广东省广州市数学中考二模试卷

合集下载

2024年广东省广州市第一中学初三二模数学试题含答案解析

2024年广东省广州市第一中学初三二模数学试题含答案解析

2024年广东省广州市第一中学九年级中考二模数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.7-的绝对值是()A.7-B.7C.7±D.1 7【答案】B【分析】当a是负有理数时,a的绝对值是它的相反数,据此求出7-的绝对值是多少即可.此题主要考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a 是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数a-;③当a是零时,a的绝对值是零.【详解】解:7-的绝对值是7.故选:B.2.某几何体的主视图是矩形,则这个几何体可能是()A.三棱锥B.圆锥C.圆柱D.球【答案】C【分析】由空间几何体想象其三视图即可.【详解】解:由几何体的主视图是矩形,可得几何体是圆柱,故选:C.【点睛】本题的难度较低,主要考查考生对三视图概念的熟练度.3.对于一组数据﹣1、4、﹣1、2下列结论不正确的是( )A.平均数是1B.众数是-1C.中位数是0.5D.方差是3.54.下列运算正确的是( )A .224(3)6xy xy =B .22124x x -=C .725()()x x x -÷-=-D .23534x x x +=5.把不等式组13264x x +>⎧⎨--≥-⎩中每个不等式的解集在同一条数轴上表示出来,正确的为( )A .B .C .D .【答案】B【分析】本题考查了一元一次不等式组解集的求解,在数轴上表示不等式解集,分别求出不等式①②的值,在数轴上表示出来即可.【详解】解:13264x x +>⎧⎨--≥-⎩①②,解不等式①得:2x >,解不等式②得:1x ≤,将两个不等式的解集在同一条数轴上表示出来如下:故选:B .6.下列说法不正确的是( )A .函数3y x =-的图象必过原点B .函数31y x =-的图象不经过第二象限C .函数1y x=的图象位于第一、三象限D .函数2(1)2y x =-+的图象中,当1x <时,y 随x 增大而增大7.“儿童放学归来早,忙趁东风放纸鸢”,小明周末在龙潭公园草坪上放风筝,已知风筝拉线长100米且拉线与地面夹角为65︒(如图所示,假设拉线是直的,小明身高忽略不计),则风筝离地面的高度可以表示为( )A .100sin 65︒B .100cos 65︒C .100tan 65︒D .100sin 65︒【答案】A【分析】过点A 作AC ⊥BC 于C ,根据正弦的定义解答即可.8.一艘轮船在静水中的速度为30km/h,它沿江顺流航行144km与逆流航行96km所用时间相等,江水的流速为多少?设江水流速为km/hv ,则符合题意的方程是()A.144963030v v=+-B.1449630v v=-C.144963030v v=-+D.1449630v v=+9.如图,⊙O是等边△ABC的内切圆,分别切AB,BC,AC于点E,F,D,P是DF上一点,则∠EPF的度数是()A.65°B.60°C.58°D.50°10.如图,在正方形ABCD中,M为CD上一点,连接AM与BD交于点N,点F在BC上,点E在AD上,连接EF交BD于点G,且AM EF⊥,垂足为H,若H为AM的中点,则下列结论:①AM EF=;②BG MDGD CM=;③GH FG HE=+;④AHE GHN△△∽.其中结论正确的个数有()A.①③B.①④C.②③D.①②∴∠在正方形ABCD中,ABC BAD∠=∠=∴四边形ABFK是矩形,∴=,FK BA在正方形ABCD中,AB AD=,CM设正方形ABCD 的边长为2a ,即AD =12DM CD a ∴==,在Rt ADM △中,22AM AD DM =+ 点H 是AM 的中点,1522AH AM a ∴==,ADM FKE ≌,KE DM a ∴==,∴∠ 点H 是AM 的中点,MH AH ∴=,(AAS)MPH AEH ∴ ≌,PH EH ∴=,MP AE =,在正方形ABCD 中,BD 平分ADC ∠,11904522BDC ADC ∴∠=∠=⨯︒=︒,PM AD ∥,1801809090QMD ADC ∴∠=︒-∠=︒-︒=︒,90904545MQD MDQ ∴∠=︒-∠=︒-︒=︒,MQD MDQ ∴∠=∠,MQ MD ∴=,由①知,(AAS)FKE ADM ≌,KE DM ∴=,MQ KE ∴=,PM QM AE KE ∴-=-,即PQ AK =,由①得,四边形ABFK 是矩形,BF AK ∴=,BF PQ ∴=,BC AD ,MP AD ∥,BC PM ∴ ,GBF GQP ∴∠=∠,BFG QPG ∠=∠,(ASA)BFG QPG ∴ ≌,FG PG ∴=,FG EH PG PH HG ∴+=+=,故③正确;对于④,假设AHE GHN △△∽成立,则AEH GNH ∠=∠,90AHE ∠=︒ ,90AEH EAH ∴∠+∠=︒,90BAH EAH BAD ∠+∠=∠=︒ ,BAN BNA ∴∠=∠,BN BA ∴=,AB 是定值,BN 随着点M 的变化而变化,BN BA ∴=不成立,BFG DEG ∴ ∽不成立.故④错误.故选:A .【点睛】本题考查正方形的性质,全等三角形的判定及性质,相似三角形的判定及性质,勾股定理,熟练运用相关知识,运用特殊值法与反证法是解决本题的关键.二、填空题11.神舟五号飞船总重7990000克,用科学记数法表示为 克.【答案】67.9910⨯【分析】将一个数表示成10n a ⨯的形式,其中1||10a ≤<,n 为整数,这种记数方法叫做科学记数法,据此即可得出答案.本题考查科学记数法表示较大的数,科学记数法是基础且重要知识点,必须熟练掌握.【详解】解:依题意,将7990000克用科学记数法表示为67.9910⨯克.故答案为:67.9910⨯12.如果点1(2,)A y 、2(3,)B y 是二次函数221y x x =-+的图像上两点,那么1y2y .(填“>”、“=”或“<”)【答案】<【分析】分别把1(2,)A y 、2(3,)B y 代入221y xx =-+,求出1y 和2y 的值比较即可.【详解】当x=2时,212221=1y =-⨯+,当x=3时,213231=4y =-⨯+,∴1y <2y .故答案为<.【点睛】本题考查了二次函数图象上点的坐标特征,熟练掌握二次函数图象上点的坐标特征是解答本题的关键,经过二次函数图象上的某点,该点的坐标满足二次函数解析式.13.如图,四边形ABCD 中,130AD BC C ∠=︒∥,,若沿图中虚线剪去D ∠,则12∠+∠=︒.【答案】230【分析】由平行线的性质可得50D ∠=︒,再运用三角形内角和定理、邻补角的定义可得12230∠+∠=︒.【详解】解:如图,∵130AD BC C ∠=︒∥,,∴18013050D ∠=︒-︒=︒,∴3418050130∠+∠=︒-︒=︒,∴1324180180360∠+∠+∠+∠=︒+︒=︒,∴12360130230∠+∠=︒-︒=︒.故答案为:230.【点睛】本题考查了多边形的内角、平行线的性质及邻补角,熟练掌握多边形的内角和定理及邻补角定义是解题的关键.14.某口袋里现有8个红球和若干个绿球(两种球除颜色外,其余完全相同).某同学随机的从该口袋里摸出一球,记下颜色后放回,共试验50次,其中有20次摸到红球,估计口袋里绿球个数为 个.15.在平面直角坐标系xOy 中,点A ,B 的坐标分别为()6,8A -,()4,0B -.以原点O 为位似中心,将ABO 缩小为原来的一半,得到CDO ,则点A 的对应点C 的坐标是 .故答案为:()3,4-或()3,4-.16.如图,以半圆的一条弦AN 为对称轴,将弧AN 折叠,与直径MN 交于B 点,若23BM BN =,10MN =,则AN 的长为 .∵10MN =,23BM BN =,∴4BM =,三、解答题17.解分式方程:123x x =+【答案】3x =【分析】两边同乘以x (x +3),转化为一元一次方程求解即可【详解】解:去分母得:32x x +=解得3x =检验:将3x =代入原方程的分母,不为03x =为原方程的解.【点睛】本题考查了分式方程的解法,熟练掌握分式方程的求解方法是解题的关键.18.如图,//BD AC ,BD BC =,点E 在BC 上,且BE AC =.求证:D ABC ∠=∠.【答案】见解析【分析】由题意易得EBD C ∠=∠,进而可证EDB ABC ≌△△,然后问题可求证.【详解】证明:∵//BD AC ,∴EBD C ∠=∠.∵BD BC =,BE AC =,∴()EDB ABC SAS ≌.∴D ABC ∠=∠.【点睛】本题主要考查全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.19.已知:A =2244(2)11x x x x x -+-÷--.(1)化简A .(2)若点(x ,-3)与点(-4,-3)关于y 轴对称,求A 的值.20.某商场新进一批拼装玩具,进价为每个10元,在销售过程中发现,日销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系.(1)求y与x的函数关系式(不要求写出自变量x的取值范围);(2)若该玩具某天的销售利润是600元,则当天玩具的销售单价是多少元?【答案】(1)2100y x =-+(2)当天玩具的销售单位是40元或20元【分析】(1)设一次函数的关系式为y kx b =+,采用待定系数法即可求解;(2)设当天玩具的销售单位是x 元,由题意得,()()102100600x x -⨯-+=,解方程即可求解.【详解】(1)设一次函数的关系式为y kx b =+,由题图可知,函数图象过点()25,50和点()35,30把这两点的坐标代入一次函数y kx b =+,得25503530k b k b +=⎧⎨+=⎩,解得2100k b =-⎧⎨=⎩,∴一次函数的关系式为2100y x =-+.(2)设当天玩具的销售单位是x 元,由题意得,()()102100600x x -⨯-+=,解得:140x =,220x =,∴当天玩具的销售单位是40元或20元.【点睛】本题考查了一次函数以及一元二次方程的应用,明确题意,列出一元二次方程,是解答本题的关键.21.某校为了了解全校学生线上学习情况,随机选取该校部分学生,调查学生居家学习时每天学习时间(包括线上听课及完成作业时间).以下是根据调查结果绘制的统计图表.请你根据图表中的信息完成下列问题:频数分布表学习时间分组频数频率A 组(01x ≤<)9m B 组(12x ≤<)180.3C 组(23x ≤<)180.3D 组(34x ≤<)n 0.2E 组(45x ≤<)30.05(1)频数分布表中m =_______,n =________,并将频数分布直方图补充完整;(2)若该校有学生1000名,现要对每天学习时间低于2小时的学生进行提醒,根据调查结果,估计全校需要提醒的学生有多少名?(3)已知调查的E 组学生中有2名男生1名女生,老师随机从中选取2名学生进一步了解学生居家学习情况.请用树状图或列表求所选2名学生恰为一男生一女生的概率.故答案为0.15,12;(2)根据频数分布表可知:22.如图所示,矩形OABD 的边OA 在x 轴上,OD 在y 轴上,点B 的坐标是(反比例函数()0k y x x =>的图象经过点B ,以点A 为圆心,AO 为半径作 OC 交边BD 于点 C , 连接OC .(1)求反比例函数的解析式.(2)求OAC ∠的度数.(3)请直接写出图中阴影部分的面积.△中,CD是斜边AB的中线.23.如图,Rt ABC(1)尺规作图:画出以CD 为直径的O ,与AB 交于点E ,与AC 交于点F ;(2)若2BC =;4AC =,求DE 的长:(3)连接EF ,交CD 于点P ,若:3:2DP PO =,求BC AC 的值.(∵∠24.已知抛物线212:23C y ax ax a =++-.(1)写出抛物线1C 的对称轴:______.(2)将抛物线1C 平移,使其顶点是坐标原点O ,得到抛物线2C ,且抛物线2C 经过点()2,2A --和点B (点B 在点A 的左侧).①求2C 的函数解析式;②若ABO 的面积为4,求点B 的坐标.(3)在(2)的条件下,直线1:2l y kx =-与抛物线2C 交于点,M N ,分别过点,M N 的两条直线23,l l 交于点P ,且23,l l 与y 轴不平行,当直线23,l l 与抛物线2C 均只有一个公共点时,请说明点P 在一条定直线上.∵ABO OBN OAM ABNMS S S S =--△△△梯形()21111222222t t ⎛⎫=⨯-⨯-⨯⨯-⨯ ⎪⎝⎭32311122424t t t t =--++++212t t =+又4ABO S =25.如图1,在矩形ABCD 中,AB 3=,AD 3=,点E 从点B 出发,沿BC 边运动到点C ,连结DE ,过点E 作DE 的垂线交AB 于点F .()1求证:BFE ADE ∠∠=;()2求BF 的最大值;()3如图2,在点E 的运动过程中,以EF 为边,在EF 上方作等边EFG ,求边EG 的中点H 所经过的路径长.∴。

2023年广东省中考二模数学试卷(含答案解析)

2023年广东省中考二模数学试卷(含答案解析)

2023年广东省中考二模数学试卷学校:___________姓名:___________班级:___________考号:___________A.10︒B.206.已知m、n均为整数,且A.8B.1 8二、填空题15.如图,一次函数2y x =与反比例函数(ky k x=以()40C ,为圆心,半径为2的C 上,N 是线段BM 则k 的值是____________________.三、解答题16.如图是一个长方体纸盒的平面展开图,已知纸盒中相对两个面上的数互为相反数.(1)填空:=a ______,b =______,c =______;(2)先化简,再求值:()()2222a b abc a b abc +--.17.班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发.苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地.问:(1)大巴与小车的平均速度各是多少?(1)将条形统计图补充完整;(2)扇形图中“1.5小时”部分圆心角是_______度,活动时间的平均数是_____小时,中位数是______小时;(3)若该学校共有900人参与义工活动,请你估计工作时长一小时以上(不包括一小时)(1)求证:四边形ACDF是矩形.Y的面积是18,求(2)若ABCD20.如图1,在平面直角坐标系中,点形ABCD为平行四边形,点C.(1)求出m和k的值;(1)若AB AF=,求FED∠的正切值.(2)求DGC∠的大小.(3)当F落在BD上时,证明:2·BC CF CG=.22.如图,AB是O直径,点C为劣弧 BD中点,弦的延长线上,EB FB=,FG DB⊥,垂足为G (1)求证:ABD BFG∠=∠;(2)求证:BF是O的切线;(3)当23DEEG=时,求tan DAE∠23.在平面直角坐标系xOy A、B两点(点A在点B的左侧(1)求抛物线的解析式;(2)线段OB 上有一动点P ,连接CP ,当CP +12PB 的值最小时,坐标和CP +12PB 的最小值.(3)如图2,点D 为直线BC 上方抛物线上一点,连接AD 、BDE 的面积为1S ,ABE 的面积为2S ,求12S S 的最大值.参考答案:∵120ACN ∠=︒,∴18060ACM ACN ∠=︒-∠=∵EF MN ∥,∴60AHB ACM ∠=∠=︒,BG在ABM 中,O N ,分别是AB BM ,的中点,ON ∴是ABM 的中位线,12ON AM ∴=,已知ON 长的最大值为3,此时的6AM =,显然当A C M ,,三点共线时,取到最大值:26AM AC CM AC =+=+=,4AC ∴=,设(),2A t t ,由两点间的距离公式:()224416t t ∴-+=,解得:12805t t ==,(取舍),81655A ⎛⎫∴ ⎪⎝⎭,,将81655A ⎛⎫ ⎪⎝⎭,代入()0k y k x =>,解得:12825k =,∵18ABCD S AB AC =⨯= ,AB ∴6AC =,∴132AO AC AB ===,∴ABO 是等腰直角三角形,∴45ABO ∠=︒,∴BDF V 是等腰直角三角形,∴6BF FD AC ===,CD 在Rt ACF 中,由勾股定理得∵AF D C ∥,∴CDG FBG ∠=∠,DCG ∠∴CDG FBG △∽△,∴CG CD FG FB =,即35CG CG -∴CG 的长为5.∵AB EF ∥,AM EF ⊥,∴AB AM ⊥,∵90BAO ABO ∠+∠=︒,MAT BAO ∠+∠∴ABO MAT ∠=∠,同理可得:MAT ∠∴1tan tan 2ABO TAM ∠=∠=,MT x =2AT x =∵45BDC ∠=︒,∴DGC BDC ∠=∠∵DCF GCD ∠=∠∴DCF GCD ∽∴CD CG CF CD=,∴2CD CF CG =⋅,点C 为劣弧 BD中点,∴ CDBC =,DAC BAC DBC ∴∠=∠=∠,BE BF = ,90ACB ∠=︒BC ∴平分EBF ∠,2EBF EBC ∴∠=∠,则90EHB BGF ∠=∠=︒,由(1)得ABD BFG ∠=∠在BFG ∆和EBH ∆中,FBG BHE BFG EBH BF EB ∠=∠⎧⎪∠=∠⎨⎪=⎩,12PH PB ∴=,12CP PB CP PH C P PH '∴+=+=+3OC OC '== ,6CC '∴=,33C H '∴=,,30C P CP PCC PC C '''∴=∠=∠=3OP ∴=,综上所述,当(30)P ,时,CP +(3)如图,过D 作DG x ⊥轴于点设直线BC 解析式为:y h b =+由(1)得:(33,0)B ,将(33,0)B ,()0,3C 分别代入解得:333k b ⎧=-⎪⎨⎪=⎩,∴直线BC 的表达式为:y =- (30)A -,,故K 的横坐标1x ∴(3,4)K -,∴4AK =,设2123(,3)33D m m m -++,则∴2133DF m m =-+,DG x ⊥ 轴于点G ,AK x ⊥轴,∴AK DG ∥,∴~MAG DFE ∆,DF DE。

2024年广东省广州市广东广雅中学中考二模数学试题(解析版)

2024年广东省广州市广东广雅中学中考二模数学试题(解析版)

