加法公式。

6. 公式- 解析:先算除法公式,再算减法公式。

7. 公式- 解析:先算括号里的加法公式,再算除法公式。

8. 公式- 解析:先算除法公式,再算减法公式。

9. 公式- 解析:先算除法公式,再算加法公式。

10. 公式- 解析:先算括号里的除法公式,再算乘法公式。

11. 公式- 解析:先算除法公式,再算减法公式。

12. 公式- 解析:先算括号里的乘法公式,再算除法公式。

13. 公式- 解析:先算括号里的减法公式,再算乘法公式。

14. 公式- 解析:按照从左到右的顺序计算,先算公式,再算公式。

15. 公式- 解析:按照从左到右的顺序计算,先算公式,再算公式。

16. 公式- 解析:根据乘法分配律,先算括号里的公式,再算公式。

17. 公式- 解析:先算括号里的除法公式,再算公式。

18. 公式- 解析:先算除法公式,再算减法公式。

19. 公式- 解析:先算括号里的减法公式,再算加法公式。

20. 公式- 解析:先算括号里的乘法公式,再算除法公式。

21. 公式- 解析:先算括号里的减法公式,再算乘法公式。

22. 公式- 解析:先算除法公式,再算加法公式。

23. 公式- 解析:先算除法公式,再算减法公式。

24. 公式- 解析:先算括号里的除法公式,再算乘法公式。

25. 公式- 解析:先算括号里的乘法公式,再算除法公式。

二、小数加减法(10道)1. 公式- 解析:小数加法,将小数点对齐,然后按照整数加法的方法计算。

公式。

2. 公式- 解析:小数减法,小数点对齐,从最低位减起。

小升初数学:掌握这50道典型计算题,附答案解析!一路优到初中

小升初数学:掌握这50道典型计算题,附答案解析!一路优到初中

小升初数学:掌握这50道典型计算题,附答案解析!一路优
到初中
对于小学生而言,计算题是数学基础。

但随着年级的升高而感到越来越吃力,特别是小学三年级之后,有了应用题,加上计算,孩子的成绩有了差距。

对于那些小升初的孩子来说,数学更是要学打好基础。

作为一名资深的班主任,从教十多年,我一直对孩子说成绩的提高不是和智力有关,而是学习方法和学习习惯。

数学是以逻辑思维为基础的学科,学习过程中一定要学会用数学思维模式思考问题。

所以家长在辅导孩子一定要培养孩子的学习方法和学习习惯。

为了帮助即将升初中的孩子学好数学,老师就给各位家长列出50道小学重、难计算题。

家长们收藏给孩子做一下,可以锻炼孩子的数学思维能力不会做也可以先看下面的解析,然后尝试其他的题目。

现在将基础打好了,初中学习也不会那么辛苦。

亲爱的家长们,今天的内容就先和你们分享到这了,希望对你们在教育孩子的路上起到了帮助!
作为一名资深的老师,每天都会在朋友圈分享一些关于教育、学习能力提升的文章。

如果您的孩子有记忆力差,学习成绩提不高,学习方法不正确,严重偏科等这些问题,都可以在下方评论区留言,老师都会为您一一回复。

小学50道经典数学题及答案详细解析!3篇

小学50道经典数学题及答案详细解析!3篇

小学50道经典数学题及答案详细解析!第1题:12个苹果分给4个孩子,每个孩子至少可以分得几个?答案:每个孩子可以分得3个苹果。

详细解析:将12个苹果分给4个孩子,首先每个孩子都能分到2个苹果,但还剩余4个苹果,这时再平均分配给4个孩子,每个孩子就可以再分得1个苹果,因此,每个孩子至少可以分得3个苹果。

