kV输电线路方向电流保护设计
输电线路的电流保护

1.简单网络
从接地点流回的电流ID为 :
.
...
.
.
ID(IAIBIC)IBIC
电流速断保护是依靠动作电流定值取得选择性,动作速 度快,但不能保护线路全长,灵敏性差,即牺牲了灵敏性, 换取了快速性。
4.电流速断保护的接线图 单相原理接线图
正常状态: 一次设备通过的电流为负载电流
流过KA的电流小于动作值 KA不动作,其触点不闭合 不发断路器跳闸脉冲 。
4.电流速断保护的接线图 单相原理接线图 短路故障时:
3.灵敏度校验 零序Ⅱ段的灵敏系数,应按照本线路末端接地短
路时的最小零序电流来校验,并满足Ksen≥1.3~1.5,即
Ksen 3II0O'.'mPin1.5
式中I0。min—本线路末端接地短路时的最小零序电流。
如果灵敏度不满足要求,则增加一段零序,并与相邻线 路零序Ⅱ段配合
七、定时限零序过电流保护(零序Ⅲ段)
1.起动电流 (1) 躲开在下一条线路出口处相间短路时所出现的最 大不平衡电流Iunb.max,即
I K I ''' OP
''' rel un.bmax
(2)与下一线路零序Ⅲ段相配合就是本保护零序Ⅲ段
的保护范围,不能超出相邻线路上零序Ⅲ段的保护范围。
2. 灵敏度校验 作为本条线路近后备保护时,按本线路末端发生接地故
送电线路,还广泛采用 零序电流互感器接线以 获得3I0 ,如右图所示 它和零序电流过滤器相 比,主要是没有不平衡 电流,同时接线也更简 单。
四、零序电压互感器
零序电压的取得,通常采用三个单相电压互感器或
三相五柱式电压互感器。
发生接地故障时,从 mn 端子上得到的零序电压为:
4输电线路继电保护

P UICOS
(2) 接线方式
① 零度接线
对A相的功率方向继电器,加入电压UK ( U A)和电
流 IK ( IA),则当正方向短路时
KA
arg
U A Ik1A
k1
反方向短路时,KA
arg
k
U A Ik2A
180 k2
Krel Kss K re
I lm ax
(4-12)
式中 Krel ——可靠系数,一般采用1.15~1.25;
K—ss 自起动系数,数值大于1; K—re —电流继电器的返回系数,一般采用0.85。
(2) 按选择性的要求整定过电流保护的动作时限
k2
k1
图4-8 单侧电源放射形网络中过电流保护动作时限选择说明
在一般情况下,距离保护装置由以下元件组成,其逻辑
关系
如图4-21 起动
所示。
Z
Z
t
≥1
&
出口
跳闸
Z
t
图4-21 三段式距离保护的组成元件和逻辑框图
4.3 双侧电源网络相间短路保护
在线路两侧都装上阶段式电流保护(因为两侧均有 电源),则误动的保护都是在自己保护线路的反方向发 生故障时,由对侧电源供给的短路电流所致。
set
情况,此时为负值,如图4-13所示。
set k set
k
k set
set k
set k
k set
k set
set
k
k set
图4-11测量阻抗在圆内 图4-12 测量阻抗在圆外 图4-13 ZK超前于Zset的向量关系
图9-20 距离保护的作用原理 (a) 网络接线ቤተ መጻሕፍቲ ባይዱ(b) 时限特性
500kV线路保护

▪ △iφ——为相电流突变量
▪ △IT——为相电流不平衡量的最大值 ▪ 当任一相电流突变量连续三次大于启动门坎时,保护启动。
▪ (2)零序电流辅助启动元件
▪ 为了防止远距离故障或经大电阻故障时相电流突变量启动元件灵敏度 不够而设置。该元件在零序电流大于启动门坎并持续30ms后动作。
I I I
S
0
O
0
MK
I I
CDMAX
WI