2024年广州市中考数学模拟试卷本试卷共 6页,25小题,满分120分.考试用时120分钟第一部分 选择题(共30 分)一、选择题(本大题共10小题,每小题 3 分,满分 30 分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 的倒数是( )A.B. C. D. 【答案】B 【解析】【分析】此题考查了倒数的定义:乘积为1的两个数互为倒数,据此解答即可.【详解】∵,∴的倒数是,故选:B2. 下列计算正确的是( )A. B. C.D.【答案】C 【解析】【分析】本题考查了二次根式的除法,减法,化简二次根式,熟练掌握知识点是解题的关键.分别利用二次根式的的除法,减法,化简二次根式的方法进行计算即可.【详解】解:A不是同类二次根式,不能合并,故本选项不符合题意;B,故本选项不符合题意;CD,故本选项不符合题意.故选:C .3. 下列图形中的五边形ABCDE 都是正五边形,则这些图形中的轴对称图形有( )2-1212-22-1212⎛⎫-⨯-= ⎪⎝⎭2-12-=3=±=3=-3==3=A. 1个B. 2个C. 3个D. 4个【答案】D 【解析】【详解】分析:直接利用轴对称图形的性质画出对称轴得出答案.详解:如图所示:直线l 即为各图形的对称轴.,故选D .点睛:此题主要考查了轴对称图形,正确把握轴对称图形的定义是解题关键.4. 某种零件模型如图所示,该几何体空心圆柱的主视图是 A. B. C. D.【答案】B 【解析】【分析】根据主视图是从正面看得到的图形,可得答案.【详解】解:从正面看是一个矩形被分成三部分,分割线是虚线,故选B .【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.5. 如图是根据某班40名同学一周的体育锻炼情况绘制的条形统计图,那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()()()A. 16,10.5B. 8,9C. 16,8.5D. 8,8.5【答案】B 【解析】【分析】根据中位数、众数的概念分别求得这组数据的中位数、众数.【详解】解:众数是一组数据中出现次数最多的数,即8;而将这组数据从小到大的顺序排列后,处于20,21两个数的平均数,由中位数的定义可知,这组数据的中位数是9;故选:B .【点睛】考查了中位数、众数的概念.本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.6. 已知3是关于x 的方程的一个实数根,并且这个方程的两个实数根恰好是等腰的两条边的边长,则的周长为( )A. 7B. 10C. 11D. 10或11【答案】D 【解析】【分析】本题主要考查了解一元二次方程,一元二次方程解的定义,构成三角形的条件,等腰三角形的定义,先把代入原方程求出m 的值,进而解方程求出或,再分当腰长为3时,则底边长为4,当腰长为4时,则底边长为3,两种情况利用构成三角形的条件进行求解即可.【详解】解:∵3是关于x 的方程的一个实数根,∴,解得,()2120x m x m -++=ABC ABC 3x =3x =4x =()2120x m x m -++=()231320m m ++=-6m =∴原方程为,解方程得或,当腰长为3时,则底边长为4,∵,∴此时能构成三角形,∴此时的周长为;当腰长4时,则底边长为3,∵,∴此时能构成三角形,∴此时的周长为,综上所述,的周长为10或11,故选D .7. 如图,在边长为6的菱形中, ,以点为圆心,菱形的高为半径画弧,交于点,交于点,则图中阴影部分的面积是( )A. B. C. D. 【答案】B 【解析】【分析】由菱形的性质得出AD=AB=6,∠ADC=120°,由三角函数求出菱形的高DF ,图中阴影部分的面积=菱形ABCD 的面积-扇形DEFG 的面积,根据面积公式计算即可.【详解】∵四边形ABCD 是菱形,∠DAB=60°,∴AD=AB=6,∠ADC=180°-60°=120°,∵DF 是菱形的高,∴DF ⊥AB ,∴,为27120x x -+=27120x x -+=3x =4x =334+>ABC 33410++=344+>ABC 34411++=ABC ABCD 60DAB ∠=︒D DF AD E CD G 183π-9π-92π-3π-∴阴影部分的面积=菱形ABCD 的面积-扇形DEFG 的面积.故选B .【点睛】本题考查了菱形的性质、三角函数、菱形和扇形面积的计算;由三角函数求出菱形的高是解决问题的关键.8. 如图,点A 是反比例函数y =(x >0)上的一个动点,连接OA ,过点O 作OB ⊥OA ,并且使OB =2OA ,连接AB ,当点A 在反比例函数图象上移动时,点B 也在某一反比例函数y =图象上移动,则k 的值为( )A. ﹣4B. 4C. ﹣2D. 2【答案】A 【解析】【详解】解:∵点A 是反比例函数(x >0)上的一个动点,∴可设A (x ,),∴OC =x ,AC =,∵OB ⊥OA ,∴∠BOD +∠AOC =∠AOC +∠OAC =90°,∴∠BOD =∠OAC ,且∠BDO =∠ACO ,∴△AOC ∽△OBD ,∵OB =2OA ,∴,∴OD =2AC =,BD =2OC =2x ,∴B (﹣,2x ),∵点B 反比例函数图象上,∴k =﹣•2x =﹣4,故选A .点睛:本题主要考查反比例函数图象上点的坐标特征,利用条件构造三角形相似,用A 点坐标表示出B 点坐标是解题的关键.9. 如图,在Rt△ABC 中,∠ACB =90°,CB =4,CA =6,⊙C 半径为2,P 为圆上一动点,连结AP ,BP ,1xkx1y x =1x 1x12AC OC AO OD BD BO ===2x 2x k y x=2xAP+BP 的最小值为( ).A.B. 6C.D. 4【答案】A 【解析】【详解】试题解析:如图,连接CP ,在CB 上取点D ,使CD=1,连结AD ,,∴,又∵∠PCD=∠BCP ,∴△PCD ∽△BCP .∴,∴PD=BP ,∴AP+BP=AP+PD ,当点A,P ,D 在同一条直线时,AP+BP 的值最小,Rt △ACD 中,∵CD=1,CA=6,∴,∴AP+BP .故选A .在1212CD CP CP PB ==12PD BP =12121212【方法点睛】首先连接CP ,在CB 上取点D ,使CD=1,连结AD,则有;然后根据相似三角形判定的方法,判断出△PCD∽△BCP,即可推得,AP+BP=AP+PD ,再应用勾股定理,求出AP+BP 的最小值为多少即可.10. 高斯函数也称取整函数,记作,表示不超过的最大整数.例如,.已知函数,若关于的方程有三个不同的实根,则实数的取值范围是( )A. B. C. D. 或 【答案】D 【解析】【分析】本题考查了对高斯函数的理解,以及对方程的解和函数图象交点之间联系的理解,解题的关键在于利用数形结合的方式找出临界点.根据题意可得与有三个不同的交点,恒过点,画出函数图象,找出临界点,即可求出实数的取值范围.【详解】解:关于的方程有三个不同的实根,与有三个不同的交点,有恒过点,如下图:当过点时,,当过点时,,当过点时,,当过点时,,12CD CP CP PB ==12PD BP =1212[]x x []2.22=[]2.13-=-[]y x x =-x []()1x x k x -=+k 113k -<<112k -<≤-1124k -≤≤112k -<≤-1143k ≤<()1y k x =+[]y x x =-y kx k =+()1,0-k x []()1x x k x -=+∴()1y k x =+[]y x x =-y kx k =+()1,0-y kx k =+()2,113k =y kx k =+()3,114k =y kx k =+()2,1-1k =-y kx k =+()3,1-12k =-关于的方程有三个不同的实根,则实数的取值范围是或 .故选:D .第二部分 非选择题(共 90 分)二、填空题(本大题共 6 小题,每小题3分, 满分 18 分.)11. 据报道,2016年某市城镇非私营单位就业人员年平均工资超过60500元,将数60500用科学记数法表示为____________.【答案】6.05×104【解析】【分析】科学记数法的表示形式为a ×的形式,其中1≤<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正整数;当原数的绝对值<1时,n 是负整数.【详解】解:60500=6.05×10000=6.05×104,故答案为6.05×104.【点睛】本题考查的是利用科学记数法表示绝对值较大的数,掌握“科学记数法的表示方法”是解本题的关键.12. 经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种情况是等可能的,则三辆车全部同向而行的概率是_____.【答案】【解析】【分析】首先根据题意画出树状图,由树状图即可求得所有等可能的结果与三辆车全部同向而行的情况,然后利用概率公式求解即可求得答案.【详解】分别用A ,B ,C 表示向左转、直行,向右转;根据题意,画出树形图:∵共有27种等可能的结果,三辆车全部同向而行的有3种情况,∴x []()1x x k x -=+k 112k -<≤-1143k ≤<10n a 19∴三辆车全部同向而行的概率是=,故答案为.【点睛】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.13. 若抛物线y =ax 2+bx +c 的顶点是A (2,1),且经过点B (1,0),则抛物线的函数关系式为____.【答案】y =﹣x 2+4x ﹣3.【解析】【分析】抛物线的解析式为y =a (x ﹣2)2+1,把点B (1,0)代入即可求出a =﹣1,再写出解析式即可.【详解】∵抛物线y =ax 2+bx +c 的顶点是A (2,1),∴可设抛物线的解析式为y =a (x ﹣2)2+1.又∵抛物线y =a (x ﹣2)2+1经过点B (1,0),∴(1,0)满足y =a (x ﹣2)2+1.∴将点B (1,0)代入y =a (x ﹣2)2得,0=a (1﹣2)2即a =﹣1.∴抛物线的函数关系式为y =﹣(x ﹣2)2+1,即y =﹣x 2+4x ﹣3.故答案为:y =﹣x 2+4x ﹣3.【点睛】本题考查了用待定系数法求二次函数的解析式,设顶点式是解题的关键.14. 如图,圆O 与正方形的两边相切,且与圆O 相切于E 点.若圆O 的半径为2,且,则 的长度为____.【答案】4【解析】【分析】本题考查了正方形的性质和判定,切线的性质,切线长定理等知识点的应用,解题的关键是根据切线长定理得出.设与正方形的边,切于点F ,H ,先证四边形是正方形,求出,再根据切线长定理可得.【详解】解:如图,设与正方形的边,切于点F ,H ,连接3271919ABCD AB AD ,DE 6AB =DE DE DF =O ABCD AD AB AHOF DF DE DF =O ABCD AD AB ,,OH OF OE则,∵四边形是正方形,∴,,,,四边形是正方形,的半径为2,, ,与相切于点E ,,故答案为:4.15. 如图,在菱形中,,将菱形折叠,使点A 恰好落在对角线上的点G 处(不与B ,D 重合),折痕为,若,则点E 到的距离为____.【解析】【分析】本题考查的是翻转变换的性质、菱形的性质、勾股定理、解直角三角形,掌握翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.作于H ,,根据折叠的性质得到,根据菱形的性质、等边三角形的判定定理得到为等边三角形,得到,设,则, 在中,,,90OFD OFA OHA ∠=∠=∠=︒ABCD 90A ∠=︒6AD AB ==90A ∠=︒ OH OF =∴AHOF O 2OF AF OH ∴===624DF AD AF ∴=-=-=DE O 4DE DF ∴==ABCD 120ABC ∠=︒BD EF 26DG BG ==,BD EH BD ⊥EG EA =ABD △AB BD =BE x =8EG AE x ==-Rt EHB △12BHx =EH x =则, 根据勾股定理列出方程,解方程即可.【详解】解:作于H ,由折叠的性质可知,,由题意得,,四边形是菱形,∴,,∴为等边三角形,∴,设,则,在中,,,∴在中,,即,解得,,∴16. 在数学拓展课上,蔡老师给大家讲了一个有趣定理:若点C ,D 在线段所在直线的两侧,并且,那么A ,B ,C ,D 四个点在同一个圆上.小雅同学在学习了该定理后积极思考:的162GH x =-EH BD ⊥EG EA =8BD DG BG =+=ABCD AB BD =1602ABD CBD ABC ∠=∠=∠=︒ABD △8AB BD ==BE x =8EG AE x ==-Rt EHB △1cos cos 602BH BE ABD x x =⋅∠=⋅︒=sin sin 60EH BE ABD x x =⋅∠=⋅︒=162GH BG BH x =-=-Rt EHG △222EG EH GH =+()2221862x x x ⎫⎛⎫-=+-⎪ ⎪⎪⎝⎭⎭145x =145EH ===AB 180ACB ADB ∠+∠=︒若限定正三角形的顶点都只能在正方形的边上,则她可以很快在边长为2的正方形纸片上剪出一个面积最大的正三角形,请你计算一下小雅剪出的这个正三角形的边长为____.【答案】【解析】【分析】过点G 作于点M ,连结,,先根据蔡老师给的定理证明,E ,M ,G 四个点在同一个圆上,G ,M ,F ,D 四个点在同一个圆上,再利用圆周角定理证明是正三角形,从而得到点M 为一个定点,再根据的位置,得到当经过点C 时,即点F 与点C 重合时,取最大值,的面积也最大,设,利用勾股定理列方程并求解,即得答案.【详解】如图1,为正方形的内接正三角形,,过点G 作于点M ,连结,,四边形是正方形,,根据蔡老师讲的定理可知,,,E ,M ,G 四个点在同一个圆上,,同理G ,M ,F ,D 四个点在同一个圆上,,,,即是正三角形,则点M 必为一个定点,正的面积取决于它的边长,当经过点C 时,即点F 与点C 重合时,取最大值,的面积也最大(如图2),在图2中,在和中,,,,-GM EF ⊥AM DM A ADM △EF EF EF EFG AE AF x ==EFG ABCD 60GEF GFE ∴∠=∠=︒GM EF ⊥AM DM ABCD 90BAD ADC B ∴∠=∠=∠=︒180GAE GME ︒∠+∠=A ∴60GAM GEM ∴∠=∠=︒60GDM GFM ∴∠=∠=︒60GAM GDM AMD ∴∠=∠=∠=︒AM DM AD ∴==ADM △ EFG ∴EF EF EFG Rt BCE Rt DCG △BC DC CE CG =⎧⎨=⎩Rt Rt (HL)BCE DCG ∴△≌△BE DG ∴=,,,,设,则,,,,,解得,(舍去),,.故答案为:.【点睛】本题考查了正方形的性质,等边三角形的判定与性质,圆周角定理,全等三角形的判定与性质,添加辅助线证明四点共圆是解题的关键.三、解答题(本大题共 9小题,满分72分.解答应写出文字说明、证明过程或演算步骤.)17.解方程:.【答案】【解析】【分析】本题考查解分式方程,将分式方程转化整式方程,求解后,进行检验即可.【详解】解:原方程去分母得:,移项,合并同类项得:,经检查:是原方程的解,为AB AD = AE AG ∴=90BAD ∠=︒Q EG ∴=AE AG x ==EG EC ==2BE x =-90B ∠=︒ 222BE BC CE ∴+=222(2)2)x ∴-+=12x =-12x =-2AE ∴=EG ∴==312422x x x +=--5x =-322x x +=-5x =-5x =-故原方程的解为.18.先化简,再求值:,其中.【答案】,【解析】【分析】本题考查了分式的化简求值,熟练掌握知识点和运算法则是解题的关键.先化简括号,再将除法转化为乘法,最后进行加减运算,再将代入求值即可.【详解】解:原式,当时,原式.19. 如图,,是⊙O 的切线,点A ,B 为切点,是⊙O 的直径,,求的度数.【答案】40°【解析】【分析】根据切线长定理,可知,再由是⊙O 的直径可得,求出,是⊙O 的切线,则,再利用三角形内角和可求的度数.5x =-22112111x x x x x x ⎛⎫+÷-+ ⎪--+⎝⎭13x =221x x -34-13x =22221111x x x x x x x x ⎛⎫=÷+ ⎪⎝⎭+--+-2221111x x x x x x =-÷+++-()()211111x x x x x -=⋅++-1111x x =+-+2111x x x ++-=-221x x =-13x =2331419==--PA PB AC 70ACB ∠=︒P ∠PA PB =AC 90ABC ∠=︒20CAB ∠=︒PA 70PAB ∠=︒P ∠【详解】解:∵是⊙O 的直径∴∵∴∵,是切线∴,∴【点睛】本题主要考查切线长定理及三角形内角和定理,掌握切线长定理是解题的关键.20. 如图,把一个转盘分成四等份,依次标上数字1、2、3、4,若连续自由转动转盘二次,指针指向的数字分别记作a ,b (没有指针指向交线的情况发生),把a ,b 作为点A 的横、纵坐标.(1)请你通过列表法或树状图法求点的个数;(2)求点在函数的图象上的概率.【答案】(1)16(2)【解析】【分析】此题考查是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.(1)根据题意采用列表法,即可求得所有点的个数;(2)求得所有符合条件的情况,根据概率公式即可求得答案.【小问1详解】解:列表得:的AC 90ABC ∠=︒70ACB ∠=︒20CAB ∠=︒PA PB PA PB =70PAB PBA ∠=︒=∠180707040P ∠=︒-︒-︒=︒(,)A a b (,)A a b 4y x=316(1,4)(2,4)(3,4)(4,4)(1,3)(2,3)(3,3)(4,3)(1,2)(2,2)(3,2)(4,2)点的个数是16;【小问2详解】解:当点在函数上,则,∴符合条件的点有这3个,∴点在函数的图象上的概率为.21. 如图,在中.(1)利用尺规作图, 在边上求作一点P ,使得点到的距离(的长)等于的长;(要求:不写作法,保留作图痕迹)(2)画出(1)中的线段.若,求的长.【答案】(1)作图见详解(2)作图见详解,【解析】【分析】本题考查了尺规作图,角平分线,垂线,考查了角平分线的性质定理,勾股定理,熟练掌握知识点是解题的关键.(1)由点到的距离的长)等于的长知点在平分线上,再根据角平分线的尺规作图即可得;(2)根据过直线外一点作已知直线的垂线的尺规作图即可得,先对运用勾股定理求得,可得,设,则,在中,由勾股定理得:,解方程即可.【小问1详解】解:如图,点P 即为所求:(1,1)(2,1)(3,1)(4,1)∴(,)A a b (,)A a b 4y x=4ab =()()()1,4,2,2,4,1(,)A a b 4y x=316Rt ABC △BC P AB PD PC PD 5,12AC BC ==PB 263PB =P AB (PD PC P BAC ∠Rt ABC △13AB =Rt Rt APC APD ≌PC PD x ==12BP x =-Rt BDP ()222812x x +=-【小问2详解】解:如图,线段即为所求:在中,由勾股定理得:,由作图知平分,∵,∴,∵,∴,∴,∴,设,则,在中,由勾股定理得:,解得:,∴.22. 某梁平特产专卖店销售“梁平柚”,已知“梁平柚”的进价为每个10元,现在的售价是每个16元,每天可卖出120个.市场调查反映:如调整价格,每涨价1元,每天要少卖出10个;每降价1元,每天可多卖出30个.(1)如果专卖店每天要想获得770元的利润,且要尽可能的让利给顾客,那么售价应涨价多少元?(2)请你帮专卖店老板算一算,如何定价才能使利润最大,并求出此时的最大利润?【答案】(1)1;(2)将单价定为每个19元时,可以获得最大利润810元.PD Rt ABC △13AB ==AP CAB ∠90,C PD AB ∠=︒⊥PC PD =AP AP =Rt Rt APC APD ≌5AC AD ==1358BD =-=PC PD x ==12BP x =-Rt BDP ()222812x x +=-103x =10261233PB =-=【解析】【详解】试题分析:(1)设应涨价x 元,利用每一个的利润×售出的个数=总利润,列出方程解答即可;(2)分两种情况探讨:涨价和降价,列出函数,利用配方法求得最大值,比较得出答案即可.(1)设售价应涨价x 元,则:(16+x-10)(120-10x )=770,解得:x 1=1,x 2=5.又要尽可能的让利给顾客,则涨价应最少,所以x 2=5(舍去).∴x=1.答:专卖店涨价1元时,每天可以获利770元.(2)设单价涨价x 元时,每天的利润为w 1元,则:w 1=(16+x-10)(120-10x )=-10x 2+60x+720=-10(x-3)2+810(0≤x≤12),即定价为:16+3=19(元)时,专卖店可以获得最大利润810元.设单价降价z 元时,每天的利润为w 2元,则:w 2=(16-z-10)(120+30z )=-30z 2+60z+720=-30(z-1)2+750(0≤z≤6),即定价为:16-1=15(元)时,专卖店可以获得最大利润750元.综上所述:专卖店将单价定为每个19元时,可以获得最大利润810元.考点:1.二次函数的应用;2.一元二次方程的应用.23. 已知抛物线,其中.(1)求证:该抛物线与轴有两个不同的交点;(2)设该抛物线与轴的交点分别为,,且,求的值;(3)试判断:无论取任何实数,该抛物线是否经过定点?若是,求出定点坐标;若不是,说明理由.【答案】(1)见解析(2) (3)是过定点,【解析】【分析】此题考查了抛物线的性质,抛物线与x 轴交点,一元二次方程根与系数的关系,(1)令,利用根的判别式证明即可;()21213y mx m x m =+++-0m ≠x x (),0A a (),0B b ()()225a b a b ++=m m 29m =-()1,20y =(2) 由一元二次方程根与系数的关系得到,将其代入化简后的方程求出m 即可;(3) 将代入抛物线解析式,求出,由此得到抛物线过顶点【小问1详解】证明:令,则,,∴该抛物线与轴有两个不同的交点;【小问2详解】∵该抛物线与轴的交点分别为,,∴,∵,∴,∴,∴,解得,经检验,是分式方程的解;【小问3详解】抛物线是过定点,令中,得,∴抛物线过点,即无论取任何实数,该抛物线必经过定点24. 如图1是初中平面几何中非常经典的“半角模型”,即在正方形中,E ,F 分别是,上的点,,, 分别交对角线于P ,Q 两点.我们很容易得到下面三个结论:结论1:1213,m m a b ab m m+-+=-=1x =2y =()1,20y =()212130mx m x m +++-=()()2224214131610b ac m m m m ∆=-=+--=+>x x (),0A a (),0B b 1213,mma b ab m m +-+=-=()()225a b a b ++=222425a ab b ab +++=()225a b ab ++=2121325m mm m +-⎛⎫-+= ⎪⎝⎭29m =-29m =-()21213y mx m x m =+++-1x =12132y m m m =+++-=()1,2m ()1,2ABCD BC CD45EAF ∠=︒AE AF BD BE DF EF +=结论2:结论3:A ,B ,E ,Q 四个点在同一个圆上,A ,P ,F ,D 四个点在同一个圆上(本题若用到以上三个结论,可不用证明)有题目如下:(1)如图1,条件不变.求证:①;②.(2)如图2,在矩形中,E ,F 分别是,上的点,,且.请写出,,三者之间满足的数量关系,并加以证明.【答案】(1)①见解析;②见解析(2);理由见解析【解析】【分析】(1)①连接,证明为等腰直角三角形,得出,证明为等腰直角三角形,得出,证明,得出;②延长,过点A作,交的延长线于点G ,证明,得出,证明,得出,,根据三角形的面积得出得出,根据,,得出,即可证明结论;(2)延长,交于点M ,延长,交于点K ,过点B 作,取,连接,过点G 作于点H ,延长,过点G 作于点N ,根据等腰直角三角形性质证明,,,证明,得出,,求出,222PQ PB DQ =+EF PQ=AE AF BD EF ⋅=⋅ABCD AD CD 45EBF ∠=︒DE DF =CF AE EF ()2222EF AE CF=+PF AEQ △AE AQ=APF AF AP=APQ AFE ∽EF AF PQ AP ==CB AG AF ⊥CB AGB AFD ≌AG AF =GAE FAE ≌△△GE EF =GAE FAE S S = 1122EG AB AF EQ ⨯=⨯EQ AE =AB =1122EF AF AE ⨯=⨯BA FE EF BC BG BF ⊥BG BF =GE GH BM ^DA GN DN ⊥AM AE =CF CK =BM BK =GBH FBC ≌GH CF =BH BC =MH CK CF ==证明,得出,证明四边形为矩形,得出,,根据勾股定理得出,求出结果即可.【小问1详解】证明:①连接,如图所示:∵四边形为正方形,∴,∵A ,B ,E ,Q 四个点在同一个圆上,∵,∴为直径,∴,∵,∴为等腰直角三角形,∴∵A ,P ,F ,D 四个点在同一个圆上,,∴为直径,∴,∵,∴为等腰直角三角形,∴,∴,∵,∴,GBE FBE △≌△GE EF =ANGH GH AN CF ===GN AH 222GE GN AE =+PF ABCD 90ABC C ADC BAD ∠=∠=∠=∠=︒90ABE ∠=︒AE 90AQE ∠=︒45EAF ∠=︒AEQ △AE AQ=90ADF Ð=°AF 90APF ∠=︒45EAF ∠=︒APF AF AP=AF AE AP AQ=PAQ EAF =∠∠APQ AFE ∽∴;②延长,过点A作,交的延长线于点G ,如图所示:∵四边形为正方形,∴,,,∵,∴,∵,∴,∴,∵,∴,∵,∴,∴,,∴,∵为等腰直角三角形,∴,∵,∴,EFAF PQ AP==CB AG AF ⊥CB ABCD 90ABC C ADC BAD ∠=∠=∠=∠=︒AB AD =AB =90GAB BAF BAF FAD +=+=︒∠∠∠∠GAB FAD ∠=∠90ABG ADF ∠=∠=︒AGB AFD ≌AG AF =45GAE GAF EAF =-=︒∠∠∠GAE FAE ∠=∠AE AE =GAE FAE ≌△△GE EF =GAE FAE S S = 1122EG AB AF EQ ⨯=⨯AEQ △EQ AE =AB BD =1122EF AF AE =⨯∴;【小问2详解】解:.理由如下:延长,交于点M ,延长,交于点K ,过点B 作,取,连接,过点G 作于点H ,延长,过点G 作于点N ,如图所示:∵四边形为矩形,∴,∵,∴,∴,,∵,,∴为等腰直角三角形,为等腰直角三角形,为等腰直角三角形,∴,,,∵,∴,∵,,∴,∴,,∴,即,∵,AE AF BD EF ⋅=⋅()2222EF AE CF =+BA FE EF BC BG BF ⊥BG BF =GE GH BM ^DA GN DN ⊥ABCD 90C D ABC BAD ∠=∠=∠=∠=︒DE DF =190452DEF DFE ==⨯︒=︒∠∠45AEM DEF ==︒∠∠45CFK DFE ==︒∠∠1809090EAM =︒-︒=︒∠1809090FCK =︒-︒=︒∠AEM △CFK BMK △AM AE =CF CK =BM BK =90GBH HBF HBF CBF +=+=︒∠∠∠∠GBH CBF ∠=∠90GHB BCF ==︒∠∠BG BF =GBH FBC ≌GH CF =BH BC =BM BH BK BC -=-MH CK CF ==45EBF ∠=︒∴,∴,∵,,∴,∴,∵,∴四边形为矩形,∴,,在中,根据勾股定理得:,∴,即.【点睛】本题主要考查了三角形全等的判定和性质,正方形的性质,矩形的判定和性质,三角形相似的判定和性质,等腰直角是三角形的判定和性质,勾股定理,圆周角定理,解题的关键是作出辅助线,熟练掌握相关的判定和性质.25. 在平面直角坐标系中,已知,,,那么可以得到线段的中点和的重心.根据以上信息解决如下问题:如图所示, 等边的边长为,是的中点,是的重心.顶点在射线(,射线与轴正方向所成夹角为)上,顶点在射线关于轴的对称射线上,顶点在边的上方.904545GBE =︒-︒=︒∠GBE EBF ∠=∠BG BF =BE BE =GBE FBE △≌△GE EF =90ANG NAH GHA ===︒∠∠∠ANGH GH AN CF ===GN AH Rt GEN △222GE GN AE =+()222EF AH AN AE =++()()22AM MH CF AE =-++()()22AE CF CF AE =-++()222AE CF =+()2222EF AE CF =+()11,A x y ()22,B x y ()33,C x y BC 2323,22x x y y M ++⎛⎫ ⎪⎝⎭ABC 123123,33x x x y y y G ++++⎛⎫ ⎪⎝⎭ABC 2M BC G ABCB 1:l y =0y ≥x 60︒C 1l y 2l A BC(1)若设,则求其横纵坐标,满足的等量关系(不用写出,的取值范围).(2)若点B ,C 的横坐标分别为a ,b ;①求出的取值范围;②求点B 从原点开始运动时,当点C 回到原点时,点G 运动路径的长度.【答案】(1) (2)①【解析】【分析】(1)可求,设,,则,由,化简得:,而,化简得;(2)①先求得得到,可得,继而,则,可得;②先得到G 、C 、O、B 四点共圆,则,而,可得到点G 在y 轴上,当点B 在原点时,求得,当点B 运动到轴时,可求.【小问1详解】解:∵,与关于y 轴对称,(),M x y x y x y a b -2293x y +=12a b -≤≤2:l y =()B b (),C c 2b c M ⎛+ ⎝2BC ==()()2234b c b c -++=,2M M b c x y +==2293x y +=0M y ≤≤2293x y y ⎧+=⎪⎨=⎪⎩12x =±214M x ≤234M y ≥M y ≥M y ≤≤≤≤12a b ≤-≤30GCB BOG ∠=∠=︒30BOy ∠=︒OG =BC y ⊥OG '==1:l y =1l 2l∴设上任意一点为,则在上,设,代入,解得:∴,设,,则,∵,化简得:,而,∴代入得:,∴,即:.【小问2详解】解:由,得,∴联立,解得:,∴,∴,而,1l ()m ()m -2l ()2:0l y kx k =≠()m -km =-k =2:l y =()B b (),C c 2b c M ⎛+ ⎝2BC ==()()2234b c b c -++=,2M M b c x y +==2241243M M x y +=2293M M x y +=2293x y +=2293M M x y +=22930M M x y =-≥0M y ≤≤2293x y y ⎧+=⎪⎨=⎪⎩12x =±1122M x -≤≤214M x ≤2239M M y x =-∴,∴,,∵∴,∴,即;②∵为等边三角形,∴,∵点G 是等边重心,∴点G 也是等边外心,∴,,∴,∵,∴,∴,∴,∴G 、C 、O 、B 四点共圆,∴,而,∴点G 在y 轴上,当点B 在原点时,如图:234M y ≥M y ≥M y ≤≤≤≤0,0a b ≥≤a b a b -=-12a b ≤-≤12a b ≤-≤ABC 60BAC ∠=︒ABC ABC 2120BGC BAC ∠=∠=︒GC GB =180120302GBC GCB ︒-︒∠=∠==︒60BOx ∠=︒30BOy ∠=︒60COB ∠=︒180BGC BOC ∠+∠=︒30GCB BOG ∠=∠=︒30BOy ∠=︒过点G 作,由得:,∴当点B 运动到轴时,如图:此时,∵在点B 运动中,长度不变,则,∴∴当点C 回到点O.【点睛】本题考查了等边三角形的性质,已知两点求距离,待定系数法求正比例函数解析式,四点共圆,圆周角定理,解直角三角形的相关计算,正确添加辅助线,准确理解题意是解题的关键.GM OC ⊥GC GB=1BM =cos30BM OG ==︒BC y ⊥306090OBG '∠=︒+︒=︒BG BG BG '==sin 30BG OG ''==︒=。