第2题:6个苹果能够平均分给几个孩子?每个孩子能分得几个苹果?答案:6个苹果可以平均分给3个孩子,每个孩子可以分得2个苹果。

详细解析:6个苹果平均分给3个孩子,每个孩子可以分得2个苹果。

第3题:10元钱可以买几支铅笔,每支铅笔多少钱?答案:10元可以买20支铅笔,每支铅笔0.5元。

详细解析:10元可以买的铅笔数目就是10 ÷ 0.5 = 20支,所以每支铅笔的价格就是10 ÷ 20 = 0.5元。

第4题:一年有几个星期、几天?答案:一年有52个星期,365天。

详细解析:一年有52个星期,每个星期有7天,所以一年有52 × 7 = 364天。

但是每4年有一个闰年,这一年的2月份会有29天,因此平均值是365.25天,所以每年有365天,闰年366天。

第5题:一根绳子长24米,截去其中的4米,剩下的绳子能够分成几段,每段长度是多少?答案:一共可以分成5段,每段长度为4.8米。

详细解析:一根长24米的绳子,截取4米后剩下的长度为20米,可以分成5段,每段长度都为4米。

第6题:30÷(1/2+1/3)的值是多少?答案:30÷(1/2+1/3)的值为5。

详细解析:30÷(1/2+1/3) = 30 ÷ (3/6+2/6) = 30 ÷ (5/6) = 30 × (6/5) = 36,所以30÷(1/2+1/3)的值为5。