▪ 其中分别为本侧零序电流和对侧零序电流,为差流最大相的相电流, I断M线K相为即预为定差的流门最坎大值相(1。0%In),IWI为无电流门坎。由以上判据识别出的
▪ 本判据简单可靠,对于负荷电流大于IMK时的CT断线相能准确检出,此 时非断线相差动继电器仍可正确动作。
▪ 3、 PSL 603G启动继电器的闭锁措施(双AD模件)
▪ PSL 603G改进型取消了“三取二”启动回路。增加了一块AD模件,构 成双AD回路。交流模拟量分别引入两个AD模件,由独立的数据采样回 路进行转换,其中一块AD模件的数据送给保护,完成保护功能,另一块 AD模件以“逻辑与”的方式和保护模件的启动回路构成启动继电器开放 回路。只有两块AD同时启动,保护才能出口,这样可以增强保护的可靠 性。
▪ 动作电流:
ICD IM IN IK
▪ 制动电流:
IR IM IN
▪ 因为 I CD I R 继电 器动作。
▪ 凡是在线路内部有流 出的电流,都成为动 作电流。
M IM
IN N
IK
线路外部短路
▪ 动作电流:
ICD IM IN IK IK 0
▪ 制动电流:
I R IM IN IK IK 2 IK
220KV输电线路继电保护

银川能源学院课程设计课程名称:电力系统继电保护原理设计题目:220KV输电线路继电保护院(部):电力学院专业:电气工程及其自动化班级:1203班*名:**学号:**********成绩:指导教师:李莉李静日期:2015年6月8日——6月21日前言 (3)第一章绪论 (4)1.1继电保护的概论 (4)1.2继电保护的基本任务 (4)1.3继电保护的构成 (4)1.4课程设计的目标及基本要求 (5)第二章 220KV输电线路保护 (5)2.1 220KV线路保护概要 (5)2.2纵联保护 (6)2.2.1纵联方向保护原理 (6)2.2.2纵联保护通道 (7)2.3 输电线路参数的计算 (7)第三章输电线路上TA、TV及中性点接地的选择 (8)3.1 输电线路上T A、TV的选择 (8)3.2 变压器中性点接地方式的选择 (9)第四章相间距离保护整定计算 (10)4.1 距离保护的基本概念 (10)4.2距离保护的整定 (11)4.3 距离保护的评价及应用范围 (12)第五章电力网零序继电保护方式选择与整定计算 (12)5.1 零序电流保护的特点 (12)5.2 接地短路计算的运行方式选择 (13)5.3 最大分支系数的运行方式和短路点位置的选择 (13)5.4 电力网零序继电保护的整定计算 (13)5.5 零序电流保护的评价及使用范围 (15)心得体会 (16)参考文献 (17)继电保护伴随着电力系统而生,继电保护原理及继电保护装置的应用,是电力系统实用技术的重要环节。
继电保护技术的应用繁杂广泛,随着现代科技的飞速发展,继电保护在更新自身技术的基础上与现代的微机、通信技术相结合,使继电保护系统日趋先进。
无论是继电保护装置还是继电保护系统,都蕴含着严谨而又富有创兴的科学哲理,同时也折射出现代技术发展的光芒。
可以说继电保护是一门艺术。
由于电力系统是一个整体,电能的生产、传输、分配和使用是同时实现的,各设备之间都有电或磁的联系。
我厂220KV线路保护配置及原理讲解

纵联保护原理一、纵联保护:高频保护是利用某种通信设备将输电线路两端或各端的保护装置纵向连接起来,将各端的电气量(电流、功率方向等)传送到对端,将各端的电气量进行比较,以判断故障在本线路范围内还是范围外,从而决定是否切除被保护线路。
二、相差高频保护原理:(已经退出主流,不做解释)相差高频保护作为过去四统一保护来说,占据了很长一段时间的主导地位,随着微机保护的发展,相差高频保护已经退出实际运行。