2024年广东省广州市越秀区中考数学二模试卷+答案解析

2024年广东省广州市越秀区中考数学二模试卷+答案解析

2024年广东省广州市越秀区中考数学二模试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.当前,手机移动支付已成为当下流行的消费支付方式.如果在微信零钱记录中,收入100元,记作元,那么支出50元应记作为()A.元B.元C.元D.元2.剪纸是中国的传统艺术.下列剪纸图案既是轴对称图形,又是中心对称图形的是()A. B. C. D.3.下列运算正确的是()A. B. C. D.4.如图是某一物体的三视图,则此三视图对应的物体是()A.B.C.D.5.若点在平面直角坐标系的第三象限内,则x的取值范围在数轴上可表示为()A.B.C.D.6.如图,将沿BC方向平移到,若A,D之间的距离为2,,则BF等于()A.6B.7C.8D.97.若关于x的一元二次方程有两个不相等的实数根,则实数m的值可以是()A.5B.4C.3D.28.正方形网格中,如图放置,则的值为()A.B.C.D.29.已知二次函数为常数,且的图象上有四点,,,,则,,的大小关系是()A. B. C. D.10.如图,在正方形ABCD中,E是边BC上一点,F是CD延长线上一点,连接EF交对角线BD于点G,连接AG,若,,则()A.B.C.D.二、填空题:本题共6小题,每小题3分,共18分。

11.“白日不到处,青春恰自来,苔花如米小,也学牡丹开”.这是一首用苔藓比喻人生的励志小诗.目前在全世界约有23000种苔藓植物.将数据23000用科学记数法表示为______.12.分解因式:______.13.如图,圆锥的母线长为10cm,高为8cm,则该圆锥的侧面展开图扇形的弧长为______结果用表示14.如图,一束光线从点出发,经过y轴上的点反射后经过点,则的值是______.15.如图,在平面直角坐标系中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且位似比为点A、B、E在x轴上,若正方形BEFG的边长为6,则C点坐标为______.16.如图,是的外接圆,,于点D,BO的延长线交CD于点______填“>,<或=”;若,,则______.三、解答题:本题共9小题,共72分。