第7题:一个小数点后最多有几位小数?答案:一个小数点后最多有2位小数。

详细解析:小数可以无限制地延伸,但是我们使用的小数位数是有限制的。

中考复习专题——计算题50道专练(含答案)精编版

中考复习专题——计算题50道专练(含答案)精编版

1.计算:(﹣1)2015+﹣()﹣2+sin45°.【答案】-7.【解析】试题分析:本题涉及零指数幂、乘方、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:原式=-1+2-9+1=-7.考点:实数的混合运算.2.计算:0114cos 452(5)()84π-︒--+-+-.【答案】3【解析】 试题分析:根据实数的运算性质计算,要注意2cos 452?,22-=,0(5)1π-=,11()44-=,822=.试题解析:解:原式=22412224-++-⨯=3.考点:实数混合运算 3.(本题6分)9+(21)-1-2sin45°+|-2013|【答案】2017【解析】试题分析:原式=3+2-1+2013 =2017考点: 实数的运算4.计算:()101122tan60201413-⎛⎫-︒+-- ⎪⎝⎭. 【答案】2-.【解析】试题分析:针对二次根式化简,特殊角的三角函数值,零指数幂,负整数指数幂4个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:解:原式=2323132-+-=-.考点:1.实数的运算;2.二次根式化简;3.特殊角的三角函数值;4.零指数幂;5.负整数指数幂.5.计算:020116sin30223275-⎛⎫⎛⎫--++- ⎪ ⎪-⎝⎭⎝⎭【答案】3.【解析】试题分析:针对负整数指数幂,特殊角的三角函数值,零指数幂,绝对值4个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:解:原式=146123243123232-⨯-++-=--++-=.考点:1.实数的运算;2.负整数指数幂;3.特殊角的三角函数值;4.零指数幂;5.绝对值.6.计算:()20012014sin 60323π-⎛⎫+-++- ⎪⎝⎭. 【答案】3122-.【解析】试题分析:针对负整数指数幂,零指数幂,特殊角的三角函数值,绝对值4个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:解:原式=3391231222+++-=-.考点:1.实数的运算;2.负整数指数幂;3.零指数幂;4.特殊角的三角函数值;5.绝对值.7.计算:100120142sin 3082-⎛⎫--+ ⎪⎝⎭. 【答案】22.【解析】试题分析:针对负整数指数幂,零指数幂,特殊角的三角函数值,二次根式化简4个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:解:原式=12122221122222--⨯+=--+=. 考点:1.实数的运算;2.负整数指数幂;3.零指数幂;4.特殊角的三角函数值;5.二次根式化简.8.计算:()()020141321sin452-+-+-︒; 【答案】2.【解析】试题分析:针对零指数幂,有理数的乘方,二次根式化简,特殊角的三角函数值4个考点分别进行计算,然后根据实数的运算法则求得计算结果. 试题解析:解:原式=2211222++-=. 考点:1.实数的运算;2.零指数幂;3.有理数的乘方;4.二次根式化简;5.特殊角的三角函数值. 9.计算:()20142sin45421--+︒+-【答案】3.【解析】试题分析:针对二次根式化简,有理数的乘方,特殊角的三角函数值,绝对值4个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:解:原式=22122212232+-⨯+=+-+=. 考点:1.实数的运算;2.二次根式化简;3.有理数的乘方;4.特殊角的三角函数值;5.绝对值. 10.计算:12-2sin60°+(-2014)0-(13)-1. 【答案】3-2.【解析】试题分析:根据零指数幂、负指数幂、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:原式=23-2×32+1-3 =23-3+1-3 =3-2.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.11.计算:4 cos45°-8+(π-3) +(-1)3; 【答案】0【解析】解:原式=4×22-22+1-1=012.计算:﹣25+(12)﹣1﹣|16﹣8|+2cos60°. 【答案】﹣33.【解析】试题分析:第一项利用乘方的意义化简,第二项利用负指数幂法则计算,第三项利用绝对值的代数意义化简,最后一项利用特殊角的三角函数值计算即可 .试题解析:原式=﹣32+2﹣4+1=﹣33.考点:1.实数的运算2.负整数指数幂3.特殊角的三角函数值.13.计算:(π﹣3.14)0+(﹣1)2015+|1﹣|﹣3tan30°.【答案】-1【解析】试题分析:按顺序依次利用零指数幂法则、乘方的意义、绝对值的代数意义、特殊角的三角函数值计算即可得到结果试题解析:原式=1﹣1+3﹣1﹣3×33=1﹣1+3﹣1﹣3=﹣1. 考点:1、实数的运算;2、零指数幂;3、绝对值;4、特殊角的三角函数值..14.计算:()10011820082cos 454π-⎛⎫---+ ⎪⎝⎭ 【答案】223+.°【解析】试题分析:原式第一项利用二次根式的化简公式计算,第二项利用零指数幂法则计算,第三项利用特殊角的三角函数计算,最后一项利用负指数幂法则,计算即可得到结果.试题解析:原式=232124=2232--⨯++. 考点:1.二次根式的化简2.零指数幂法则3.特殊角的三角函数4.负指数幂法则.15.计算:011(32)4cos30123||--++--()° 【答案】4.【解析】试题分析:分别用零指数次幂,负指数幂法则,特殊角的三角函数,绝对值的意义,进行化简,最后用实数的运算法则计算即可. 试题解析:原式3134122=++-⨯ 42323=+-4= . 考点:1.零指数次幂2.负指数幂法则3.特殊角的三角函数4.绝对值的意义. 16.计算: ()()202012312sin 302813π-︒⎛⎫---+--+- ⎪⎝⎭【答案】10-.【解析】试题分析:分别求出特殊角的三角函数,负指数次幂,零指数次幂,立方根,负数的偶次幂,再依据实数的运算法则计算即可.试题解析:原式=12912119121102-⨯-+-+=--+-+=-. 考点:1.特殊角的三角函数2.负指数次幂3.零指数次幂4.立方根.17.计算:|345tan |32)31()21(10-︒+⨯+-- 【答案】33.【解析】试题分析:原式第一项利用零指数幂法则计算,第二项利用负整数指数幂法则计算,第三项化为最简二次根式,最后一项利用绝对值的代数意义化简,计算即可得到结果.试题解析:原式=1+3×233+|1-3| =1+23+31- =33考点:1.实数的混合运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.18.计算:|1﹣2|+(π﹣2014)0﹣2sin45°+(12)﹣2. 【答案】4.【解析】试题分析:先求出绝对值、零指数幂、负整指数幂、特殊角的三角函数值,然后根据实数的运算法则求得计算结果.试题解析:原式=2﹣1+1﹣2+4=4.考点:1.绝对值2.零指数幂3.负整指数幂4.特殊角的三角函数.19.计算:()21-︒-45sin 4+3-+8【答案】4【解析】试题分析:按照运算顺序计算,先算平方、特殊角的三角函数值、绝对值、二次根式的化简,然后按从左到右的顺序依次计算就可以试题解析:原式=1-4×22+3+22= 4 考点:1、平方;2、绝对值;3、实数的混合运算20.计算:. 【答案】3-7【解析】试题分析:先进行二次根式的化简、特殊角的三角函数值、零指数幂、负整数指数幂等运算,然后按照运算顺序进行计算即可.