相差高频保护是直接比较被保护线路两侧电流的相位的一种保护。
如果规定每一侧电流的正方向都是从母线流向线路,则在正常和外部短路故障时,两侧电流的相位差为180°。
在内部故障时,如果忽略两端电动势相量之间的相位差,则两端电流的相位差为零,所以应用高频信号将工频电流的相位关系传送到对侧,装在线路两侧的保护装置,根据所接收到的代表两侧电流相位的高频信号,当相位角为零时,保护装置动作,使两侧断路器同时跳闸,从而达到快速切除故障的目的。
侧电流侧电流侧电流侧电流启动元件:判断系统是否发生故障,发生故障才启动发信并开放比相。
操作元件:将被保护线路工频三相电流变换为单相操作电压,控制收发信机正半波发信,负半波停信。
作为相差高频保护,其启动定值有两个,一个低定值启动发信,另一个高定值启动比相,采取两次比相,延长了保护动作时间。
对高频收发信机调制的操作方波要求较高,区外故障时怕出现比相缺口引起误跳闸,因此被现有的方向高频所取代。
二、闭锁式高频保护原理方向纵联保护是由线路两侧的方向元件分别对故障的方向作出判断,然后通过高频信号作出综合的判断,即对两侧的故障方向进行比较以决定是否跳闸。
一般规定从母线指向线路的方向为正方向,从线路指向母线的方向为反方向。
闭锁式方向纵联保护的工作方式是当任一侧正方向元件判断为反方向时,不仅本侧保护不跳闸,而且由发信机发出高频信号,对侧收信机接收后就输出脉冲闭锁该侧保护。
在外部故障时是近故障侧的正方向元件判断为反方向故障,所以是近故障侧闭锁远离故障侧;在内部故障时两侧正方向元件都判断为正方向,都不发送高频信号,两侧收信机接收不到高频信号,也就没有输出脉冲去闭锁保护,于是两侧方向元件均作用于跳闸。
输电线路相间短路电流保护课件

电流保护的可靠性也受到电流互感器误差、二次回路断线等因素的影响 ,可能导致保护装置误动作或拒动作。
Part
03
输电线路相间短路电流保护装 置
电流保护装置的构成
STEP 01
电流互感器
STEP 02
继电器
用装置提供信号。
动作执行
在发生相间短路时,继电 器触发断路器执行跳闸操 作,切除故障线路。
电流保护装置的配置与整定
配置
根据输电线路的电压等级、输送 容量、线路长度等因素,选择合 适的电流保护装置并进行配置。
整定
根据输电线路的实际运行情况,对 电流保护装置的整定值进行设定, 以确保保护装置能够准确判断故障 并快速切除故障线路。
案例概述
某企业为保障输电线路安全,配 置相间短路电流保护装置。
配置方案
采用差动保护原理,通过比较线 路两侧电流的相位和幅值,检测 到相间短路时迅速切断故障线路
。
实施效果
有效降低了相间短路事故的发生 率,提高了企业供电的可靠性和
稳定性。
某高校输电线路相间短路电流保护优化案例
案例概述
某高校对原有的输电线路相间短路电流保护进行优化改造。
设备损坏
相间短路可能导致输电线 路和相关设备的严重损坏 ,增加维修成本。
安全风险
相间短路可能导致火灾、 爆炸等安全事故,对人员 和财产安全造成威胁。
Part
02
相间短路电流保护原理
电流保护基本原理
电流保护是利用电流继电器实现电流保护的装置,当电流超过设定值时,继电器动 作,执行元件跳闸或发出信号。
STEP 03
110kV线路保护

跳闸并闭锁重合闸。
三、110kV线路保护调试
7、重合闸 试验方法 (1)投入重合闸压板。 (2)用状态序列,先是故障前正常状态加正常电压
正常电流。 (3)保护跳闸,经重合闸时间后重合闸动作。 (4)闭锁重合闸,等保护充电,直至“充电”灯亮
,投闭锁重合闸压板,保护放电。
谢谢!