2024届广东省广州市越秀区知用中学中考二模数学试题含解析

2024届广东省广州市越秀区知用中学中考二模数学试题含解析

2024届广东省广州市越秀区知用中学中考二模数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是()A.x>﹣2 B.x>0 C.x>1 D.x<12.如图,已知A、B两点的坐标分别为(-2,0)、(0,1),⊙C 的圆心坐标为(0,-1),半径为1.若D是⊙C上的一个动点,射线AD与y轴交于点E,则△ABE面积的最大值是A.3 B.113C.103D.43.在平面直角坐标系内,点P(a,a+3)的位置一定不在()A.第一象限B.第二象限C.第三象限D.第四象限4.如图,在平面直角坐标系中,△ABC与△A1B1C1是以点P为位似中心的位似图形,且顶点都在格点上,则点P的坐标为()A.(﹣4,﹣3)B.(﹣3,﹣4)C.(﹣3,﹣3)D.(﹣4,﹣4)5.把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为m,n,则二次函数的图象与x轴有两个不同交点的概率是().A.B.C.D.6.如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上,若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为()A.4.5cm B.5.5cm C.6.5cm D.7cm7.关于x的不等式组312(1)x mx x-<⎧⎨->-⎩无解,那么m的取值范围为( )A.m≤-1 B.m<-1 C.-1<m≤0D.-1≤m<0 8.关于2、6、1、10、6的这组数据,下列说法正确的是()A.这组数据的众数是6 B.这组数据的中位数是1C.这组数据的平均数是6 D.这组数据的方差是109.点A(a,3)与点B(4,b)关于y轴对称,则(a+b)2017的值为()A.0 B.﹣1 C.1 D.72017 10.3--的倒数是()A.13-B.-3 C.3 D.1311.如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且BD=BA,则tan∠DAC的值为()A.2+3B.23C.3+3D.3312.2017年北京市在经济发展、社会进步、城市建设、民生改善等方面取得新成绩、新面貌.综合实力稳步提升.全市地区生产总值达到280000亿元,将280000用科学记数法表示为()A.280×103B.28×104C.2.8×105D.0.28×106二、填空题:(本大题共6个小题,每小题4分,共24分.)13.16的算术平方根是.14.如图,将一对直角三角形卡片的斜边AC重合摆放,直角顶点B,D在AC的两侧,连接BD,交AC于点O,取AC,BD的中点E,F,连接EF.若AB=12,BC=5,且AD=CD,则EF的长为_____.15.每一层三角形的个数与层数的关系如图所示,则第2019层的三角形个数为_____.16.已知:如图,AB为⊙O的直径,点C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45º.则图中阴影部分的面积是____________.17.如果点A(-1,4)、B(m,4)在抛物线y=a(x-1)2+h上,那么m的值为_____.18.如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿x轴翻折,再向左平移1个单位”为一次变换,如果这样连续经过2018次变换后,等边△ABC的顶点C的坐标为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,AB∥CD,△EFG的顶点F,G分别落在直线AB,CD上,GE交AB于点H,GE平分∠FGD.若∠EFG=90°,∠E=35°,求∠EFB的度数.20.(6分)某高中进行“选科走班”教学改革,语文、数学、英语三门为必修学科,另外还需从物理、化学、生物、政治、历史、地理(分别记为A、B、C、D、E、F)六门选修学科中任选三门,现对该校某班选科情况进行调查,对调查结果进行了分析统计,并制作了两幅不完整的统计图.请根据以上信息,完成下列问题:该班共有学生人;请将条形统计图补充完整;该班某同学物理成绩特别优异,已经从选修学科中选定物理,还需从余下选修学科中任意选择两门,请用列表或画树状图的方法,求出该同学恰好选中化学、历史两科的概率.21.(6分)把0,1,2三个数字分别写在三张完全相同的不透明卡片的正面上,把这三张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记录下数字.放回后洗匀,再从中抽取一张卡片,记录下数字.请用列表法或树状图法求两次抽取的卡片上的数字都是偶数的概率.22.(8分)如图,一次函数y1=kx+b的图象与反比例函数y2=mx的图象交于A(2,3),B(6,n)两点.分别求出一次函数与反比例函数的解析式;求△OAB的面积.23.(8分)某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少元?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?24.(10分)如图,在平面直角坐标系中,直线y1=2x﹣2与双曲线y2=kx交于A、C两点,AB⊥OA交x轴于点B,且OA=AB.求双曲线的解析式;求点C的坐标,并直接写出y1<y2时x的取值范围.25.(10分)列方程解应用题:某景区一景点要限期完成,甲工程队单独做可提前一天完成,乙工程队独做要误期6天,现由两工程队合做4天后,余下的由乙工程队独做,正好如期完成,则工程期限为多少天?26.(12分)如图,正六边形ABCDEF在正三角形网格内,点O为正六边形的中心,仅用无刻度的直尺完成以下作图.(1)在图1中,过点O作AC的平行线;(2)在图2中,过点E作AC的平行线.27.(12分)如图,在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为A(1,1),B(4,0),C(4,4).按下列要求作图:①将△ABC向左平移4个单位,得到△A1B1C1;②将△A1B1C1绕点B1逆时针旋转90°,得到△A1B1C1.求点C1在旋转过程中所经过的路径长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解题分析】试题分析:当x>1时,x+b>kx+4,即不等式x+b>kx+4的解集为x>1.故选C.考点:一次函数与一元一次不等式.2、B【解题分析】试题分析:解:当射线AD与⊙C相切时,△ABE面积的最大.连接AC,∵∠AOC=∠ADC=90°,AC=AC,OC=CD,∴Rt△AOC≌Rt△ADC,∴AD=AO=2,连接CD,设EF=x,∴DE2=EF•OE,∵CF=1,∴DE=,∴△CDE∽△AOE,∴=,即=,解得x=,S△ABE===.故选B.考点:1.切线的性质;2.三角形的面积.3、D【解题分析】判断出P的横纵坐标的符号,即可判断出点P所在的相应象限.【题目详解】当a为正数的时候,a+3一定为正数,所以点P可能在第一象限,一定不在第四象限, 当a为负数的时候,a+3可能为正数,也可能为负数,所以点P可能在第二象限,也可能在第三象限,故选D.【题目点拨】本题考查了点的坐标的知识点,解题的关键是由a的取值判断出相应的象限.4、A【解题分析】延长A1A、B1B和C1C,从而得到P点位置,从而可得到P点坐标.【题目详解】如图,点P的坐标为(-4,-3).故选A.【题目点拨】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.5、C【解题分析】分析:本题可先列出出现的点数的情况,因为二次图象开口向上,要使图象与x轴有两个不同的交点,则最低点要小于0,即4n-m2<0,再把m、n的值一一代入检验,看是否满足.最后把满足的个数除以掷骰子可能出现的点数的总个数即可.解答:解:掷骰子有6×6=36种情况.根据题意有:4n-m 2<0,因此满足的点有:n=1,m=3,4,5,6,n=2,m=3,4,5,6,n=3,m=4,5,6,n=4,m=5,6,n=5,m=5,6,n=6,m=5,6,共有17种,故概率为:17÷36=.故选C .点评:本题考查的是概率的公式和二次函数的图象问题.要注意画出图形再进行判断,找出满足条件的点. 6、A【解题分析】试题分析:利用轴对称图形的性质得出PM=MQ ,PN=NR ,进而利用PM=2.5cm ,PN=3cm ,MN=3cm ,得出NQ=MN-MQ=3-2.5=2.5(cm ),即可得出QR 的长RN+NQ=3+2.5=3.5(cm ).故选A .考点:轴对称图形的性质7、A【解题分析】【分析】先求出每一个不等式的解集,然后再根据不等式组无解得到有关m 的不等式,就可以求出m 的取值范围了.【题目详解】()03121x m x x -<⎧⎪⎨->-⎪⎩①②, 解不等式①得:x<m ,解不等式②得:x>-1,由于原不等式组无解,所以m≤-1,故选A.【题目点拨】本题考查了一元一次不等式组无解问题,熟知一元一次不等式组解集的确定方法“大大取大,小小取小,大小小大中间找,大大小小无处找”是解题的关键.8、A【解题分析】根据方差、算术平均数、中位数、众数的概念进行分析.【题目详解】数据由小到大排列为1,2,6,6,10, 它的平均数为15(1+2+6+6+10)=5, 数据的中位数为6,众数为6,数据的方差=15 [(1﹣5)2+(2﹣5)2+(6﹣5)2+(6﹣5)2+(10﹣5)2]=10.1. 故选A .考点:方差;算术平均数;中位数;众数.9、B【解题分析】根据关于y 轴对称的点的纵坐标相等,横坐标互为相反数,可得答案.【题目详解】解:由题意,得a=-4,b=1.(a+b )2017=(-1)2017=-1,故选B .【题目点拨】本题考查了关于y 轴对称的点的坐标,利用关于y 轴对称的点的纵坐标相等,横坐标互为相反数得出a ,b 是解题关键. 10、A【解题分析】 先求出33--=-,再求倒数.【题目详解】 因为33--=- 所以3--的倒数是13-故选A【题目点拨】考核知识点:绝对值,相反数,倒数.11、A【解题分析】设AC =a ,由特殊角的三角函数值分别表示出BC 、AB 的长度,进而得出BD 、CD 的长度,由公式求出tan ∠DAC 的值即可. 【题目详解】设AC =a ,则BC =30AC tan ︒,AB =30ACsin ︒=2a ,∴BD =BA =2a ,∴CD =(a ,∴tan ∠DAC . 故选A. 【题目点拨】本题主要考查特殊角的三角函数值. 12、C 【解题分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【题目详解】将280000用科学记数法表示为2.8×1.故选C . 【题目点拨】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13、4 【解题分析】正数的正的平方根叫算术平方根,0的算术平方根还是0;负数没有平方根也没有算术平方根 ∵2(4)16±= ∴16的平方根为4和-4 ∴16的算术平方根为414. 【解题分析】先求出BE 的值,作DM ⊥AB ,DN ⊥BC 延长线,先证明△ADM ≌△CDN (AAS ),得出AM=CN ,DM=DN ,再根据正方形的性质得BM=BN ,设AM=CN=x ,BM=AB-AM=12-x=BN=5+x ,求出x=72,BN=172,根据BD 为正方形的对角线可得出BD=1722, BF=12BD=1742, EF=22BE BF -=742.【题目详解】∵∠ABC=∠ADC , ∴A,B,C,D 四点共圆, ∴AC 为直径, ∵E 为AC 的中点, ∴E 为此圆圆心, ∵F 为弦BD 中点, ∴EF ⊥BD , 连接BE ,∴BE=12AC=1222AB BC +=1222512+=132; 作DM ⊥AB ,DN ⊥BC 延长线,∠BAD=∠BCN, 在△ADM 和△CDN 中,AD DN BAD NCD AMD CND =⎧⎪∠=∠⎨⎪∠=∠⎩, ∴△ADM ≌△CDN (AAS ), ∴AM=CN ,DM=DN , ∵∠DMB=∠DNC=∠ABC=90°, ∴四边形BNDM 为矩形, 又∵DM=DN,∴矩形BNDM 为正方形, ∴BM=BN ,设AM=CN=x ,BM=AB-AM=12-x=BN=5+x , ∴12-x=5+x ,x=72,BN=172, ∵BD 为正方形BNDM 的对角线,∴BN=172,BF=12BD=174,∴74.故答案为74.【题目点拨】本题考查了正方形的性质与全等三角形的性质,解题的关键是熟练的掌握正方形与全等三角形的性质与应用. 15、2. 【解题分析】设第n 层有a n 个三角形(n 为正整数),根据前几层三角形个数的变化,即可得出变化规律“a n =2n ﹣2”,再代入n =2029即可求出结论. 【题目详解】设第n 层有a n 个三角形(n 为正整数),∵a 2=2,a 2=2+2=3,a 3=2×2+2=5,a 4=2×3+2=7,…, ∴a n =2(n ﹣2)+2=2n ﹣2.∴当n =2029时,a 2029=2×2029﹣2=2. 故答案为2. 【题目点拨】本题考查了规律型:图形的变化类,根据图形中三角形个数的变化找出变化规律“a n =2n ﹣2”是解题的关键. 16、(254π-252)cm 2 【解题分析】S阴影=S扇形-S △OBD =90360π 52-12×5×5=225504cm π-. 故答案是:225504cm π-. 17、1【解题分析】根据函数值相等两点关于对称轴对称,可得答案.【题目详解】由点A(﹣1,4)、B(m,4)在抛物线y=a(x﹣1)2+h上,得:(﹣1,4)与(m,4)关于对称轴x=1对称,m﹣1=1﹣(﹣1),解得:m=1.故答案为:1.【题目点拨】本题考查了二次函数图象上点的坐标特征,利用函数值相等两点关于对称轴对称得出m﹣1=1﹣(﹣1)是解题的关键.18、(﹣2016+1)【解题分析】据轴对称判断出点C变换后在x轴上方,然后求出点C纵坐标,再根据平移的距离求出点A变换后的横坐标,最后写出即可.【题目详解】解:∵△ABC是等边三角形AB=3﹣1=2,∴点C到x轴的距离为,横坐标为2,∴C(2+1),第2018次变换后的三角形在x轴上方,点C,横坐标为2﹣2018×1=﹣2016,所以,点C的对应点C′的坐标是(﹣2016)故答案为:(﹣2016)【题目点拨】本题考查坐标与图形变化,平移和轴对称变换,等边三角形的性质,读懂题目信息,确定出连续2018次这样的变换得到三角形在x轴上方是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、20°【解题分析】依据三角形内角和定理可得∠FGH=55°,再根据GE平分∠FGD,AB∥CD,即可得到∠FHG=∠HGD=∠FGH=55°,再根据∠FHG是△EFH的外角,即可得出∠EFB=55°-35°=20°.【题目详解】∵∠EFG=90°,∠E=35°,∴∠FGH=55°,∵GE平分∠FGD,AB∥CD,∴∠FHG=∠HGD=∠FGH=55°,∵∠FHG是△EFH的外角,∴∠EFB=55°﹣35°=20°.【题目点拨】本题考查了平行线的性质,两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.20、(1)50人;(2)补图见解析;(3)1 10.【解题分析】分析:(1)根据化学学科人数及其所占百分比可得总人数;(2)根据各学科人数之和等于总人数求得历史的人数即可;(3)列表得出所有等可能结果,从中找到恰好选中化学、历史两科的结果数,再利用概率公式计算可得.详解:(1)该班学生总数为10÷20%=50人;(2)历史学科的人数为50﹣(5+10+15+6+6)=8人,补全图形如下:(3)列表如下:化学生物政治历史地理化学生物、化学政治、化学历史、化学地理、化学生物化学、生物政治、生物历史、生物地理、生物政治化学、政治生物、政治历史、政治地理、政治历史化学、历史生物、历史政治、历史地理、历史地理化学、地理生物、地理政治、地理历史、地理由表可知,共有20种等可能结果,其中该同学恰好选中化学、历史两科的有2种结果,所以该同学恰好选中化学、历史两科的概率为21= 2010.点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B 的结果数目m,然后利用概率公式求事件A或B的概率.21、见解析,4 9 .【解题分析】画树状图展示所有9种等可能的结果数,找出两次抽取的卡片上的数字都是偶数的结果数,然后根据概率公式求解.【题目详解】解:画树状图为:共有9种等可能的结果数,其中两次抽取的卡片上的数字都是偶数的结果数为4,所以两次抽取的卡片上的数字都是偶数的概率=49.【题目点拨】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.22、(1) 反比例函数的解析式为y=6x,一次函数的解析式为y=﹣12x+1.(2)2.【解题分析】(1)根据反比例函数y2=mx的图象过点A(2,3),利用待定系数法求出m,进而得出B点坐标,然后利用待定系数法求出一次函数解析式;(2)设直线y1=kx+b与x轴交于C,求出C点坐标,根据S△AOB=S△AOC﹣S△BOC,列式计算即可.【题目详解】(1)∵反比例函数y2=mx的图象过A(2,3),B(6,n)两点,∴m=2×3=6n,∴m=6,n=1,∴反比例函数的解析式为y=6x,B的坐标是(6,1).把A(2,3)、B(6,1)代入y1=kx+b,得:2361k bk b+=⎧⎨+=⎩,解得:124kb⎧=-⎪⎨⎪=⎩,∴一次函数的解析式为y=﹣12x+1.(2)如图,设直线y=﹣12x+1与x轴交于C,则C(2,0).S△AOB=S△AOC﹣S△BOC=12×2×3﹣12×2×1=12﹣1=2.【题目点拨】本题考查了待定系数法求反比例函数、一次函数解析式以及求三角形面积等知识,根据已知得出B点坐标以及得出S△AOB=S△AOC﹣S△BOC是解题的关键.23、(1)y=﹣30x+1;(2)每件售价定为55元时,每星期的销售利润最大,最大利润2元;(3)该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件.【解题分析】(1) 每星期的销售量等于原来的销售量加上因降价而多销售的销售量, 代入即可求解函数关系式;(2) 根据利润=销售量⨯(销售单价-成本) , 建立二次函数, 用配方法求得最大值.(3) 根据题意可列不等式, 再取等将其转化为一元二次方程并求解, 根据每星期的销售利润所在抛物线开口向下求出满足条件的x的取值范围, 再根据(1) 中一元一次方程求得满足条件的x的取值范围内y的最小值即可.【题目详解】(1)y=300+30(60﹣x)=﹣30x+1.(2)设每星期利润为W元,W=(x﹣40)(﹣30x+1)=﹣30(x﹣55)2+2.∴x=55时,W最大值=2.∴每件售价定为55元时,每星期的销售利润最大,最大利润2元.(3)由题意(x﹣40)(﹣30x+1)≥6480,解得52≤x≤58,当x=52时,销售300+30×8=540,当x=58时,销售300+30×2=360,∴该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件.【题目点拨】本题主要考查一次函数的应用和二次函数的应用,注意综合运用所学知识解题.24、(1)24yx=;(1)C(﹣1,﹣4),x的取值范围是x<﹣1或0<x<1.【解题分析】【分析】(1)作高线AC,根据等腰直角三角形的性质和点A的坐标的特点得:x=1x﹣1,可得A的坐标,从而得双曲线的解析式;(1)联立一次函数和反比例函数解析式得方程组,解方程组可得点C的坐标,根据图象可得结论.【题目详解】(1)∵点A在直线y1=1x﹣1上,∴设A(x,1x﹣1),过A作AC⊥OB于C,∵AB⊥OA,且OA=AB,∴OC=BC,∴AC=12OB=OC,∴x=1x﹣1,x=1,∴A(1,1),∴k=1×1=4,∴24yx=;(1)∵224y xyx=-⎧⎪⎨=⎪⎩,解得:1122xy=⎧⎨=⎩,2214xy=-⎧⎨=-⎩,∴C(﹣1,﹣4),由图象得:y1<y1时x的取值范围是x<﹣1或0<x<1.【题目点拨】本题考查了反比例函数和一次函数的综合;熟练掌握通过求点的坐标进一步求函数解析式的方法;通过观察图象,从交点看起,函数图象在上方的函数值大.25、15天【解题分析】试题分析:首先设规定的工期是x天,则甲工程队单独做需(x-1)天,乙工程队单独做需(x+6)天,根据题意可得等量关系:乙工程队干x天的工作量+甲工程队干4天的工作量=1,根据等量关系列出方程,解方程即可.试题解析:设工程期限为x天.根据题意得,x41 x6x-1+= +解得:x=15.经检验x=15是原分式方程的解.答:工程期限为15天.26、(1)作图见解析;(2)作图见解析.【解题分析】试题分析:利用正六边形的特性作图即可.试题解析:(1)如图所示(答案不唯一):(2)如图所示(答案不唯一):27、(1)①见解析;②见解析;(1)1π.【解题分析】(1)①利用点平移的坐标规律,分别画出点A、B、C的对应点A1、B1、C1的坐标,然后描点可得△A1B1C1;②利用网格特点和旋转的性质,分别画出点A1、B1、C1的对应点A1、B1、C1即可;(1)根据弧长公式计算.【题目详解】(1)①如图,△A1B1C1为所作;②如图,△A1B1C1为所作;(1)点C1在旋转过程中所经过的路径长=9042 180ππ⨯=【题目点拨】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移的性质.。

广东省广州市2024届普通高中毕业班综合测试(二)广州二模数学试卷

广东省广州市2024届普通高中毕业班综合测试(二)广州二模数学试卷

【新结构】(广州二模)2024年广州市普通高中毕业班综合测试(二)数学试卷一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1.已知集合{}{}0,2,4,12A B x x ==∈-≥Z ,则()A B ⋂=Zð()A.{}2 B.{}0,2 C.{}0,1,2 D.{}0,1,2,4【答案】B 【解析】【分析】求出B 中不等式的解集,找出解集中的整数解,确定出B Z ð即可得出答案.【详解】由12x -≥解得,1x ≤-或3x ≥,即{}13B x x x =∈≤-≥Z 或,{}{}130,1,2B x x =∈-<<=Z Z ð{}0,2,4A = ,(){}0,2A B ∴=Z ð.故选:B .2.已知一批沙糖桔的果实横径(单位:mm )服从正态分布()245,5N ,其中果实横径落在[]40,55的沙糖桔为优质品,则这批沙糖桔的优质品率约为()(若()2,X N μσ~,则()0.6827P X μσμσ-≤≤+≈,()220.9545P X μσμσ-≤≤+≈)A.0.6827B.0.8186C.0.8413D.0.9545【答案】B 【解析】【分析】根据正态分布三段区间的概率值以及正态分布的性质求解即可.【详解】因为所种植沙糖桔的果实横径(单位:mm )服从正态分布()245,5N ,其中45,5μσ==,所以果实横径在[]40,55的概率为()2P X μσμσ-≤≤+()()112222P X P X μσμσμσμσ=-≤≤++-≤≤+0.477250.341350.8186≈+=.故选:B .3.某学校安排4位教师在星期一至星期五值班,每天只安排1位教师,每位教师至少值班1天,至多值班2天且这2天相连,则不同的安排方法共有()A.24种 B.48种C.60种D.96种【答案】D 【解析】【分析】由2天相连的情况有4种,利用排列数即可求解.【详解】由题意,从星期一至星期五值,2天相连的情况有4种,则不同的安排方法共有444A 96=种.故选:D4.某次考试后,甲、乙、丙、丁四位同学讨论其中一道考题,各自陈述如下,甲说:我做错了;乙说:甲做对了;丙说:我做错了;丁说:我和乙中有人做对.已知四人中只有一位同学的解答是正确的,且只有一位同学的陈述是正确的,则解正确的同学是()A.甲 B.乙C.丙D.丁【答案】C 【解析】【分析】分别假设甲、乙、丙、丁做对,结合题意分析推理,利用矛盾律得出结论.【详解】若甲做对了,则甲说错了,乙说对,丙也说对了,2人说对了,不满足条件;若乙做对了,则甲说对了,乙说错误,丙也说对了,2人说对了,不满足条件;若丙做对了,则甲说对了,乙说错了,丙也说错了,其中只有甲1人说对了,满足条件;若丁做对了,则丁、甲、丙都说对了,不满足条件;故做对的是丙,说对的是甲.故选:C.5.已知,,αβγ是三个不重合的平面,且,l m αγβγ== ,则下列命题正确的是()A.若,αγβγ⊥⊥,则lm B.若l m ,则αβ∥C.若,αβγβ⊥⊥,则l m ⊥ D.若l m ⊥,则αβ⊥【答案】C 【解析】【分析】根据空间中线面位置关系的性质定理和判定定理可判断各选项的正误.【详解】若,αγβγ⊥⊥,则l m 或l 与m 相交,故A 错误;若lm ,则αβ∥或α与β相交,故B 错误;若,αβγβ⊥⊥,则l m ⊥,故C 正确;若l m ⊥,则α与β相交,不一定是垂直,故D 错误.故选:C .6.若0x 是方程()()()()f g x g f x =的实数解,则称0x 是函数()y f x =与()y g x =的“复合稳定点”.若函数()(0xf x a a =>且1)a ≠与()22g x x =-有且仅有两个不同的“复合稳定点”,则a 的取值范围为()A.0,2⎛⎫⎪ ⎪⎝⎭B.2,12⎛⎫⎪⎪⎝⎭C.(D.)+∞【答案】D 【解析】【分析】2222x x a a -=-即()222220xx a a a a -+=有两个不同实根,令x t a =,则222220t a t a -+=在()0,∞+上有两个不同实根,利用二次方程根的分布即可.【详解】()(0xf x a a => 且1)a ≠与()22g x x =-有且仅有两个不同的“复合稳定点”,2222x x a a -∴=-,即()222220x x a a a a -+=有两个不同实根,令x t a =,则222220t a t a -+=在()0,∞+上有两个不同实根,()22222Δ280220a a a a a ⎧=->⎪∴⇒>⇒>⎨>⎪⎩则a的取值范围为)∞+.故选:D .7.已知函数π())(0,||2f x x ωϕωϕ=+><的部分图象如图所示,若将函数()f x 的图象向右平移(0)θθ>个单位后所得曲线关于y 轴对称,则θ的最小值为()A.π8B.π4C.3π8D.π2【答案】A 【解析】【分析】根据给定的图象特征,结合五点法作图列式求出ω和ϕ,再根据图象的平移变换,以及图象的对称性即可得解.【详解】由π()14f =,得π2sin()42ωϕ+=,又点π(,1)4及附近点从左到右是上升的,则ππ2π,Z 44k k ωϕ+=+∈,由5π(08f =,点5π(,0)8及附近点从左到右是下降的,且上升、下降的两段图象相邻,得5ππ2π,Z 8k k ωϕ+=+∈,联立解得2ω=,π2π,Z 4k k ϕ=-+∈,而π||2ϕ<,于是π4ϕ=-,π()2sin(2)4f x x =-,若将函数()f x 的图像向右平移(0)θθ>个单位后,得到πsin(22)4y x θ=--,则ππ2π,Z 42k k θ--=-∈,而0θ>,因此3ππ,N 82k k θ=-+∈,所以当1k =时,θ取得最小值为π8.故选:A8.已知函数()f x 的定义域为R ,且()()()()11,02f x f x f x f ++-==,则()()2024f f +=()A.1B.2C.3D.4【答案】A 【解析】【分析】根据题意分析可知()f x 为偶函数,结合偶函数可得()()210f x f x ++-=,进而可知6为()f x 的周期,赋值可知()21f =-,结合周期性运算求解.【详解】由题意可知:函数()f x 的定义域为R ,因为()()()11f x f x f x ++-=,则()()()11f x f x f x -++=-,可得()()=f x f x -,所以()f x 为偶函数,由()()()11f x f x f x ++-=可得()()()21f x f x f x ++-=+,即()()()21f x f x f x ++=+,整理得()()210f x f x ++-=,可得()()()()330f x f x f x f x ++-=++=,则()()630f x f x +++=,可得()()6f x f x +=,所以6为()f x 的周期,由()()()()11,02f x f x f x f ++-==,令0x =,可得()()()1201f f f +==,可得()11f =;令1x =,可得()()()2011f f f +==,可得()21f =-;所以()()()()202420121f f f f +=+=-+=.故选:A .【点睛】方法点睛:函数的性质主要是函数的奇偶性、单调性和周期性以及函数图象的对称性,在解题中根据问题的条件通过变换函数的解析式或者已知的函数关系,推证函数的性质,根据函数的性质解决问题.二、多选题:本题共3小题,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得2分,有选错的得0分.9.已知函数()1ln 1x f x x x +=--,则()A.()f x 的定义域为()0,∞+B.()f x 的图像在()()22f ,处的切线斜率为52C.()01f f x x ⎛⎫+⎪⎝⎭= D.()f x 有两个零点12,x x ,且121=x x 【答案】BCD 【解析】【分析】根据题意直接求出x 的范围即可判断A ;求出导函数,进而求得()2f '即可判断B ;求得1f x ⎛⎫ ⎪⎝⎭即可判断C ;易知()f x 的单调性,结合零点存在定理及C 即可判断D .。