试题解析:原式=23﹣2×23+1﹣8=3-7 考点:1、二次根式的化简;2、零指数幂;3、负整数指数幂;4、特殊角的三角函数值.21.计算:20113015(1)()(cos68)338sin 602π---+++-. 【答案】-8+3【解析】原式31813382=--++-⨯ 83=-+22.计算:【答案】4.【解析】试题分析:根据特殊角的三角函数值进行计算.试题解析:考点:(1)二次根式的运算;(2)特殊角的三角函数.23.计算:01201314cos 452(5)()8(1)4π-︒--+-+---【答案】4.【解析】试题分析:先计算特殊角三角函数值、绝对值、零次幂、负整数指数幂、二次根式、有理数的乘方,再进行加减运算.试题解析:原式=242142212⨯-++-+ 224224=+-=考点:实数的混合运算.24.计算:0(3π)-++︒60tan 211()273--. 【答案】43-.【解析】试题分析:针对零指数幂,特殊角的三角函数值,负整数指数幂,二次根式化简4个考点分别进行计算,然后根据实数的运算法则求得计算结果. 试题解析:原式12333343=++-=-.考点:1.零指数幂;2.特殊角的三角函数值;3.负整数指数幂;4.二次根式化简. 25.计算:10012014122sin 605-⎛⎫-+- ⎪⎝⎭. 【答案】43+.【解析】试题分析:针对负整数指数幂,零指数幂,二次根式化简,特殊角的三角函数值 4个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:原式=351232432-+-⋅=+. 考点:1. 负整数指数幂;2.零指数幂;3.二次根式化简;4.特殊角的三角函数值.26.计算:1021182sin 45(32)32-⎛⎫-︒+- ⎪⎝⎭. 【答案】21-.【解析】试题分析:针对二次根式化简,特殊角的三角函数值,幂零指数幂,负整数指数4个考点分别进行计算,然后根据实数的运算法则求得计算结果. 试题解析:原式223221222212132=⨯-⨯+-=--=-. 考点:1. 二次根式化简;2.特殊角的三角函数值;3. 零指数幂.;4. 负整数指数幂27.计算:()101129tan 3042π-⎛⎫-︒+-- ⎪⎝⎭. 【答案】31--.【解析】试题分析:针对二次根式化简,特殊角的三角函数值,零指数幂,负整数指数幂4个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:原式=323912313=-⨯+-=--. 考点:1.二次根式化简;2.特殊角的三角函数值;3.零指数幂;4.负整数指数幂.28.计算: 10184sin 4520142-⎛⎫-︒-+ ⎪⎝⎭. 【答案】1-.【解析】试题分析:针对二次根式化简,特殊角的三角函数值,负整数指数幂,零指数幂4个考点分别进行计算,然后根据实数的运算法则求得计算结果试题解析:原式=22242+112-⨯-=-. 考点:1.二次根式化简;2.特殊角的三角函数值;3.负整数指数幂;4.零指数幂.29.计算:()1020140113tan 452-⎛⎫-+-π-+ ⎪⎝⎭ 【答案】-1【解析】原式= -1+1-2+1=-130.201(3)323tan 30π-+++-+︒【答案】2【解析】试题分析:先算乘方和去掉绝对值及三角函数的运算,再进行有理数的加减运算.试题解析:原式=-1+1+2-3+3×33=2-3+3=2 考点:有理数的混合运算.31.计算:101()3(3)3tan304-+--π-+︒ 【答案】323+.【解析】试题分析:针对负整数指数幂,绝对值,零指数幂,特殊角的三角函数值4个考点分别进行计算,然后根据实数的运算法则求得计算结果. 试题解析:101()3(3)3tan 343304133233-++--+⨯=-+︒=+-π.考点:1.负整数指数幂;2.绝对值;3.零指数幂;4.特殊角的三角函数值.32.计算:103130tan 3)23()12014(-⎪⎭⎫ ⎝⎛++--- 【答案】6【解析】试题分析:先进行零指数幂;负整数指数幂、三角函数值的运算和去括号,再进行加减运算. 试题解析:原式=103130tan 3)23()12014(-⎪⎭⎫ ⎝⎛++--- =1-32++333⨯ +113=1-32++3+3=6考点:1、零指数幂;2、负整数指数幂、3、三角函数值.33.计算:011|3|π12cos302---+--()() 【答案】1.【解析】试题分析:针对绝对值,零指数幂,负整数指数幂,特殊角的三角函数值4个考点分别进行计算,然后根据实数的运算法则求得计算结果. 试题解析:0113|3|π12cos303122=122---++-=-+-⨯()(). 考点:1.绝对值;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.34.计算:︒+--+-⨯-+--60tan )31(64)2()1(42302013π 【答案】23-+.【解析】试题分析:根据绝对值、有理数的乘方、立方根、特殊角三角函数值的意义分别进行计算即可求出答案. 原式41493=-+-+ 23=-+.考点:实数的混合运算.35.计算:tan 245°-2sin 30°+(2﹣1)0 -21()2-= 【答案】-3.【解析】试题分析:根据零指数幂、负整指数幂、特殊角的三角函数值,可化简式子,根据实数的运算法则求得计算结果.原式=1-2×12+1−211()2=1-1+1-4=-3.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.36.计算:432328230232364cos -⨯+︒+-+-()() . 【答案】-6【解析】试题分析:先计算乘方和开方运算,再根据特殊角的三角函数值和平方差公式得到原式=1888316 2(23)(23)(23)42⨯⨯⨯+⨯+-+-- ,然后进行乘除运算后合并即可. 原式=1888316 2(23)(23)(23)42⨯⨯⨯+⨯+-+-- 834323=-++--()()8323=-++-=-6.考点:二次根式的混合运算;特殊角的三角函数值.37.3--(-4)-1+032π⎛⎫ ⎪-⎝⎭-2cos30° 【答案】54. 【解析】试题分析:先计算绝对值、负整数指数幂、零次幂、特殊角的三角函数值,再进行加减运算即可. 原式=1531344++-=. 考点:1.绝对值;2.零次幂;3.负整数指数幂;4.特殊角的三角函数值. 38.计算:︒+--+-⨯-+--60tan )31(64)2()1(42302013π 【答案】23-+.【解析】试题分析:根据绝对值、有理数的乘方、立方根、特殊角三角函数值的意义分别进行计算即可求出答案. 原式41493=-+-+23=-+.考点:实数的混合运算.39.计算:()02822sin 45π+-+--︒ 【答案】122+.【解析】试题分析:针对零指数幂,二次根式化简,绝对值,特殊角的三角函数值4个考点分别进行计算,然后根据实数的运算法则求得计算结果 ()02822sin 4512222122π+-+--︒=++-=+.考点:1.零指数幂;2.二次根式化简;3.绝对值;4.特殊角的三角函数值.40.计算:()10013tan 30132π-⎛⎫--+-+- ⎪⎝⎭ 【答案】1-.【解析】试题分析:针对负整数指数幂,特殊角的三角函数值,零指数幂,绝对值4个考点分别进行计算,然后根据实数的运算法则求得计算结果.原式=3231313--⨯++=-. 考点:1.负整数指数幂;2.特殊角的三角函数值;3.零指数幂;4.绝对值.41.计算: 10182cos 45()(2014)2--︒+-. 【答案】21+.【解析】试题分析:针对二次根式化简,特殊角的三角函数值,负整数指数幂,零指数幂4个考点分别进行计算,然后根据实数的运算法则求得计算结果.原式=222221212-⨯+-=+. 考点:1.二次根式化简;2.特殊角的三角函数值;3.负整数指数幂;1.零指数幂. 42.计算:-12003+()-2-|3-|+3tan60°。