注意:用保护起动重合闸方式在断路器偷跳时无法起动 重合闸。
二、110kV线路保护原理
重合闸的充电与闭锁: (一)重合闸的充电
重合闸的压板在投入状态
三相断路器的合闸状态
没有压力闭锁的开入量输入 &
没有外部闭锁的开入量输入
若为检电压方式,没有TV断路信号
允 重合闸充电10—15S 许
重 合
测量保护安装处至故障点的距离,实际上是测量 保护安装处至故障点之间的阻抗。该阻抗为保护 安装处的电压和电流的比值,即Z=U/I。
二、110kV线路保护原理
距离保护的保护范围:
(1)距离Ⅰ段的保护范围应限制在本线路内,其动 作阻抗应小于线路阻抗,通常其保护范围为被保 护线路的全长的80%~85%。
(3)记录打印试验过程中各段的动作报告、动作时间。
三、110kV线路保护调试
5、零序方向过流保护
试验方法
(1)投入零序过流保护软压板、硬压板。重合把手切换至“ 综重方式”,将控制字“投重合闸”、“投重合闸不检” 置1。将Ⅰ、Ⅱ、Ⅲ、Ⅳ段零序保护的控制字置1。
(2)本试验用零序菜单进行。按照保护装置的定值,将Ⅰ、 Ⅱ、Ⅲ、Ⅳ段的电流定值和时间定值输入零序菜单中的对 应项,零序菜单中的零序补偿系数、灵敏角度要与保护装 置定值一致;根据故障方向、故障类别、动作区域选0.95 倍和1.05倍。0.95倍的时候应该可靠不在该段动作,而在 下一段动作;1.05倍时应该可靠在该段动作;正方向时应 该可靠动作;反方向时不动作。
3.2 输电线路相间短路的方向电流保护详解

➢ 由于正、反向故障时,短路功率方向不同,它将使保护的 动作具有一定的方向性。 ➢ 在常规保护中,方向元件有电磁型、感应型、整流型、晶 体管型、集成电路型等,常用的是整流型和晶体管型。
➢ 母线电压参考方向为“母线指向大地”,电流参考方向为 “母线指向线路”。
其之输间出的(相转位UC矩差或的电大压小24)而00 值改随变两。U者当B
输出为最大时的相位差称为最大
灵敏角。
arg
U K IK
Network Optimization Expert Team
k23
U
1
EI
Ik 2
k1处短路(对保护1为正方向)
U Ik1 Z1lk1
U
Ik1
k1
0 k1 90
第三章 电网的相间电流、电压保护 和方向性相间电流、电压保护
一、单侧电源网络的相间电流、电压保护 二、电网相间短路的方向性电流、电压保护
2021/4/6
1
问题的提出
2
1
A
B
C
三段式电流保护是以单侧电源网络为基础进行分析 的,各保护都安装在被保护线路靠近电源的一侧,或 者说线路的始端。
仅利用相间短路后电流幅值增大的特征来区分故障 与正常运行状态的,以动作电流的大小和动作时限的 长短配合来保证有选择地切除故障。
动作范围: senmax 900 ∵ 过渡电阻、线路阻抗角会变化, k最大0灵~敏90线
+j ∴ 功率方向继电器在正方向故障时,动作的角度应该是一个
范围。
动作区 .
考虑实现的方便性,这个角度通常U 取为:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
辽宁工业大学电力系统继电保护课程设计(论文)题目:35kV输电线路方向电流保护设计院(系):电气工程学院专业班级:电气102学号:学生姓名:指导教师:(签字)起止时间:课程设计(论文)任务及评语续表注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算摘要电力是当今世界使用最为广泛、地位最为重要的能源,电力系统的安全稳定运行对国民经济、人民生活乃至社会稳定都有着极为重要的影响。
电力系统由各种电气元件组成,由于自然环境、制造质量、运行维护水平等诸多方面的原因,电力系统的各种元件在运行中不可能一直保持正常状态。
因此,需要有专门的技术为电力系统建立一个安全保障体系,其中最重要的技术之一就是继电保护技术。
本文主要对35KV输电线路方向电流保护进行分析与设计,对电气元件在最大运行方式和最小运行方式下的电流进行整定计算后,进行分析,判断是否需要安装方向元件,并在绘制方向电流保护原理图后进行仿真,最后达到安全稳定的保护电力系统运行的要求。