2024年广东省广州市白云区初三二模数学试题含答案解析

2024年广东省广州市白云区中考二模数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列各数中,是无理数的是()A 2B .0C .2-D .14【答案】A【分析】本题考查无理数,根据无限不循环小数是无理数,进行判断即可.【详解】解:A 、2是无理数,符合题意;B 、0是有理数,不是无理数,不符合题意;C 、2-是有理数,不是无理数,不符合题意;D 、14是有理数,不是无理数,不符合题意;故选A .21x-x 应满足的条件是()A .1x ≥B .1x >-C .1x <D .1x ≤-【答案】C【分析】本题考查代数式有意义的条件,根据分式的分母不为0,被开方数为非负数,进行求解即可.【详解】解:由题意,得:10x ->,∴1x <;故选C .3.下列几何体中,其侧面展开图是扇形的是()A .B .C .D .【答案】B【分析】本题考查几何体的展开图,根据圆锥的侧面展开图是扇形,即可得出结果.【详解】解:在圆柱体,圆锥,三棱锥,长方体中,只有圆锥的侧面展开图是扇形;故选:B .4.下列运算正确的是()A .321--=-B .()3131x x -=-C .()224ab ab -=D .()()22a b a b a b+-=-【答案】D【分析】根据有理数的减法运算,单项式乘以多项式,积的乘方,平方差公式对各选项进行判断作答即可.【详解】A 中3251--=-≠-,故不符合要求;B 中()313331x x x =--≠-,故不符合要求;C 中()22244ab a b ab -=≠,故不符合要求;D 中()()22a b a b a b +-=-,故符合要求;故选:D .【点睛】本题考查了有理数的减法运算,单项式乘以多项式,积的乘方,平方差公式等知识.熟练掌握有理数的减法运算,单项式乘以多项式,积的乘方,平方差公式是解题的关键.5.已知关于x 的方程.20x x a -+=的一个根为2,则另一个根是()A .3-B .2-C .1-D .2【答案】C6.长方形ABCD 的三个顶点的坐标是()1,1A 、()3,1B 、()3,5C ,那么D 点坐标是()A .()1,3B .()1,5C .()5,3D .()5,1【答案】B【分析】根据长方形的性质求出点D 的横坐标和纵坐标即可.本题考查了平面直角坐标系中的坐标、长方形的性质.【详解】解:∵长方形ABCD 的三个顶点的坐标是()1,1A 、()3,1B 、()3,5C ,∴点D 的横坐标与点A 的横坐标相同,点D 的纵坐标与点C 的纵坐标相同,∴点D 的横坐标为1,纵坐标为5,∴点D 的坐标为()1,5,故选B .7.某校举办文艺汇演,在主持人选拔环节中,有一名男同学和三名女同学表现优异.若从以上四名同学中随机抽取两名同学担任主持人,则刚好抽中一名男同学和一名女同学的概率是()A .12B .13C .14D .168.甲、乙两人相距50千米,若同向而行,乙10小时追上甲;若相向而行,2小时两人相遇.设甲、乙两人每小时分别走x 、y 千米,则可列出方程组()A .101050{2250x y x y -=+=B .101050{2250x y x y +=+=C .101050{2250y x x y -=+=D .101050{2250x y x y -=-=【答案】C【详解】设甲、乙两人每小时分别走x 千米、y 千米,根据题意得:101050{2250y x x y -=+=故选C9.如图,AB 是O 的弦,CD 是O 的直径,CD AB ⊥于点E .在下列结论中,不一定成立的是()A .AE BE =B .90CBD ∠=︒C .2COBD ∠=∠D .COB C∠=∠【答案】D【分析】此题考查了圆周角定理、垂径定理,熟练掌握圆周角定理、垂径定理是解题的关键.根据垂径定理、圆周角定理判断求解即可.【详解】解:CD 是O 的直径,CD AB ⊥,AE BE ∴=,90CBD ∠=︒,2COB D ∠=∠,CBO C ∠=∠,故A、B、C不符合题意,D符合题意;故选:D.10.定义新运算:()()a aba bb aa⎧≥⎪⎪⊗=⎨⎪<⎪⎩例如1113,2132⊗=-⊗=-,则2y x=⊗的大致图象是()A .B.C.D.二、填空题11.因式分解:23a-2a=.【答案】2a(a+1)(a-1)【分析】先提取公因式2a,再对余下的多项式利用平方差公式继续分解即可得到答案.【详解】解:322a a-()221a a=-()()211a a a =-+故答案为:()()211a a a -+.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先应该提公因式,然后再用其他方法进行因式分解,同时切记因式分解一定要彻底.12.甲、乙两人在100米短跑训练中,记录了5次测试的成绩:两人的平均成绩相等,甲的方差是0.14,乙的方差是0.06,这5次短跑测试的成绩较稳定的是.(填“甲”或“乙”)【答案】乙【分析】本题考查利用方差判断稳定性,根据方差越小,成绩越稳定,即可得出结果.【详解】解:∵两人的平均成绩相等,甲的方差是0.14,乙的方差是0.06,0.060.14<,∴这5次短跑测试的成绩较稳定的是乙;故答案为:乙.13.命题“两个全等三角形的面积相等”的逆命题可以写成:,所写出的命题是命题(填“真”或“假”).【答案】两个面积相等的三角形是全等三角形假【分析】本题考查了逆命题,命题的真假,全等三角形的判定.正确的写逆命题并判断命题的真假是解题的关键.根据题意写出逆命题,然后判断命题的真假即可.【详解】解:由题意知,“两个全等三角形的面积相等”的逆命题为两个面积相等的三角形是全等三角形,该命题为假命题,故答案为:两个面积相等的三角形是全等三角形,假.14.已知一次函数()2y k x b =++(k ,b 是常数)的图象上有两点()11,A x y ,()22,B x y ,若当12x x <时,12y y >,则k 的取值范围是.【答案】2k <-【分析】本题考查一次函数的图象和性质,根据当12x x <时,12y y >,得到20k +<,求解即可.【详解】解:∵12x x <时,12y y >,∴20k +<,∴2k <-;故答案为:2k <-.15.如图,在等腰ABC 中,AB AC =,延长边AB 到点D ,延长边CA 到点E ,连接DE ,若AD BC CE DE ===,则BAC ∠=.【答案】100︒/100度【分析】过点D 作DF BC ∥,CF BD ∥,易得四边形DBCF 为平行四边形,进而得到,DF BC BD CF ==,证明DAE ECF ≌,推出DEF 为等边三角形,设BAC α∠=,根据等边对等角,表示出,ADE ADF ∠∠,根据60ADE ADF ∠+∠=︒,列出方程进行求解即可.【详解】解:过点D 作DF BC ∥,CF BD ∥,连接EF ,则:四边形DBCF 为平行四边形,∴,DF BC BD CF ==,∵AD BC CE DE ===,AB AC =,∴AD AB CE AC -=-,DE DF =,∴AE BD =,∴AE CF =,∵CF AD ∥,∴ECF EAD ∠=∠,∴DAE ECF ≌,∴DE EF =,∵DE DF =,∴DE EF DF ==,∴DEF 为等边三角形,16.两块三角板(ABD△中,90BAD AB AD∠=︒=,,BCD△中,90BCD∠=︒,30CBD∠=︒)按如图方式放置,下列结论正确的是(填写所有正确结论的序号).①75AOB∠=︒;②AB=;③BC CD+=;④:3:2BOC AODS S=.又∵90BAD ∠=︒,BCD ∠∴EA EB EC ED ===,∴A B C D 、、、四点共圆,∵90BAD AB AD ∠=︒=,∴45ABD ADB ∠=∠=︒∵ CDCD =,∴30CAD CBD ∠=∠=∴AOB CAD ADB ∠=∠+∠由题意知,cos 45AB BD =∴22AB CD =,即AB 如图,作DM AC ⊥于设DM a =,则tan AM =三、解答题17.解不等式组()13293x x ⎧-->⎨+≥⎩并把它的解集在数轴上表示出来.【答案】32x -≤<-,图见解析【分析】本题考查解不等式组,并在数轴上表示出解集,先求出每一个不等式的解集,找到它们的公共部分,即为不等式的解集,进而在数轴上表示出解集即可.【详解】解:()13293x x ⎧-->⎨+≥⎩①②由①,得:<2x -;由②,得:3x ≥-,∴不等式组的解集为:32x -≤<-,数轴表示解集如图:18.如图,点D 在AB 上.点E 在AC 上,,AD AE ADC AEB =∠=∠.求证:AB AC =.【答案】见解析【分析】本题考查全等三角形的判定和性质,证明ADC AEB △≌△,即可得出结论.【详解】证明:在ADC △和AEB △中:A A AD AEADC AEB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴ADC AEB △≌△,∴AB AC =.19.已知()()211T a a a =++-(1)化简T ;(2)若a 满足613a +=,求T 的值.20.人工智能火遍全球,某校数学兴趣小组为了调查九年级学生对人工智能的了解程度,设计了一张含10个问题的调查问卷,在该校九年级中随机抽取20名学生进行调查,得到这20名学生答对题数的情况如下表:答对题数5678910人数33α622占总人数比例15%15%20%b10%10%根据以上信息,解答下列问题:(1)表格中的=a_____,b=_____;(2)被抽取的九年级学生答对问题数量众数是_____,中位数是____;(3)若答对7题及以上视为比较了解人工智能,该校九年级有600名学生,估计该校九年级比较了解人工智能的学生总人数.21.新能源汽车环保节能,越来越受到消费者的喜爱,各种品牌相继投放市场一汽贸公司经销某品牌新能源汽车,去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去~月份每辆车的销售年降低2万元,销售数量与去年相同,销售总额比去年少20%,今年15价格是多少万元【答案】今年1~5月份每辆车的销售价格是8万元~月份每辆车的销售价格是x万元,根据销售量相同列出方程,求解并检【分析】设今年15验即可.22.如图,一次函数47y x =与反比例函数y x=的图象相交于点()4C n ,,正方形ABCD 的顶点A ,B 分别落在y 轴和x 轴上.(1)求k ,n 的值;(2)求ABO ∠的正切值.∵正方形ABCD ,∴AB BC =,90ABC ∠=︒,∵90OAB ABO ∠+∠=︒=∠∴OAB EBC ∠=∠,又∵90AOB BEC ∠=︒=∠,23.如图,在ABC 中,90A ∠=︒,点O 在边BC 上,O 经过点B 并且与AC 相切于点D ,连接BD OD 、.(1)尺规作图:过点D 作DE BC ⊥,垂足为点E ;(保留作图痕迹,不写作法)(2)在(1)所作的图形中,①求证:BD 平分ABC ∠;②若四边形ABED 的周长与面积均为18,求BD 的长.(2)①∵O 经过点B ∴OD CD ⊥,∴90ODC A ∠=︒=∠,∴OD AB ∥,24.已知抛物线()21y x mx m =+-+,(1)当4m =-时,求抛物线与x 轴交点的坐标;(2)抛物线的顶点为A .①若当0x <时,都有y 随x 的增大而减小.求此时顶点A 的纵坐标的取值范围;②抛物线与y 轴交于点B ,对称轴与x 轴交于点C ,直线AB 与x 轴交于点D ,抛物线在①的条件下,求AOD △的面积1S 与BCD △的面积2S 满足的数量关系.25.如图,在菱形ABCD 中,6,60AB ABC =∠=︒,(1)连接BD ,求BD 的值;(2)点E 以每秒2个单位长度的速度从B 点出发向点C 运动,同时点Q度的速度从D 点出发向点B 运动,当其中一点达到终点,另外一点随之停止运动.①连接EQ ,BEQ 能否为等腰三角形?如果能,求点E ,Q 的运动时间;如果不能,请说明理由;②连接,AE AQ ,当30EAQ ∠=︒时,求AE AQ +的值.∵在菱形ABCD 中,6,AB =∵1302CBD ABC ∠=∠=︒,∴3cos302BH BE ︒==,∴3BH BE =,即:33∵菱形ABCD ,60ABC ∠=∴AD BC ∥,60ADC ∠=︒,∴120,60DAB BAF ∠=︒∠=︒∴30ABF ADQ ∠=︒=∠,。

2024年中考数学第二次模拟考试+解析(广东广州卷)