小数计算题50道

小数计算题50道

小数计算题50道一、小数计算题(50道)(一)加法计算题(10道)1. 0.2 + 0.3 =- 解析:计算小数加法时,将小数点对齐,然后按照整数加法的方法进行计算。

0.2和0.3的小数点对齐后,2+3 = 5,小数点位置不变,结果是0.5。

2. 1.5+2.3 =- 解析:把1.5和2.3的小数点对齐,先算5+3 = 8,再算1+2 = 3,结果是3.8。

3. 0.7+0.8 =- 解析:小数点对齐,7+8 = 15,满十进一,结果是1.5。

4. 3.2+1.7 =- 解析:对齐小数点,2+7 = 9,3+1 = 4,结果为4.9。

5. 2.5+3.6 =- 解析:5+6 = 11,向个位进1,2+3+1 = 6,结果是6.1。

6. 1.1+2.9 =- 解析:1+9 = 10,向个位进1,1+2+1 = 4,结果是4。

7. 0.9+1.2 =- 解析:9+12 = 21,小数点位置不变,结果是2.1。

8. 4.3+2.5 =- 解析:3+5 = 8,4+2 = 6,结果为6.8。

9. 3.6+1.3 =- 解析:6+3 = 9,3+1 = 4,结果是4.9。

10. 2.2+3.8 =- 解析:2+8 = 10,向个位进1,2+3+1 = 6,结果是6。

(二)减法计算题(10道)1. 0.5 - 0.3 =- 解析:小数点对齐,5 - 3 = 2,结果是0.2。

2. 1.7-0.9 =- 解析:7 - 9不够减,从个位借1当10,17 - 9 = 8,个位0 - 0 = 0,结果是0.8。

3. 2.3-1.2 =4. 3.5-2.1 =- 解析:5 - 1 = 4,3 - 2 = 1,结果为1.4。

5. 4.2-3.7 =- 解析:2 - 7不够减,从个位借1当10,12 - 7 = 5,个位3 - 3 = 0,结果是0.5。

6. 1.8-0.5 =- 解析:8 - 5 = 3,1 - 0 = 1,结果是1.3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