关键词:输电线路;方向元件;电流保护;电力系统稳定运行目录第1章绪论 (4)1.1输电线路电流保护概述 (4)1.2 本文设计内容 (4)第2章输电线路方向电流保护整定计算 (5)2.1 方向电流Ι段整定计算 (5)2.1.1 保护4、5的Ι段动作电流的整定 (6)2.1.2 灵敏度校验 (7)2.1.3 动作时间的整定 (7)2.2 保护5、7、9方向电流Ⅱ段整定计算 (7)2.3方向电流Ⅲ段动作时间整定计算及方向元件的安装 (8)第3章方向电流保护原理图的绘制与动作过程分析 (9)3.1绘制方向保护原理图 (9)3.2动作过程分析 (9)第4章 MATLAB建模仿真分析 (10)第5章课程设计总结 (12)参考文献 (13)第1章绪论1.1输电线路电流保护概述电力系统的输、配电线路因各种设备原因、自然原因、人工操作不当等原因可能会发生相间或相地短路故障,因此,必须有相应的保护装置来反映这些故障,并控制故障线路的断路器,使其跳闸以切除故障。
而且,对各种不同电压等级的线路应该装设不同的相间短路和接地短路的保护。
对于35KV及以上的电力设备和线路故障,应有主保护和后备保护;对于电压等级在220KV及以上的线路,应该考虑或者必须装设双重化的主保护,对于整个线路的故障,应该无延时控制其断路器跳闸。
线路的相间短路、接地短路保护主要有电流电压保护,方向电流电压保护,接地零序电流电压保护,距离保护和纵联保护等。
而其中电流电压保护主要包括带方向判别和不带方向判别的相间短路电流电压保护、带方向判别和不带方向判别的接地短路电流电压保护。
他们分别用于双电源网络、单电源环形网络及单电源辐射网络的线路上切除相间或接地短路故障。
1.2 本文设计内容方向电流保护用于双电源网络和单电源环形网络时,在构成、整定、相互配合等问题上还有以下特点:在保护构成中增加功率方向测量原件,并与电流测量元件共同判别是否在保护线路的正方向上发生故障。
本次设计主要对保护段的Ι段动作电流的整定、灵敏度的校验、动作时间的整定、方向电流Ⅱ段的整定计算和方向电流Ⅲ段动作时间整定计算,绘制方向电流保护原理图,并对动作过程进行分析。
以及运行方式的选择、电网各个元件参数及负荷电流计算、短路电流计算等。
第2章输电线路方向电流保护整定计算2.1 方向电流Ι段整定计算首先要进行动作电流的整定,如图2.1和图2.2所示分别为系统最大运行状态和最小运行状态下的等效电路图:图2.1 系统最大运行方式等效电路图图2.2系统最小运行方式由条件可知:Ω===10321G G G X X X Ω===16321L L L X X XΩ=16BC X ,Ω=12CD X ,Ω=12DE X所以最大运行方式的等值阻抗为:Ω=++=7.8)(||)||||(332121min 3L G L L G G X X X X X X X最小运行方式下的等值阻抗为:Ω=++=13)(||)(3311max 3L G L G X X X X X则C 母线的最大短路电流为: KA X X E I BCkc 86.0min 3max =+=ϕ同理D 母线的最大短路电流为: KA X X X E I CDBC kd 58.0min 3max =++=ϕE 母线的最大短路电流为: KA X X X X E I DECD BC ke 43.0min 3max =+++=ϕ于是可以求出保护1、2、3的第一段动作电流分别为:KA I K I kc rel op 516.0max 11=⨯=I KA I K I kd rel op 696.0max 12=⨯=I KA I K I ke rel op 032.1max 13=⨯=I2.1.1 保护4、5的Ι段动作电流的整定在线路A 点的三相短路时的最大短路电流为:KA X X X X X E I L L G L G ka 737.0)(||)(32211max =+++=I ϕ所以保护4的Ι段动作电流为:KA I K I ka rel op 884.03max 4=⨯=I I同理,在线路B 点的三相短路时的最大短路电流为:KA X X E I L G kb 822.033max =+=I ϕ保护5的Ι段动作电流为:KA I K I kb rel op 986.03max 5=⨯=I I2.1.2 灵敏度校验灵敏度可以反映出继电保护装置对于其保护范围内发生故障或者不正常运行状态的反应能力,所以对各个保护进行灵敏度校验就很有必要,如下所示:Ω=-=I7.723max 34min 4X I E X op sl Ω=-=I9.823max 35min 5X I E X op sl 所以保护4的灵敏度为:%15%48%1003min41>=⨯=I l sen X Xl K 所以保护4满足灵敏度要求。
同理保护5的灵敏度为:%15%55%1003min51>=⨯=I l sen X Xl K 所以保护5也满足灵敏度要求。
2.1.3 动作时间的整定无时限电流速断保护不必外加延时元件,即电流保护的第I 段动作时间为:054==I I op op t t2.2 保护5、7、9方向电流Ⅱ段整定计算当电流I 段的保护灵敏度达不到要求时就不能使用,此时可以采用另一种保护方式,即带时限的电流速断保护,所以以保护5为例对其方向电流Ⅱ段进行整定计算。