2024年中考第二次模拟考试(广州卷)数学·全解全析一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求的)1.若一个数与它的相反数在数轴上对应的点之间的距离为4,则这个数是()A.-2B.0C.±2D.±4【答案】C【分析】根据相反数的性质,结合数轴确定出所求即可.【详解】解:若一个数与它的相反数在数轴上对应点之间的距离为4,则这个数是±2,故选:C.【点睛】此题考查了数轴,以及相反数,熟练掌握相反数的性质是解本题的关键.2.一个几何体的三视图如图所示,则这个几何体是()A.B.C.D.【答案】D【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行解答即可.2【详解】解:根据主视图和左视图为矩形可判断出该几何体是柱体, 根据俯视图是两个矩形可判断出该几何体为.故选:D .【点睛】本题考查由三视图想象立体图形.做这类题时要借助三种视图表示物体的特点,从主视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状;从左视图上弄清楚物体的上下和前后形状,综合分析,合理猜想,结合生活经验描绘出草图后,再检验是否符合题意.3.如图,ABC 内接于⊙O ,30A ∠=︒,则BOC ∠的度数为( )A .30︒B .60︒C .75°D .120°【答案】B【分析】本题考查了圆周角定理,直接利用圆周角定理即可得出答案. 【详解】解:∵弧BC 对的圆心角是BOC ∠,对的圆周角是A ∠,∴12A BOC ∠=∠,∴223060BOC A ∠=∠=⨯︒=︒. 故选:B .4.下列运算结果正确的是( ) A .347a a a += B .3332a a a ⋅= C .339236a a a ⋅=D .()362-a a =−【答案】D【分析】依次根据合并同类项,同底数幂的乘法(m n mna a a ⋅= ),单项式乘单项式,幂的乘方公式(()m n mna a =)对各选项判断即可.【详解】A .3a 与4a 不是同类项不能合并,故该选项错误;B .33336a a a a +⋅==,故该选项错误;C .633236a a a ⋅=,故该选项错误;D .()362-a a =−,故该选项正确.故选:D .【点睛】本题考查合并同类项、幂的相关计算和单项式乘单项式.解题的关键是掌握幂的乘方、合并同类项法则、同底数幂的乘法及单项式乘单项式的运算法则. 5.一个不等式组12322x x x x−⎧<⎪⎨⎪−≥⎩,那么它的解集在数轴上表示正确的是( )A .B .C .D .【答案】B【分析】先求出每个不等式的解集,后把解集表示到数轴上即可. 【详解】解:12322 x x x x −⎧<⎪⎨⎪−≥⎩①②,解不等式①,得:1x >−, 解不等式②,得:2x ≥, ∴该不等式组的解集为2x ≥, 其解集在数轴上表示如下:故选:B .【点睛】本题考查了一元一次不等式组的解法,解集的数轴表示,熟练求得不等式组的解集是解题的关键.6.如果当0x >时,反比例函数(0)ky k x=≠的函数值随x 的增大而增大,那么一次函数123y kx k =−的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限4【答案】B【分析】本题考查了一次函数的图象性质:y kx b =+与y 轴交于()0,b ,当0b >时,()0,b 在y 轴的正半轴上,直线与y 轴交于正半轴;当0b <时,()0,b 在y 轴的负半轴,直线与y 轴交于负半轴.①0,0k b y kx b >>⇔=+的图象在一、二、三象限;②0,0k b y kx b ><⇔=+的图象在一、三、四象限;③0,0k b y kx b <>⇔=+的图象在一、二、四象限;④0,0k b y kx b <<⇔=+的图象在二、三、四象限.反比例函数的图象性质,反比例函数(0)ky k x =≠的图象是双曲线,当0k >,双曲线的两支分别位于第一、第三象限,在每一象限内y 随x 的增大而减小;当0k <,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大.由反比例函数的性质可判断k 的符号,再根据一次函数的性质即可判断一次函数的图象经过的象限. 【详解】解:由题意得:0k <, 103k ∴<,20k −>,∴一次函数123y kx k=−的图象经过第一、二、四象限,故选:B .7.某班进行演讲比赛,其中6人的成绩如下:9.4,9.0,9.6,9.6,9.3,9.5(单位:分),则下列说法不正确的是( ) A .这组数据的众数是9.6分 B .这组数据的方差是13300C .这组数据的平均数是9.4分D .这组数据的中位数是9.5分【答案】D【分析】根据平均数、众数、中位数和方差的定义分别计算即可. 【详解】解:这组数据从大到小排列为9.6,9.6,9.5,9.4,9.3,9.0,9.6分出现次数最多,则这组数据的众数是9.6分,故A 选项正确,不符合题意;处于中间的两个数是9.5,9.4,则这组数据的中位数是9.45分,故D 选项错误,符合题意;这组数据的平均数为9.629.59.49.399.46⨯++++=,故C 选项正确,不符合题意; 方差为()()()()()22222129.69.49.59.49.49.49.39.49.09.46⎡⎤⨯⨯−+−+−+−+−⎣⎦ 13300=,故B 选项正确,不符合题意;故选:D .【点睛】本题主要考查方差,解题的关键是掌握平均数、众数、中位数和方差的定义. 8.如图,在坡角为30°的斜坡上要栽两棵树,要求它们之间的水平距离AC 为9m ,则这两棵树之间的坡面AB 的长为( )A .18mB .C .D .【答案】C【分析】AB 是Rt ABC △的斜边,这个直角三角形中,已知一边和一锐角,满足解直角三角形的条件,可求出AB 的长.【详解】解:如图,30BAC ∠=︒,90ACB ∠=︒,9AC =m , ∴AB=2BC ,∴222AC BC AB +=,即22294BC BC +=,解得:BC =,∴AB =, 故选:C .【点睛】本题考查了坡度坡角问题,直角三角形的性质,勾股定理.应用问题尽管题型千变万化,但关键是设法化归为解直角三角形问题,必要时应添加辅助线,构造出直角三角形.9.课本习题:“A ,B 两种机器人都被用来搬运化工原料,A 型机器人比B 型机器人每小时多搬运30kg ,A 型机器人搬运900kg 所用时间与B 型机器人搬运600kg 所用时间相等,两种机器人每小时分别搬运多少化工原料?”下列四位同学列方程正确的是( ) ①设A 型机器人每小时搬运x kg 化工原料,则: 甲列的方程为:90060030x x =+;乙列的方程为:90060030x x =− ②设A 型机器人搬运900kg 化工原料需要x 小时,则: 丙列的方程为:90060030x x +=;丁列的方程为:60090030x x+=6A .甲、丙B .甲、丁C .乙、丙D .乙、丁【答案】D【分析】分别从不同角度设未知数列出方程进行判断即可.【详解】解:设A 型机器人每小时搬运xkg 化工原料,则B 型机器人每小时搬运(x -30)kg 化工原料, 则90060030xx =− 故乙正确;设A 型机器人搬运900kg 化工原料需要x 小时,则60090030x x +=故丁正确. 故选:D .【点睛】本题考查由实际问题抽象出分式方程,解题关键是合理设元,找到等量关系列出方程.10.已知关于x 的方程()21210−−−=k x 有实数根,则k 的取值范围为( )A .2k ≥B .1k ≥−且12k ≠C .12k −≤≤且12k ≠D .12k −≤≤ 【答案】D【分析】根据已知分1-2k=0和1-2k≠0分别讨论求出k 的取值范围,再结合即可.【详解】解:∵关于x 的方程()21210−−−=k x 有实数根,若1-2k=0,则k=12,方程为10−=,此时方程有解,∴k=12;若1-2k≠0,则(()()24121k −⨯−⨯−−≥0,k+1≥0,分别解得:k≠12,k≤2,k≥-1,则k 的取值范围是:-1≤k≤2,且k≠12,综上:-1≤k≤2. 故选:D .【点睛】本题考查了根的判别式的应用,能根据题意分1-2k=0和1-2k≠0分别讨论求出k 的取值范围,当1-2k≠0时还需要满足(()()24121k −⨯−⨯−−≥0,k+1≥0.二、填空题(本大题共6个小题,每小题3分,共18分)11.5月5日,记者从襄阳市文化和旅游局获悉,五一长假期间,我市41家A 级景区全部开放,共接待游客约2270000人次.数据2270000用科学记数法表示为 . 【答案】62.2710⨯【分析】科学记数法的表现形式为10na ⨯的形式,其中110a ≤<,n 为整数,确定n的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n 是正整数,当原数绝对值小于1时,n 是负整数. 【详解】解:2270000用科学记数法表示为 62.2710⨯,故答案为:62.2710⨯.【点睛】本题考查了科学记数法—表示较大的数,科学记数法的表现形式为10na ⨯的形式,其中110a ≤<,n 为整数,表示时关键是要正确确定a 的值以及n 的值.12.若二次函数2y x k =+的图像经过点()11,y −,()23,y ,则1y 2y (选填:﹥,﹤,=) 【答案】<【分析】本题考查了二次函数的图象与性质,根据二次函数的对称轴和开口方向,判断所给点到对称轴的距离大小即可求解.【详解】解:∵二次函数2y x k =+的对称轴为直线0x =,且图象开口向上, 又()011−−=,303−=,13<,∴1y 2y <故答案为:<13.明德华兴中学自2021年下学期恢复高中办学后,街舞社按四个年级分A 、B 、C 、D 四个学习小组,小明同学根据各小组的成员人数绘制了条形统计图(1),小华同学绘制了扇形统计图(2),其中m = .8【答案】72【分析】用360°乘以D 组的人数和总人数得出D 组所占的百分比即可得出答案. 【详解】解:四个小组的总人数为:4+8+12+6=30(人),D 组的人数在扇形统计图中所对应的圆心角的度数为:6360=7230⨯︒︒, ∴m=72, 故答案为:72.【点睛】本题考查了条形统计图、扇形统计图,以及用样本估计总体,弄清题意是解题的关键.14.若正方形的面积为36,则该正方形的对角线长为 .【答案】【分析】根据正方形面积公式,求出边长,再根据勾股定理即可求解. 【详解】解:∵正方形的面积为36, ∴6=,∴=,故答案为:【点睛】本题主要考查了正方形的性质,勾股定理,解题的关键是掌握正方形四条边相等.15.如图,已知BD CD ,分别是ABC ∠和ACE ∠的平分线,连接AD ,46DAC ∠=︒,BDC ∠= .【答案】44︒/44度【分析】过点D 作DF BA ⊥,交BA 的延长线于点F ,过点D 作DH AC ⊥于点H ,过点D 作DG BA ⊥,交BC 的延长线于点G ,根据角平分线的判定和性质可得DF DG DH ==,46DAC FAD ∠=∠=︒,从而得到88BAC ∠=︒,再由角平分线的性质和三角形外角的定义可得111222BDC ABC BAC ABC∠+∠=∠+∠,进行计算即可得到答案.【详解】解:如图,过点D 作DF BA ⊥,交BA 的延长线于点F ,过点D 作DH AC ⊥于点H ,过点D 作DG BA ⊥,交BC 的延长线于点G ,BD CD ,分别是ABC ∠和ACE ∠的平分线,DF BA ⊥,DH AC ⊥,DG BA ⊥, DF DG DH ∴==,DH AC DF BA ⊥⊥,,DF DH =,AD ∴平分CAF ∠, 46DAC FAD ∴∠=∠=︒, 180DAC FAD BAC ∠+∠+∠=︒, 180464688BAC ∴∠=︒−︒−︒=︒,BD CD ,分别是ABC ∠和ACE ∠的平分线,12DCE ACE ∠=∠∴,12DBC ABC∠=∠,DCE BDC DBC ACE ABC BAC ∠=∠+∠∠=∠+∠,,()1122BDC DBC ACE BAC ABC ∴∠+∠=∠=∠+∠,111222BDC ABC BAC ABC∴∠+∠=∠+∠,11884422BDC BAC ∴∠=∠=⨯︒=︒,故答案为:44︒.【点睛】本题主要考查了角平分线的判定与性质,三角形外角的定义及性质,熟练掌握角平分线的判定与性质,三角形外角的定义及性质,添加适当的辅助线是解题的关键.1016.如图,在Rt △ABC 中∠BAC =90°,点D 和点E 分别是AB ,AC 的中点,点F 和点G 分别在BA 和CA 的延长线上,若BC =10,GF =6,EF =4,则GD 的长为 .【答案】【分析】先利用三角形的中位线的性质求得线段152DE BC ==,然后在ADE ∆,AEF ∆,ADG ∆,AGF ∆中分别利用勾股定理即可求解.【详解】解:∵点D 和点E 分别是AB ,AC 的中点,BC =10, ∴152DE BC ==,∵Rt △ABC 中∠BAC =90°,∴ADE ∆,AEF ∆,ADG ∆,AGF ∆都是直角三角形, ∵GF =6,EF =4,∴由勾股定理得,22236AF AG GF +== ①,22216AF AE EF +==②, 22225AD AE DE +==③,∴−+①②③,得2245AD AG +=,∵在Rt ADG ∆中,222AD AG GD +=,∴245GD =,解得GD =GD =−故答案为:【点睛】本题考查了三角形的中位线的性质及勾股定理的应用,此处勾股定理的灵活运算是解题的关键.三、解答题(本大题共9小题,共72分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分4分) 解方程:(21)2(21)x x x −=−. 【答案】12122x x ==,【分析】运用因式分解法求解即可.【详解】解:移项得:(21)2(21)0x x x −−−=, 因式分解得:()()2210x x −−=,∴20x −=或210x −=, 解得:12122x x ==,.【点睛】本题考查因式分解法解一元二次方程,掌握因式分解法解一元二次方程的一般步骤是解题的关键. 18.(本小题满分4分)如图,点B 在线段AC 上,BD CE ∥,AB EC =,DB BC =.求证:AD EB =.【答案】见解析【分析】首先根据平行线的性质得到ABD C ∠=∠,然后证明出()SAS ABD ECB ≌,最后根据全等三角形的性质求解即可. 【详解】证明:∵BD CE ∥, ∴ABD C ∠=∠,∴在ABD △和ECB 中,AB CE ABD C DB BC =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABD ECB ≌,∴AD EB =.【点睛】本题考查的知识点是全等三角形的性质和判定,解题的关键是熟练的掌握全等三角形的判定. 19.(本小题满分6分)12如图,ABC 在平面直角坐标系中,其中点()3,2A −−,点()4,1B −,点()1,3C −.(1)将ABC 向右平移4个单位得到111A B C △,在图中画出111A B C △,并写出点1A 的坐标; (2)求111A B C △的面积. 【答案】(1)见解析,()11,2A −(2)5.5【分析】(1)利用平移变换的性质分别作出A ,B ,C 的对应点1A ,1B ,1C 并顺次连接即可得到111A B C △,根据点1A 在坐标系中的位置即可写出坐标;(2)把三角形的面积看成矩形的面积减去周围的三个三角形面积即可. 【详解】(1)如图所示,111A B C △为所求,()11,2A −(2)111A 1113532313251535 5.52222B C S =⨯−⨯⨯−⨯⨯−⨯⨯=−−−=△【点睛】本题考查作图-平移变换,三角形的面积等知识,解题的关键是掌握平移变换的性质学会用割补法求三角形的面积. 20.(本小题满分6分)已知三个整式24x x +,44x +,2x .(1)从中选出两个进行加法运算,使所得整式可以因式分解,并进行因式分解; (2)从中选出两个分别作为分式的分子与分母,要求这个分式不是最简分式,并对这个分式进行约分. 【答案】(1)见解析 (2)见解析【分析】(1)先找出两个整式的和,再看看能否分解因式即可;(2)先找出两个整式分别作为分式的分子与分母,再看看能否约分即可 【详解】(1)解:()2244(2)x x x ++=+或()()22242422x x x x x x x ++=+=+;(2)解:()222444x x x x x x x x +++==或()222444x x x x x x x x ==+++.【点睛】本题考查了最简分式,因式分解,约分等知识点,能熟记完全平方公式和能正确约分是解此题的关键. 21.(本小题满分8分)小明和小亮是一对双胞胎,他们的爸爸买了两套不同品牌的运动服送给他们,小明和小亮都想先挑选.于是小明设计了如下游戏来决定谁先挑选.游戏规则是:在一个不透明的袋子里装有除数字以外其它均相同的4个小球,上面分别标有数字1,2,3,4.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为奇数,则小明先挑选;否则小亮先挑选. (1)用树状图或列表法求出小明先挑选的概率; (2)你认为这个游戏公平吗?请说明理由.【答案】(1)见解析,23;(2)不公平,见解析【分析】(1)用列表法表示所有可能出现的结果,进而求出相应的概率即可; (2)求出小明、小亮获胜的概率即可.14【详解】(1)解:根据题意可列表或树状图如下:从表可以看出所有可能结果共有12种,且每种结果发生的可能性相同,符合条件的结果有8种, ∴P (和为奇数)23=;(2)解:不公平.∵小明先挑选的概率是P (和为奇数)23=,小亮先挑选的概率是P (和为偶数)13=,2133≠, ∴不公平.【点睛】本题考查了列表法或树状图法求简单随机事件发生的概率,列举出所有可能出现的结果是正确解答的关键. 22.(本小题满分10分)金百超市经销某品牌童装,单价为每件50元时,每天销量为60件,当单价每件从50元降了20元时,一天销量为100件.设降x 元时,一天的销量为y 件.已知y 是x 的一次函数.(1)求y 与x 之间的关系式;(2)若某天销售童装80件,则该天童装的单价是多少? 【答案】(1)y 与x 之间的关系式为y=2x+60 (2)该天童装的单价是每件40元【分析】(1)根据题意先设出y 与x 的函数关系式y=kx+b ,再根据题目中的数据,即可求出该函数的解析式;(2)将y= 80代入(1) 中函数关系式,求出相应的x 的值即可. 【详解】(1)因为y 是x 的一次函数.所以,设y 与x 的函数关系式为y=kx+b ,由题意知,当x=0时, y=60 ;当x=20时, y= 100,所以,6020100b k b =⎧⎨+=⎩,解之得:602b k =⎧⎨=⎩ 所以y 与x 之间的关系式为y=2x+60 ; (2)当y=80时,由80=2x+60, 解得x=10, 所以50- 10= 40(元),所以该天童装的单价是每件40元.【点睛】本题考查一次函数的应用, 解答本题的关键是明确题意,求出相应的函数关系式.23.(本小题满分10分)已知抛物线224y ax ax a =++−的顶点为点P ,与x 轴分别交于A 、B 两点(A 点在B 点的左侧),与y 轴交于点C(1)直接写出点P 的坐标为 ;(2)如图,若A 、B 两点在原点的两侧,且3OA OB =,四边形MNEF 为正方形,其中顶点E 、F 在x 轴上,M 、N 位于抛物线上,求点E 的坐标; (3)若线段2AB =,点Q 为反比例函数ky x=与抛物线224y ax ax a =++−在第一象限内的交点,设Q 的横坐标为m ,当13m <<时,求k 的取值范围. 【答案】(1)()1,4P −−;(2))2,0E;(3)12180k <<.16【分析】(1)利用配方把解析式配成顶点式即可;(2)根据正方形的性质则可以得出EF EN =,再由抛物线点的特征列出一元二次方程,求解即可得出点E 坐标;(3)利用二次函数和反比例函数的增减性即可求解. 【详解】(1)∵()222414y ax ax a a x =++−=+−,∴顶点()1,4P −−,故答案为:()1,4−−,(2)设()1,0A x ,()2,0B x ,∵抛物线对称轴为直线=1x −, ∴122x x +=−, 又∵3OA OB =, ∴123x x −=, ∴13x =−,21x =, ∴()30A −,,()10B ,,将()10B ,代入224y ax ax a =++−,解得1a =,∴抛物线解析式为:223y x x =+−, 设(),0(0)E m m >,则()2,0F m −−,∴()21EF m =+,()223EN m m =−+−,根据题意,得:()()22123m m m +=−+−,解得:12m =,22m =(舍去), ∴点)2,0E,(3)∵线段2AB =,抛物线对称轴为直线1x =, ∴()2,0A −,()0,0B ,∴02040a a a ⨯+⨯+−=,解得4a =,∴抛物线解析式为:248y x x =+,当13m <<时,对于抛物线248y x x =+,y 随x 的增大而增大, 对于反比例函数ky x =,y 随x 的增大而减小,∴1x =时,双曲线在抛物线上方, 即:241811k>⨯+⨯,解得:12k >,∴当3x =时,双曲线在抛物线下方, 即:43833k<⨯+⨯,解得:180k <,∴k 的取值范围:12180k <<.【点睛】此题考查了二次函数的图象及其性质、反比例函数的性质,熟练运用二次函数与反比例函数的性质是解题的关键. 24.(本小题满分12分) 问题发现:(1)如图1,在ABC 中,AB BC =,90ABC D ∠=︒.为BC 的中点,以CD 为直角边,在BC 下方作等腰直角CDE ,其中90CDE ∠=︒.以BD 为直角边,在BC 上方作等腰直角BDG ,其中90BDG ∠=︒,AE 与BG 交于点F .求证:AF EF =. 类比探究:(2)如图2,若将CDE 绕点C 顺时针旋转90︒,则()1中的结论是否仍然成立?请说明理由; 拓展延伸:(3)如图3,在()2的条件下,再将等腰直角CDE 沿直线BC 向右平移k 个单位长度,得到'''CDE,若AB a =,试求'AFFE 的值.(用含k ,a 的式子表示)【答案】(1)证明见解析 (2)成立,理由见解析18(3)'AF aFE k a =+【分析】(1)利用AAS 证明ABF △≌EGF △,可得结论;(2)连接EG ,BE ,首先利用SAS 证明DEG △≌DCB △,得GE BC =,DBC DGE ∠∠=,再利用AAS 证明ABF △≌EGF △,得AF EF =;(3)连接'EG ,由()2同理得''BCD ≌''GED ,再说明ABF △∽'EGF ,得''AF AB aFE GE k a ==+.【详解】(1)证明:由题意可得:点E 、D 、G 三点共线,且EG BC AB ==,AB EG ,BAE AEG ∴∠=∠,AFB EFG ∠∠=,ABF ∴≌()EGF AAS , AF EF ∴=.(2)解:(1)中的结论仍然成立,理由如下: 如图2,连接EG ,BE ,由题意得,BD GD =,DE DC =,90BDG CDE ∠∠==︒,点E 为AC 的中点,BDG BDE CDE BDE ∠∠∠∠∴−=−, GDE BDC ∠∠∴=, DEG ∴≌()DCB SAS , GE BC ∴=,DBC DGE ∠∠=,AB BC EG ∴==,又4545ABF DBC DGE EGF ∠∠∠∠=︒−=︒−=,AFB EFG ∠=∠, ABF ∴≅()AAS EGF ,AF EF ∴=.(3)解:由题意得,BC AB a ==,'CC k =, 则'BC k a =+,如图3,连接'EG, 由()2同理得BC D ''≅GE D '',''GE BC ∴=,D BC D GE ∠''=∠'',又45''45'''ABF DBC DGE EGF ∠∠∠∠=︒−=︒−=,'AFB EFG∠∠=, ABF ∴∽'EGF ,''AF AB aFE GE k a ∴==+.【点睛】本题是相似形综合题,主要考查了等腰直角三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质、旋转和平移的性质等知识点,熟练掌握旋转相似的基本模型是解题的关键. 25.(本小题满分12分)问题探究:数学课上老师让同学们解决这样的一个问题:如图①,已知E 是BC 的中点,点A 在DE 上,且BAE CDE ∠=∠.求证:AB CD =.分析:证明两条线段相等,常用的方法是应用全等三角形或者等腰三角形的性质.本题中要证相等的两条线段不在同一个三角形中,所以考虑从全等三角形入手,而AB 与CD 所在的两个三角形不全等.因此,要证AB CD =,必须添加适当的辅助线构造全等三角形.以下是两位同学添加辅助线的方法.第一种辅助线做法:如图②,延长DE 到点F ,使DE EF =,连接BF ;第二种辅助线做法:如图③,作CG DE ⊥于点G ,BF DE ⊥交DE 延长线于点F .20(1)请你任意选择其中一种对原题进行证明:方法总结:以上方法称之为“倍长中线”法,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线构造全等三角形来解决问题.(2)方法运用:如图④,AD 是ABC 的中线,BE 与AD 交于点F 且AE EF =.求证:BF AC =.【答案】(1)证明见解析; (2)证明见解析.【分析】(1)第一种辅助线做法:延长DE 到点F ,使DE EF =,连接BF .只要证明△BEF ≌△CED ,即可解决问题.第二种辅助线做法:作CG DE ⊥于点G ,BF DE ⊥交DE 延长线于点F ,先证明△BEF ≌△CEG ,再证明△ABF ≌△DCG 即可.(2)延长AD 到点Aˊ,使得DAˊ=AD ,连接BAˊ,只要证得△BDAˊ≌△CDA 即可. 【详解】(1)第一种辅助线做法:证明:如图1,延长DE 到点F ,使得DE=EF ,连接BF , ∵E 是BC 的中点 ∴BE=CE在△BEF与△CED中,BE CEBEF CEDDE FE=⎧⎪∠=∠⎨⎪=⎩∴△BEF≌△CED(SAS)∴BF=CD ,∠F=∠CDE又∵∠BAE=∠CDE∴∠BAE=∠F∴BF=AB∴AB=CD第二种辅助线做法:证明:如图2,作CG⊥DE于点G,BF⊥DE交DE延长线于点E;则∠F=∠CGE=∠CGD=90°,∵E是BC的中点,∴BE=CE在△BEF与△CEG中,F CGEBEF CEG BE CE∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BEF≌△CEG (AAS)∴BF=CG,在△ABF与△DCG中,BAE CDEF CGDBF CG∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABF≌△DCG(AAS),∴AB=CD .(2)如图3,延长AD到点Aˊ,使得DAˊ=AD,连接BAˊ,∵AD是△ABC的中线,∴BD=CD.在△BDAˊ与△CDA中,BD CDBDA CDADA DA=⎧⎪∠=∠⎨⎪=⎩ˊˊ,∴△BDAˊ≌△CDA (SAS)∴BAˊ=AC,∠Aˊ=∠CAD,又∵AE=EF,∴∠CAD=∠EFA=∠BFAˊ,∠Aˊ=∠BFAˊ∴BF=BAˊ∴BF=AC.【点睛】本题考查全等三角形的判定和性质、等腰三角形的判定和性质、三角形的中线等知识,解题的关键是学会添加辅助线构造全等三角形解决问题,属于中考常考题型.22。