50道典型计算题解析1.【基准法】93+96+97+95+89+90+94+87+95+92原式=(90+3)+(90+6)+(90+7)+(90+5)+(90-1)+90+(90+4)+(90-3)+(90+5)+(90+2)=90×10+(3+6+7+5-1+4-3+5+2)=900+28=9282.【位值原理】(123456+234561+345612+456123+561234+612345)÷3【分析】仔细观察我们可以发现1、2、3、4、5、6分别在个、十、百、千、万、十万,六个数位上各出现过一次,所以原式=[(1+2+3+4+5+6)×111111]÷3=21×111111÷3=7×111111=7777773.【巧妙分组】2005+2004-2003-2002+2001+2000-1999-1998+1997+1996-……-7-6+5+4-3-2+1【分析】将后四项每四项分为一组,每组的计算结果都是0,后2004项的计算结果都是0,剩下第一项,结果是2005。

原式=123420012002200320042005+--+--+=20054.【拆分取整】2999+999×999【分析】计算时9、99、999类的数字时可以将其看成10-1、100-1、1000-1或者拆出1和其凑整计算,故原式=2000+999+999×999=2000+999×(1+999)=2000+999000=10010005.【乘法凑整】333333×333333【分析】将333333拆成3×111111,3×3=9,999999看成1000000-1。

原式=3×111111×3×111111=999999×111111=(1000000-1)×111111=111111000000-111111=1111108888896.【乘法分配律逆用】2005×2004-2004×2003+2003×2002-2002×2001+……+3×2-2×1原式=(2005-2003)×2004+(2003-2001)×2002+……+(3-2)×2=2×(2004+2002+2000+ (2)=2×2×(1002+1001+1000+ (1)=2×2×(1002+1)×1002÷2=20100127.【乘法分配律逆用】80×1995-3990+1995×22【分析】把3990分解为1995×2,这样80×1995、2×1995、22×1995中都有相同的乘数,可以利用乘法分配律进行巧算。

原式=80×1995-2×1995+22×1995=1995×(80-2+22)=1995008.【乘法分配律逆用】20.09×62+200.9×3.9-7×2.87原式=20.09×62+200.9×3.9-20.09=20.09×(62+39-1)=20.09×100=20099.【乘法分配律逆用】1.2345²+0.7655²+2.469×0.7655原式=1.2345²+0.7655×(0.7655+2.469)=1.2345²+0.7655×(1.2345+2)=1.2345×(1.2345+0.7655)+0.7655×2=1.2345×2+0.7655×2=(1.2345+0.7655)×2=2×2=410.【分组凑整】19951199519951995219951313233323121222111+++++++++++++++ 【分析】观察可知分母是1的和为1,分母为2的和为2,分母为3的和为3,……以此类推,分母是1995的和为1995,此题简化成1+2+3+……+1995的和。

原式=1+2+3+4+……+1995=(1+1995)×1995÷2=199101011.【加补凑整】5499999549999549995499549++++ 原式=5499999549999549995499549+++++++++ =5454545454999999999999999+++++++++ =554510000010000100010010⨯+-++++ =11110912.【分数运算与约分】9332236351233591725102531168⨯÷⨯÷⨯ 原式=9332323651233592517102531264⨯⨯⨯⨯⨯=9335123223633251023159175264⨯⨯⨯⨯⨯⨯⨯⨯⨯ =3223633933512251023159175264⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=539 13.【分数除法】2008200720072007÷ 原式=20072008200720082007+⨯⨯=20092008 14.【整体约分】 199908191990990191919303031919202191个个++++ 【分析】本题是用重复数字的拆分和分数计算的方法综合求解。

例如:abcabc =abc ×1001=abc ×7×11×13ababab =ab ×10101=ab ×3×7×13×37原式= 10810810110191011091010119101013101191012191个个⨯⨯++⨯⨯+⨯⨯+ =199193192191++++ =1945 15.【连续约分】一根铁丝,第一次剪去了全长的21,第二次剪去所剩铁丝的31,第三次剪去所剩铁丝的41,……第2008次剪去所剩铁丝的20091,这时量得所剩铁丝为1米,那么原来的铁丝长 米。