已知KA I I k ABB b 92.01min 5=+=KA I op 032.113=分支系数=流过故障线电流与流过保护线电流的比值。
所以KA I I k ABBb 92.01min 5=+= 所以保护5的动作电流为:KA k I K I b op rel op 29.1min535=⨯=II I I I对其进行校验:3.121.452min >==I II Iop kb senI I K所以满足灵敏度要求。
2.3方向电流Ⅲ段动作时间整定计算及方向元件的安装方向电流Ⅲ段动作电流的整定计算应遵循阶梯型原则:s t 01=I I Is t t t 5.012=∆+=I I I I I I s t t t 0.123=∆+=I I I I I Is t t t t t 5.13976=∆+===I I I I I I I I I I I I为简化保护接线和提高保护的可靠性,电流保护每相的第Ⅰ、Ⅱ、Ⅲ段可共用一个方向元件。
电流保护第Ⅲ段的动作时间较小者而可能失去选择性时加方向元件,动作时间相同者可能失去选择性时均加方向元件。
所以,保护4,6,8加方向元件。
第3章方向电流保护原理图的绘制与动作过程分析3.1绘制方向保护原理图根据系统接线图,绘制出方向电流保护原理图,如图3.1所示:图3.1 方向电流保护原理图3.2动作过程分析电流继电器和功率继电器才用按相启动方式,当两者都满足时线路才能接通。
当系统发生短路时,有本线路所在保护的Ⅰ段切故障。
当Ⅰ断拒动或故障时,电流继电器经过延时继电器,延时元件则用于判别是否本线路发生了故障而主保护据动和判别是否相邻元件发生了故障而相邻元件保护或断路器据动,若出现上述举动情况,则延时元件会有输出,使本线断路器跳闸。
振荡元件和电压互感器二次断线闭锁元件,分别在系统振荡和电压互感器二次断线时有输出,经非门闭锁保护,可防止保护误动作。
发生故障时相应段的保护动作,信号元件动作输出保护动作的报警信号,而整套保护中每相均有启动元件,可以增加保护的可靠性。
第4章 MATLAB建模仿真分析利用Simulink中的SimPowerSystems工具箱构建设计要求中给定的电力系统系统,并在Matlab环境中调试成功。
再建立线路三段式电流保护模块对各个部分参数进行设定。
根据线路三段式保护的原理以及各段保护之间的配合模拟电流I、II段保护动作分别在电流I、II段的范围内设置故障进行调试仿真。
(1)模拟电流Ⅰ段保护动作执行仿真后,仿真结果如下图4.1所示:由图可以看出线路在0.05s发生了故障,产生一个较大的短路电流,之后经过一个很小的延时0.001s,断路器1跳闸。
电流Ⅰ段成功按时动作。
图4.1 电流Ⅰ段保护仿真图形(2)模拟电流Ⅱ段保护动作,在电流Ⅱ段的范围内设置故障,由于本设计是模拟线路不同段发生故障,所以就可以直接改变线路1的值来模拟线路不同段的故障。
将线路1的值设置为10,线路0、2分别为0.3、3.5。
仿真参数同1,执行仿真后,仿真结果如下图4.2所示:图4.2 电流Ⅱ段保护仿真图形由图可以看出线路在0.05s发生了故障,产生一个较大的短路电流,之后经过预先设置的延时0.5s,断路器1在0.55s跳闸。
电流Ⅱ段成功按时动作。
第5章课程设计总结随着电力应用的不断发展,电力系统继电保护对电力系统运行的稳定性、安全性、可靠性起到了非常重要的作用,因为在电力系统发生故障时,为了防止电力系统事故的扩大,保证非故障部分仍能可以可靠的供电,以及维持电力系统运行的稳定性,要求电力系统继电保护装置能在几十毫秒内准确迅速的识别并切除故障。
所以,电力系统继电保护已经成为电力工业的一个必不可少的组成部分。
本课设主要是针对输电线路方向电流保护进行设计,本文首先对电力系统继电保护进行简单的介绍,然后分别在最大运行方式和最小运行方式下对等值电抗进行计算,并且计算出各个保护的动作电流,进行灵敏度校验,进而绘制出方向保护的原理图,最后对系统进行模拟仿真并分析了结果。
参考文献[1] 陈堂等编著《配电系统及其自动化技术》中国电力出版社2004.8[2] 赵晶主编《Prote199高级应用》.人民邮电出版社,2000:6[3] 何仰赞等编著《电力系统分析》武汉:华中理科技学出版社,2002.3[4] 于海生编著《微型计算机控制技术》清华大学出版社2003.4[5] 王士政主编《电网调度自动化与配网自动化技术》中国水利水电出版社2007.3[6] 梅丽凤等编著《单片机原理及接口技术》清华大学出版社2009.7[7] 许建安编著《电力系统微机继电保护》中国水利水电出版社2003.6。