广东省专版广州市中考数学二模试卷(附答案)

广东省广州市中考数学二模试卷题号 一 二三总分得分一、选择题(本大题共 10 小题,共 分)1.- 的倒数是()A. B. 2C. D.2. 以下所给图形中,既是中心对称图形又是轴对称图形的是()A. B.C. D.3. 如图,点 A . B . C 在 ⊙ D 上, ∠ABC=70 °,则 ∠ADC 的度数为()A. B. C. D.4.已知一组数据: 5, 7, 4, 8, 6,7, 2,则它的众数及中位数分别为( )A. 7 , 8B. , 6C. , 7D. 7 ,47 6 5. 以下图的几何体是由一些小立方块搭成的, 则这个几何体的俯视图是()A.B.C.D.6. 以下图,直线 AB ⊥CD 于点 O ,直线 EF 经过点 O ,若 ∠1=26 °,则 ∠2 的度数是()A. B. C.D. 以上答案都不对7. 某同学参加数学、 物理、化学三科比赛均匀成绩是93 分,此中数学 97 分,化学 89分,那么物理成绩是( )A. 91分B. 92分C. 93分D. 94分8.如图, A 、 B 两点在数轴上表示的数分别为a 、b ,下列式子建立的是()9.以下三个命题中,是真命题的有()①对角线相互均分且垂直的四边形是矩形;②三个角是直角的四边形是矩形;③有一个角是直角的平行四边形是矩形.④对角线相互均分且相等的四边形是矩形A.3个B.2个C.1个D.4个10.如图,点 A, B 为直线 y=x 上的两点,过 A, B 两点分别作 y 轴的平行线交双曲线y=( x> 0)于 C,D 两点.若BD=3AC,则 9?OC2-OD 2的值为()A.16B.27C.32D.48二、填空题(本大题共 6 小题,共18.0 分)11.若 a3?a m=a9,则 m=______.12.因式分解: x3-4x=______.13.在 Rt△ABC 中,∠C=90 °, BC=8 且 cosB= ,则 AB=______ .14.如图,点 D、E 分别是△ABC 的边 AC、BC 上的点,AD=DE ,AB=BE,∠A=80 °,则∠BED=______ °.15.如图,将△ABC 绕点 C 顺时针旋转至△DEC ,使点 D 落在 BC 的延伸线上,已知∠A=27 °,∠B=40 °,则∠ACE=______ .216.抛物线 y=ax +bx+c( a≠0)的对称轴为直线 x=-1,与 x 轴的一个交点 A 在点( -3,0)和( -2,0)之间,其部分图象以下图,则以下 4 个结论:① b2 -4ac<0;② 2a-b=0;③a+b+c< 0;④点 M( x1, y1)、 N( x2, y2)在抛物线上,若 x1< x2,则 y1≤y2,此中正确的选项是 ______.三、解答题(本大题共9 小题,共102.0 分)17.解方程:- =1.18.如图,四边形 ABCD 是菱形,对角线 AC、 BD 订交于点 O, AB=5、AO=3,求菱形的面积.19.跟着交通道路的不停完美,带动了旅行业的发展,某市旅行景区有A、 B、 C、 D 、E 等有名景点,该市旅行部门统计绘制出2018 年“五 ?一”长假时期旅行中 A 景点所对应的圆心角的度数是______,并补全条形统计图.( 2)依据近几年到该市旅行人数增加趋向,估计2019 年“五 ?一”节将有80 万游客选择该市旅行,请估计有多少万人会选择去 E 景点旅行?(3)甲、乙两个旅行团在 A、B、D 三个景点中,同时选择去同一景点的概率是多少?请用画树状图或列表法加以说明,并列举全部等可能的结果.20.已知A=?( x-y).(1)化简 A;(2)若 x2-6xy+9y2=0,求 A 的值.21.如图,△ABC 是等边三角形, D 为 BC 的中点,(1)尺规作图:(保存作图印迹,不写作法);①过点 B 作 AC 的平行线 BH;②过 D 作 BH 的垂线,分别交 AC, BH, AB 的延伸线于 E, F ,G(2)在图中找出一对全等的三角形,并证明你的结论.22.某小区为更好的提升业主垃圾分类的意识,管理处决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购置 3 个温馨提示牌和 4 个垃圾箱共需580 元,且每个温馨提示牌比垃圾箱廉价40 元.( 1)问购置 1 个温馨提示牌和 1 个垃圾箱各需多少元?( 2)假如需要购置温馨提示牌和垃圾箱共100 个,花费不超出8000 元,问最多购23.如图,直线y=2x+2与y轴交于A点,与反比率函数(x>0)的图象交于点M,过 M 作 MH ⊥x 轴于点 H,且 tan∠AHO =2.( 1)求 k 的值;( 2)点 N( a, 1)是反比率函数(x>0)图象上的点,在x 轴上能否存在点P,使得 PM+PN 最小?若存在,求出点P 的坐标;若不存在,请说明原因.24.二次函数y=x2+px+q 的极点 M 是直线 y=-和直线y=x+m的交点.2+px+q 的分析( 1)若直线 y=x+m 过点 D( 0,-3 ),求 M 点的坐标及二次函数y=x式;( 2)试证明不论 m 取任何值,二次函数 y=x2+px+q 的图象与直线y=x+m 总有两个不一样的交点;( 3)在( 1)的条件下,若二次函数y=x2+px+q 的图象与 y 轴交于点 C,与 x 的右交点为 A,试在直线y=-上求异于M的点P,使P在△CMA的外接圆上.(1)求证: BC=CD ;(2)分别延伸 AB, DC 交于点 P,过点 A 作 AF ⊥CD 交 CD 的延伸线于点 F,若PB=OB, CD =,求DF的长.答案和分析1.【答案】D【分析】解:∵-×(-2)=1,∴-的倒数是-2,应选:D.依据乘积为 1 的两个数互为倒数,直接解答即可.本题主要考察倒数的定义,解决此类题目时,只需找到一个数与这个数的积为 1,那么此数就是这个数的倒数,特别要注意:正数的倒数也必定是正数,负数的倒数也必定是负数.2.【答案】D【分析】解:A 、不是中心对称图形,是轴对称图形,故此选项错误;B、不是中心对称图形,不是轴对称图形,故此选项错误;C、是中心对称图形,不是轴对称图形,故此选项错误;D、是中心对称图形,也是轴对称图形,故此选项正确.应选:D.依据轴对称图形与中心对称图形的观点求解.本题考察了中心对称图形与轴对称图形的观点,轴对称图形的重点是找寻对称轴,图形两部分折叠后可重合,中心对称图形是要找寻对称中心,旋转 180 度后两部分重合.3.【答案】B【分析】解:由圆周角定理得,∠ADC=2 ∠ABC=140°,应选:B.依据圆周角定理计算即可.本题考察的是圆周角定理的应用,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的重点.4.【答案】B【分析】解:这组数据依据从小到大的次序摆列为:2、4、5、6、7、7、8,则众数为:7,中位数为:6.应选:B.依据众数和中位数的观点求解.本题考察了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据依据从小到大(或从大到小)的次序摆列,假如数据的个数是奇数,则处于中间地点的数就是这组数据的中位数;假如这组数据的个数是偶数,则中间两个数据的均匀数就是这组数据的中位数.5.【答案】A【分析】解:从几何体上边看,是左边 2 个,右边 1 个正方形.应选:A.依据俯视图的定义,从上往下看到的几何图形是俯视图即可判断.本题考察了三视图的知识,俯视图是从物体上边看所获得的图形,解答时学生易将三种视图混杂而错误的选其余选项.6.【答案】B【分析】解:∵∠1=26°,∠DOF 与∠1 是对顶角,∴∠DOF=∠1=26 °,又∵∠DOF 与∠2 互余,∴∠2=90 °-∠DOF=90°-26 °=64°.应选:B.已知∠1,且∠DOF 与∠1 是对顶角,可求∠DOF,再利用∠DOF 与∠2 互余,求∠2.本题主要考察了垂线的定义和对顶角的性质,难度不大.7.【答案】C【分析】解:物理成绩是:93×3-97-89=93(分).应选:C.直接利用数学、物理、化学三科比赛均匀成绩是 93 分,可得出总分,再减去数学 97 分,化学 89 分,即可得出答案.本题主要考察了算术均匀数,正确得出总分是解题重点.8.【答案】C【分析】解:a、b 两点在数轴上的地点可知:-1<a<0,b> 1,∴ab< 0,a+b> 0,故A 、B 错误;∵-1<a<0,b>1,∴b-1>0,a+1>0,a-1< 0 故 C 正确,D 错误.应选:C.依据 a、b 两点在数轴上的地点判断出其取值范围,再对各选项进行逐个剖析即可.本题考察的是数轴的特色,依据 a、b 两点在数轴上的地点判断出其取值范围是解答此题的重点.9.【答案】A【分析】解:① 对角线相互均分且垂直的四边形是菱形,故① 是假命题;② 三个角是直角的四边形是矩形,正确,故② 是真命题;③ 有一个角是直角的平行四边形是矩形,正确,故③ 是真命题;④ 对角线相互均分且相等的四边形是矩形,正确,故④ 是真命题;应选:A.依据矩形的判断方法一一判断即可;本题考察矩形的判断,解题的重点是记着矩形的判断方法,属于中考常考 题型.10.【答案】 C【分析】解:设点 A 的坐标为(m ,m ),点B 的坐标为(n ,n ),则点 C 的坐标为(m , ),点 D 的坐标为(n , ),∴BD=n- ,AC=-m ,∵BD=3AC ,∴n- =3( -m ).9?OC 2-OD 2=9(m 2+ )-(n 2+ ),=9[(m- 2 (n- 2 ,)+4]-[ )+4] =9(m-22,)+36-9(m- )-4 =32.应选:C .设 点A 的坐 标为 (m ,m ),点B 的坐 标为则 标为 (m , ),点 (n ,n ), 点 C 的坐D 的坐 标为 进 结(n , ), 而可得出 BD=n- 、AC= -m , 合 BD=3AC 可得出 n- =3( -m ),再利用勾股定理及配方法可得出 9?OC 2-OD 2=9[(m- )2+4]-[ (n-2,代入 n- =3( -m )即可求出结论 .)+4]本题考察了反比率函数 图象上点的坐 标特色、一次函数图象上点的坐 标特色以及勾股定理,利用勾股定理及配方找出 22 2) 9?OC -OD =9[ (m- )+4]-[ (n-2+4]是解题的重点.11.【答案】 6【分析】解:由题意可知:3+m=9,∴m=6,故答案为:6依据同底数 幂的运算即可求出答案.本题考察同底数幂的乘除法,解题的重点是正确理解同底数 幂的乘法运算,本题属于基础题型.12.【答案】 x ( x+2)( x-2)【分析】解:x 3-4x=x (x 2-4)=x (x+2)(x-2).故答案为:x (x+2)x (-2 ).第一提取公因式 x ,从而利用平方差公式分解因式得出即可.本题主要考察了提取公因式法以及公式法分解因式,熟 练应用平方差公式是解题重点.13.【答案】 16【分析】解:以下图:∵cosB= ,∴∠B=60 °, ∴∠A=30 °,则 BC= AB=8 ,故 AB=16 .故答案为:16.直接利用特别角的三角函数 值得出 ∠B 的度数,再利用直角三角形的性 质得出答案.本题主要考察了特别角的三角函数 值,正确得出∠B 度数是解 题重点 .14.【答案】 80【分析】解:在△ABD 与△EBD 中,,∴△ABD ≌△EBD , ∴∠BED= ∠A=80 °.先利用 SSS 证明 △ABD ≌△EBD ,再依据全等三角形 对应角相等即可求出∠BED .本题考察了全等三角形的判断与性 质,证明出 △ABD ≌△EBD 是解题的重点.15.【答案】 46°【分析】解:∵∠A=27°,∠B=40°,∴∠ACD= ∠A+ ∠B=27 °+40 °=67 °,∵△ABC 绕点 C 按顺时针方向旋转至△DEC ,∴△ABC ≌△DEC , ∴∠ACB= ∠DCE , ∴∠BCE=∠ACD , ∴∠BCE=67°,∴∠ACE=180°-∠ACD- ∠BCE=180°-67 °-67 °=46 °.故答案为:46°.先依据三角形外角的性 质求出 ∠ACD=67° ,再由△ABC 绕点 C 按顺时针方向旋转至△DEC ,获得△ABC ≌△DEC ,证明∠BCE=∠ACD ,利用平角为 180°即可解答.本题考察了旋转的性质,三角形外角的性质,解决本题的重点是由旋转获得△ABC ≌△DEC . 16.【答案】 ②③【分析】解:∵抛物线与 x 轴有 2 个交点,∴△=b 2-4ac > 0,因此① 错误;∵抛物 线的对称轴为直线 x=-=-1,∴b=2a ,因此② 正确;∵抛物 线对称轴为直线 x=-1,抛物线与 x 轴的一个交点 A 在点(-3,0)和(-2,0)之间,∴抛物 线与 x 轴的另一个交点在(0,0)和(1,0)之间,∴x=1 时,y < 0,∴a+b+c < 0,因此③ 正确;∵抛物线张口向下,故答案为②③ .利用抛物线与 x 轴的交点个数对①进行判断;利用抛物线的对称轴方程对②进行判断;利用抛物线的对称性获得抛物线与 x 轴的另一个交点在(0,0)和(1,0)之间,因此 x=1 时,y< 0,则可对③进行判断;利用二次函数的性质对④进行判断.本题考察了二次函数图象与系数的关系:对于二次函数 y=ax 2+bx+c(a≠0),二次项系数 a 决定抛物线的张口方向和大小.当 a>0 时,抛物线向上张口;当 a<0 时,抛物线向下张口;一次项系数b 和二次项系数a共同决定对称轴的地点.当 a 与 b 同号时(即ab>0),对称轴在 y 轴左边;当a 与 b 异号时(即ab <0),对称轴在 y 轴右边;常数项 c 决定抛物线与 y 轴交点地点:抛物线与 y轴交于(0,c).抛物线与 x 轴交点个数由△决定:△=b 2-4ac> 0 时,抛物线与 x轴有 2 个交点;△=b 2-4ac=0时,抛物线与 x 轴有 1 个交点;△=b2-4ac<0 时,抛物线与 x 轴没有交点.217.【答案】解:(x+3)-4(x-3)=(x-3)(x+3)2 2x +6x+9-4x+12=x -9,x=-15 ,查验: x=-15 代入( x-3)( x+3)≠0,∴原分式方程的解为:x=-15 ,【分析】依据分式方程的解法即可求出答案.本题考察分式的方程的解法,解题的重点是娴熟运用分式方程的解法,本题属于基础题型.18.【答案】解:∵四边形ABCD是菱形,∴AC ⊥BD ,∴∠AOB=90 °∴,又∵AC=2OA=6 ,BD =2OB=8.∴菱形.【分析】本题考察了勾股定理在直角三角形中的运用,本题中依据勾股定理求BO 的值是解题的重点.19.【答案】解:(1)50;108°;补全条形统计图以下:( 2)∵E 景点招待旅客数所占的百分比为:×100%=12%,∴2019 年“五?一”节选择去 E 景点旅行的人数约为:80 ×(万人);( 3)画树状图可得:∵共有 9 种可能出现的结果,这些结果出现的可能性相等,此中同时选择去同一个景点的结果有 3 种,∴同时选择去同一个景点的概率= = .【分析】【剖析】(1)依据A 景点的人数以及百分比进行计算即可获得该市周边景点共招待旅客数;依据圆心角的度数=部分占整体的百分比×360°进行计算,即可求得A 景点所对应的圆心角的度数;依据B 景点招待旅客数补全条形统计图;(2)依据E 景点招待旅客数所占的百分比,即可估计2019年“五?一”节选择去E景点旅行的人数;(3)依据甲、乙两个旅行团在 A 、B、D 三个景点中各选择一个景点,画出树状图,依据概率公式进行计算,即可获得同时选择去同一景点的概率.本题考察的是条形统计图、扇形统计图、用样本估计整体以及概率的计算的时,可用树形图列举,也能够列表列举.解题时注意:概率=所讨状况数与总状况数之比.【解答】解:(1)15÷30%=50;360°×30%=108°;故答案为 50;108°;补全条形统计图以下:(2)见答案;(3)见答案.20. 【答案】解:( 1) A= ?(x-y)=?(x-y)=;(2)∵x2-6xy+9y2=0,2∴( x-3y) =0,则 x-3y=0,故 x=3 y,则A===.【分析】(1)直接利用分式的基天性质化简得出答案;(2)第一得出 x,y 之间的关系,从而代入求出答案.本题主要考察了分式的乘除运算,正确分解因式是解题重点.21.【答案】解:(1)作图以下:①如图1;②如图 2:(2)△DEC ≌△DFB证明:∵BH ∥AC,∴∠DCE=∠DBF ,又∵D 是 BC中点,∴DC =DB .在△DEC 与△DFB 中,∵,∴△DEC≌△DFB ( ASA).【分析】(1)依据平行线及垂线的作法画图即可;(2)依据ASA 定理得出△DEC≌△DFB 即可.本题考察的是作图-基本作图,熟知等边三角形的性质是解答此题的重点.22.【答案】(1)解:设购置1个温馨提示牌需要x元,购置1个垃圾箱需要y元,依题意得,解得:答:购置 1 个温馨提示牌需要60 元,购置 1 个垃圾箱需要100 元.( 2)解:设购置垃圾箱m 个,则购置温馨提示牌(100-m)个,依题意得60( 100-m) +100m≤ 8000,解得 m≤50,答:最多购置垃圾箱50 个.【分析】(1)依据题意可得方程组,依据解方程组,可得答案;(2)依据花费不超过8000 元,可得不等式,依据解不等式,可得答案.本题考察了一元一次不等式的应用,理解题意得出不等关系是解题重点.23.【答案】解:(1)由 y=2x+2 可知 A( 0, 2),即 OA=2.∵tan∠AHO =2,∴OH=1.∵MH ⊥x 轴,∴点 M 的横坐标为1.∵点 M 在直线 y=2x+2 上,∴点 M 的纵坐标为4.即 M( 1, 4).∵点 M 在 y= 上,∴k=1 ×4=4 .( 2)存在.过点 N 作 N 对于 x 轴的对称点N1,连结 MN 1,交 x轴于 P(以下图).此时PM +PN 最小.∵点 N(a, 1)在反比率函数(x>0)上,∴a=4.即点 N 的坐标为( 4,1).∵N 与 N1对于 x 轴的对称, N 点坐标为( 4, 1),∴N1的坐标为( 4, -1).设直线 MN 1的分析式为y=kx+b.由解得 k=- , b=.∴直线 MN 1的分析式为.令 y=0 ,得 x= .∴P 点坐标为(, 0).【分析】(1)依据直线分析式求 A 点坐标,得 OA 的长度;依据三角函数定义可求 OH 的长度,得点 M 的横坐标;依据点M 在直线上可求点 M 的坐标.从而可求 K 的值;(2)依据反比率函数分析式可求 N 点坐标;作点N 对于 x 轴的对称点 N1,连结MN1 与 x 轴的交点就是知足条件的 P 点地点.本题考察一次函数的综合应用,波及线路最短问题,难度中等.24.【答案】解:(1)把D(0,-3)坐标代入直线y=x+m 中,得 m=-3,从而得直线 y=x-3,由 M 为直线 y=-与直线y=x-3的交点,解得,,∴得 M 点坐标为M( 2, -1),M y=x2+px+q 的极点,∵ 为二次函数∴其对称轴为x=2,由对称轴公式:x=-,得- =2,∴p=-4;由=-1,=-1 ,解得, q=3.∴二次函数y=x2+px+q 的分析式为:y=x2-4x+3;( 2)∵M 是直线 y=-和y=x+m的交点,∴,解得,,∴M 点坐标为 M(- ,),-、= ,∴ =-解得, p= , q= + ,由,得 x2 +(p-1) x+q-m=0,2△=(p-1) -4( q-m)=(-1 2-4(+-m =1 0 ))>,∴二次函数y=x2+px+q 的图象与直线y=x+m 总有两个不一样的交点;(3)由( 1)知,二次函数的分析式为: y=x2-4x+3,当 x=0 时, y=3.∴点 C 的坐标为C( 0, 3),令 y=0 ,即 x2-4x+3=0,解得 x1=1, x2=3,∴点 A 的坐标为A( 3, 0),由勾股定理,得AC=3 .∵M 点的坐标为 M( 2, -1),过 M 点作 x 轴的垂线,垂足的坐标应为(2,0),由勾股定理得, AM= ,过 M 点作 y 轴的垂线,垂足的坐标应为(0,-1),∴△CMA 是直角三角形, CM 为斜边, ∠CAM=90 °.直线 y=-与 △CMA 的外接圆的一个交点为 M ,另一个交点为 P ,则 ∠CPM =90°.即 △CPM 为 Rt △,设 P 点的横坐标为 x ,则 P ( x , - ).过点 P 作 x 轴垂线, 过点 M 作 y 轴垂线,两条垂线交于点E ,则 E ( x ,-1).过 P 作 PF ⊥y 轴于点 F ,则 F ( 0 , - ).在 Rt △PEM 222中, PM =PE +EM=( - +1) 2+( 2-x )2=-5x+5 .22222在 Rt △PCF 中, PC =PF +CF =x +( 3+ )=+3x+9.222, 在 Rt △PCM 中, PC +PM =CM得 +3x+9+ -5x+5=20,化简整理得 5x 2-4x-12=0 ,解得 x 1=2, x 2=- .当 x=2 时, y=-1,即为 M 点的横、纵坐标. ∴P 点的横坐标为 - ,纵坐标为 ,∴P (- , ).【分析】(1)依据题意求出 m ,解方程组 求出 M 点坐 标,依据二次函数的性 质求出 p 、q ,获得二次函数的分析式;(2)依据一元二次方程根的判 别式进行判断;(3)依据二次函数的性质求出点 C 的坐标、点 A 的坐标,依据勾股定理求出 CM ,依据勾股定理的逆定理判断 △CMA 是直角三角形,依据三角形的外接圆的性质计算.本题考察 的是二次函数知 识的综 合运用,掌握二次函数的性 质、一元二次方程根的判 别式是解题的重点.25.【答案】 ( 1)证明: ∵DC 2=CE ?CA ,∴∠CDB=∠DAC ,∵四边形 ABCD 内接于⊙ O,∴BC=CD ;( 2)解:方法一:如图,连结OC,∵BC=CD ,∴∠DAC=∠CAB ,又∵AO=CO,∴∠CAB=∠ACO,∴∠DAC=∠ACO ,∴AD ∥OC,∴= ,∵PB=OB,CD=,∴=∴PC=4又∵PC?PD =PB?PA∴4 ?( 4 +2)=OB?3OB∴OB=4,即 AB=2OB=8, PA=3OB=12 ,在 Rt△ACB 中,AC===2,∵AB 是直径,∴∠ADB=∠ACB=90 °∴∠FDA +∠BDC =90 °∠CBA+∠CAB=90 °∵∠BDC=∠CAB ,∴∠FDA =∠CBA,又∵∠AFD =∠ACB=90°,∴△AFD ∽△ACB∴在 Rt△AFP 中,设 FD =x,则 AF=,∴在 Rt△APF 中有,,求得 DF=.广东省专版广州市中考数学二模试卷(附答案)易证△PCO ∽△PDA ,可得=,△PGO ∽△PFA ,可得=,可得,=,由方法一中PC=4代入,即可得出DF =.【分析】(1)求出△CDE∽△CAD ,∠CDB=∠DAC 得出结论.(2)连结 OC,先证 AD ∥OC,由平行线分线段成比率性质定理求得 PC= ,再由割线定理 PC?PD=PB?PA求得半径为 4,依据勾股定理求得 AC= ,再证明△AFD ∽△ACB,得则设FD=x,AF= ,,可在 Rt△AFP 中,利用勾股定理列出对于x 的方程,求解得 DF.本题主要考察相像三角形的判断及性质,勾股定理及圆周角的相关知识的综合运用能力,重点是找准对应的角和边求解.第21 页,共 21页。