【分析】第一次剪去21,剩下21211=-;第二次剪去6131211=⨯⎪⎪⎭⎫ ⎝⎛-,剩下3132211=⨯⎪⎪⎭⎫ ⎝⎛-,第三次剪去1214132211=⨯⨯⎪⎪⎭⎫ ⎝⎛-,剩下414332211=⨯⨯⎪⎪⎭⎫ ⎝⎛-;第四次剪去201514332211=⨯⨯⨯⎪⎪⎭⎫ ⎝⎛-,剩下51544332211=⨯⨯⨯⎪⎪⎭⎫ ⎝⎛-,……第2008次剪去后剩下20091,所以原来铁丝的长为1米÷20091=2009米 16.【乘法分配律逆用】13471711613122374⨯+⨯+⨯ 原式=1317474413122374⨯+⨯+⨯=⎪⎪⎭⎫ ⎝⎛++⨯131413122374=16 17.【整体约分】⎪⎪⎭⎫ ⎝⎛++÷⎪⎪⎭⎫ ⎝⎛++17931310211221715513841173 原式=⎪⎪⎭⎫ ⎝⎛++÷⎪⎪⎭⎫ ⎝⎛++1760133611241710013601140=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛++⨯÷⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛++⨯1751331121217513311220=1220=35 18.【乘法分配律】⎪⎪⎭⎫ ⎝⎛-⨯-⎪⎪⎭⎫ ⎝⎛+⨯+⎪⎪⎭⎫ ⎝⎛-⨯761231537615312353123176 原式=761532315376123531235317623176⨯+⨯-⨯+⨯+⨯-⨯ =()()()532376123765315376231+⨯+-⨯--⨯=1-1+1=1 19.【方程与计算】⎪⎪⎭⎫ ⎝⎛-÷⎪⎪⎭⎫ ⎝⎛++=⎪⎪⎭⎫ ⎝⎛-++⨯2119615141a 17131212007,其中a 等于多少?右式=3012376037=÷,左式=⎪⎪⎭⎫ ⎝⎛-⨯a 142412007,所以a=4220.【分数小数混合运算】()015063206502200130003250......⨯÷-÷ 原式=630150013500130003250.....⨯=015001350630130003250.....⨯⨯=13151351000036325⨯⨯⨯⨯ =940000 21.【乘法分配律】924479025679211994.+⨯+⨯ 原式=1994.5×79+0.24×79×10+3.1×79=79×(1994.5+2.4+3.1)=79×2000=15800022.【分数小数混合运算】⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+⨯-+⎪⎪⎭⎫ ⎝⎛⨯+-÷⨯2119321751555331566318585441..... =()⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+⨯-+⨯+⨯-⨯⨯2119354755631566316385441...... =()⎪⎪⎭⎫ ⎝⎛⨯-⨯-+⨯+-⨯21194735475563156185441....=⎪⎪⎭⎫ ⎝⎛--+⨯⨯1219123555631041.. =125455436-+. =41855436-+. =5.5+4.5=1023.【整体约分】603010189312626314020101263842421⨯⨯++⨯⨯+⨯⨯+⨯⨯⨯⨯++⨯⨯+⨯⨯+⨯⨯ 原式=()()101010333222111631101010333222111421⨯⨯++⨯⨯+⨯⨯+⨯⨯⨯⨯⨯⨯⨯++⨯⨯+⨯⨯+⨯⨯⨯⨯⨯ =94 24.【整体约分】1009819799971955374253131009998999897543432321++++++++++ 【分析】观察发现分子和分母的项数相同,各有98项,且分子分母中对应项的分数的分母相同,进一步观察分子分母中相对应的数,可以发现分母中的数恰好都是分子中的数的2倍,于是:原式=⎪⎪⎭⎫ ⎝⎛+++++⨯+++++100999899989754343232121009998999897543432321=21 25.【数列求和】1.1+3.3+5.5+7.7+9.9+11.11+13.13+15.15+17.17+19.19【分析】9.9-7.7=2.2,11.11-9.9=1.21,13.13-11.11=2.02,奇数项的等差数列和等于中间相乘以项数。

相关文档
最新文档