广州市中考二模数学试卷及答案(1)

广州市中考二模数学试卷及答案(1)中学数学二模模拟试卷一、选择题(本大题共10小题,共30.0分)1. 在0.3,-3,0,-√3这四个数中,最大的是( )A. 0.3B. −3C. 0D. −√32. 如下字体的四个汉字中,是轴对称图形的是( )A. B. C. D.3. 十九大中指出,过去五年,我国经济建设取得重大成就,经济保持中高速增长,在世界主要国家中名列前茅,国内生产总值从五十四万亿元增长到八十万亿元,稳居世界第二,八十万亿元用科学记数法表示为80000000000000元( )A. 8×1014元B. 0.8×1014元C. 80×1012元D. 8×1013元4. 下列运算正确的是( )A. (x 3) 4=x 7B. (x −2)2=x 2−4C. 2x 2⋅x 3=2x 5D. x 2+x 3=x 55. 某市6月份日平均气温统计如图所示,那么在日平均气温这组数据中,中位数是( )A. 8B. 10C. 21D. 226. 在下列网格中,小正方形的边长为1,点A 、B 、O 都在格点上,则∠A 的正弦值是( )A. √55B. √510C. 2√55D. 127. 已知关于x ,y 的二元一次方程组{ax −by =12ax+by=3的解为{y =−1x=1,则a -2b 的值是( )A. −2B. 2C. 3D. −38. 下列四个函数图象中,当x >0时,函数值y 随自变量x 的增大而减小的是( )A. B.C. D.9. 如图,AB 为⊙O 的直径,CD 是⊙O 的弦,∠ADC =35°,则∠CAB的度数为( ) A. 35∘ B. 45∘ C. 55∘ D. 65∘ 10. 如图所示,是反比例函数y =3x 与y =−7x 在x 轴上方的图象,点C 是y 轴正半轴上的一点,过点C 作AB ∥x 轴分别交这两个图象于A 点和B 点,若点P 在x 轴上运动,则△ABP 的面积等于( )A. 5B. 4C. 10D. 20二、填空题(本大题共6小题,共24.0分)11. 若∠1的对顶角是∠2,∠2的邻补角是∠3,∠3=45°,则∠1的度数为______. 12. 因式分解:mn (n -m )-n (m -n )=______. 13. 方程2x−3=3x 的解是______.14. 甲、乙、丙3名学生随机排成一排拍照,其中甲排在中间的概率是______. 15. 如图,四边形ABCD 是菱形,∠DAB =50°,对角线AC ,BD 相交于点O ,DH ⊥AB 于H ,连接OH ,则∠DHO =______度.16. 如图,C 为半圆内一点,O 为圆心,直径AB 长为2cm ,∠BOC =60°,∠BCO =90°,将△BOC 绕圆心O 逆时针旋转至△B ′OC ′,点C ′在OA 上,则边BC 扫过区域(图中阴影部分)的面积为______cm 2.(结果保留π)三、计算题(本大题共2小题,共12.0分)17.计算:(−12)-1+√12-(π-2018)0-4cos30°18.解不等式组:{x−1≤2−2x2x3>x−12,并把解集在数轴上表示出来.四、解答题(本大题共7小题,共54.0分)19.如图,在△ABC中,AB=AC=8,BC=12,用尺规作图作△ABC的BC边上的△中线AD,并求线段AD的长(保留作图痕迹,不要求写作法和证明)20.如图,在▱ABCD中,点E、F分别是AD、BC的中点,分别连接BE、DF、BD.(1)求证:△AEB≌△CFD;(2)若四边形EBFD是菱形,求∠ABD的度数.21.我校举行“汉字听写”比赛,每位学生听写汉字39个,比赛结束后随机抽查部分学生的听写结果,以下是根据抽查结果绘制的统计图的一部分.组别正确数字x人数A0≤x<810B8≤x<1615C16≤x<2425D24≤x<32mE32≤x<40n根据以上信息解决下列问题:(1)在统计表中,m=______,n=______,并补全条形统计图.(2)扇形统计图中“C组”所对应的圆心角的度数是______.(3)有三位评委老师,每位老师在E组学生完成学校比赛后,出示“通过”或“淘汰”或“待定”的评定结果.学校规定:每位学生至少获得两位评委老师的“通过”才能代表学校参加鄂州市“汉字听写”比赛,请用树形图求出E组学生王云参加鄂州市“汉字听写”比赛的概率.22.为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的32倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?23.如图,在△ABC中,AB=AC,AD⊥BC于点D,过点C作⊙O与边AB相切于点E,交BC于点F,CE为⊙O的直径.(1)求证:OD⊥CE;(2)若DF=1,DC=3,求AE的长.24.如图,四边形ABCD的四个顶点分别在反比例函数y=mx 与y=nx(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.25.如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛x2+bx+c经过点A、C,与AB交于点D.物线y=-49(1)求抛物线的函数解析式;(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.①求S关于m的函数表达式;x2+bx+c的对称轴l上,若存在点F,使△DFQ为直角三②当S最大时,在抛物线y=-49角形,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.答案和解析1.【答案】A【解析】解:∵-3<-<0<0.3∴最大为0.3故选:A.根据正数大于0,0大于负数,正数大于负数,比较即可本题考查实数比较大小,解题的关键是正确理解正数大于0,0大于负数,正数大于负数,本题属于基础题型.2.【答案】A【解析】解:根据轴对称图形的概念可知,A为轴对称图形.故选:A.根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此判断即可.本题考查轴对称图形的知识,要求掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.【答案】D【解析】解:80000000000000元=8×1013元,故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】C【解析】解:A、结果是x12,故本选项不符合题意;B、结果是x2-4x+4,故本选项不符合题意;C、结果是2x5,故本选项符合题意;D、x2和x3不是同类项,不能合并,故本选项不符合题意;故选:C.根据幂的乘方、完全平方公式、单项式乘以多项式、合并同类项法则分别求出每个式子的值,再判断即可.本题考查了幂的乘方、完全平方公式、单项式乘以多项式、合并同类项法则等知识点,能正确求出每个式子的值是解此题的关键.5.【答案】D【解析】解:∵共有4+10+8+6+2=30个数据,∴中位数为第15、16个数据的平均数,即中位数为=22,故选:D.根据条形统计图得到数据的总个数,然后根据中位数的定义求解.本题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).6.【答案】A【解析】解:由题意得,OC=2,AC=4,由勾股定理得,AO==2,∴sinA==,故选:A.根据勾股定理求出OA,根据正弦的定义解答即可.本题考查的是锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.7.【答案】B【解析】解:把代入方程组得:,解得:,所以a-2b=-2×(-)=2,故选:B.把代入方程组,得出关于a、b的方程组,求出方程组的解即可.本题考查了解二元一次方程组和二元一次方程组的解,能得出关于a、b的方程组是解此题的关键.8.【答案】C【解析】解:A、当x>0时,y随x的增大而增大,错误;B、当x>0时,y随x的增大而增大,错误;C、当x>0时,y随x的增大而减小,正确;D、当x>0时,y随x的增大先减小而后增大,错误;故选:C.需根据函数的图象得出函数的增减性,即可求出当x>0时,y随x的增大而减小的函数.本题综合考查了二次函数、一次函数、反比例函数的图象.解答此题时,采用了“数形结合”的数学思想,使问题变得直观化了,降低了题的难度.9.【答案】C【解析】解:由圆周角定理得,∠ABC=∠ADC=35°,∵AB为⊙O的直径,∴∠ACB=90°,∴∠CAB=90°-∠ABC=55°,故选:C.根据圆周角定理得到∠ABC=∠ADC=35°,∠ACB=90°,根据三角形内角和定理计算即可.本题考查的是圆周角定理的应用,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半和半圆(或直径)所对的圆周角是直角是解题的关键.10.【答案】A【解析】解:设点A(a,)∵AB∥x轴∴点B纵坐标为,且点B在反比例函数y=图象上,∴点B坐标(-,)∴S△ABP=(a+)×=5故选:A.设点A(a,),可得点B坐标(-,),即可求△ABP的面积.本题考查了反比例函数图象上点的坐标特征,设点A(a,),利用字母a表示AB 的长度和线段AB上的高,是本题的关键.11.【答案】135°【解析】解:∵∠2的邻补角是∠3,∠3=45°,∴∠2=180°-∠3=135°.∵∠1的对顶角是∠2,∴∠1=∠2=135°.根据对顶角相等、邻补角互补的性质求解.本题考查对顶角的性质以及邻补角的定义,是一个需要熟记的内容.12.【答案】n(n-m)(m+1)【解析】解:mn(n-m)-n(m-n),=mn(n-m)+n(n-m),=n(n-m)(m+1).故答案为:n(n-m)(m+1).先整理并确定公因式n(n-m),然后提取公因式即可得解.本题考查了提公因式法分解因式,准确确定公因式是解题的关键,要注意运算符号的处理,是本题容易出错的地方.13.【答案】x=9【解析】解:去分母得:2x=3x-9,解得:x=9,经检验x=9是分式方程的解,故答案为:x=9分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可确定出分式方程的解.此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.14.【答案】13【解析】解:∵甲、乙、丙3名学生随机排成一排拍照,共有甲乙丙、甲丙乙、乙甲丙、乙丙甲、丙甲乙、丙乙甲这6种等可能结果,而甲排在中间的只有2种结果,∴甲排在中间的概率为,故答案为:根据概率公式计算可得.此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.15.【答案】25【解析】解:∵四边形ABCD是菱形,∴OD=OB,∠COD=90°,∵DH⊥AB,∴OH=BD=OB,∴∠OHB=∠OBH,又∵AB∥CD,∴∠OBH=∠ODC,在Rt△COD中,∠ODC+∠DCO=90°,在Rt△DHB中,∠DHO+∠OHB=90°,∴∠DHO=∠DCO==25°,故答案为:25.根据菱形的对角线互相平分可得OD=OB,再根据直角三角形斜边上的中线等于斜边的一半可得OH=OB,然后根据等边对等角求出∠OHB=∠OBH,根据两直线平行,内错角相等求出∠OBH=∠ODC,然后根据等角的余角相等解答即可.本题考查了菱形的对角线互相垂直平分的性质,直角三角形斜边上的中线等于斜边的一半的性质,以及等角的余角相等,熟记各性质并理清图中角度的关系是解题的关键.16.【答案】1π4【解析】解:∵∠BOC=60°,△B′OC′是△BOC绕圆心O逆时针旋转得到的,∴∠B′OC′=60°,△BCO=△B′C′O,∴∠B′OC=60°,∠C′B′O=30°,∴∠B′OB=120°,∵AB=2cm,∴OB=1cm,OC′=,∴B′C′=,∴S扇形B′OB==π,S扇形C′OC==,∵∴阴影部分面积=S扇形B′OB+S△B′C′O-S△BCO-S扇形C′OC=S扇形B′OB-S扇形C′OC=π-=π;故答案为:π.根据已知条件和旋转的性质得出两个扇形的圆心角的度数,再根据扇形的面积公式进行计算即可得出答案.此题考查了旋转的性质和扇形的面积公式,掌握直角三角形的性质和扇形的面积公式是本题的关键.17.【答案】解:原式=-2+2√3-1-4×√32=-3.【解析】原式利用零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可求出值.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.【答案】解:解不等式x-1≤2-2x,得:x≤1,解不等式2x3>x−12,得:x>-3,将解集表示在数轴上如下:则不等式组的解集为-3<x≤1.【解析】分别求出不等式组中两不等式的解集,表示在数轴上找出解集的公共部分确定出不等式组的解集即可.此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,准确求出每个不等式的解集是解本题的关键.19.【答案】解:如图,AD 为所作;∵AB =AC =8,AD 为中线,∴AD ⊥BC ,BD =CD =12BC =6,在Rt △ABD 中,AD =√82−62=2√7.【解析】作线段BC 的垂直平分线可得到中线AD ,利用作图得到AD ⊥BC ,BD=CD=BC=6,然后根据勾股定理可计算AD 的长.本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了等腰三角形的性质.20.【答案】(1)证明:∵四边形ABCD 是平行四边形,∴∠A =∠C ,AD =BC ,AB =CD .∵点E 、F 分别是AD 、BC 的中点,∴AE =12AD ,FC =12BC .∴AE =CF .在△AEB 与△CFD 中,{AE =CF ∠A =∠C AB =CD,∴△AEB ≌△CFD (SAS ).(2)解:∵四边形EBFD 是菱形,∴BE =DE .∴∠EBD =∠EDB .∵AE =DE ,∴BE =AE .∴∠A=∠ABE.∵∠EBD+∠EDB+∠A+∠ABE=180°,∴∠ABD=∠ABE+∠EBD=1×180°=90°.2【解析】(1)根据平行四边形的性质和已知条件证明即可;(2)由菱形的性质可得:BE=DE,因为∠EBD+∠EDB+∠A+∠ABE=180°,所以∠ABD=∠ABE+∠EBD=×180°=90°,问题得解.本题考查了平行四边形的性质、全等三角形的判定和性质以及菱形的性质、等腰三角形的判断和性质,题目的综合性较强,难度中等.21.【答案】30 20 90°【解析】解:(1)∵总人数为15÷15%=100(人),∴D组人数m=100×30%=30,E组人数n=100×20%=20,补全条形图如下:(2)扇形统计图中“C组”所对应的圆心角的度数是360°×=90°,故答案为:90°;(3)记通过为A、淘汰为B、待定为C,画树状图如下:由树状图可知,共有27种等可能结果,其中获得两位评委老师的“通过”有7种情况,∴E 组学生王云参加鄂州市“汉字听写”比赛的概率为.(1)根据B 组有15人,所占的百分比是15%即可求得总人数,然后根据百分比的意义求解;(2)利用360度乘以对应的比例即可求解;(3)画树状图列出所有等可能结果,从中找到至少获得两位评委老师的“通过”结果数,利用概率公式计算可得.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式求事件A 或B 的概率.也考查了统计图.22.【答案】解:(1)设乙工程队每天能改造道路的长度为x 米,则甲工程队每天能改造道路的长度为32x 米,根据题意得:360x -36032x =3, 解得:x =40,经检验,x =40是原分式方程的解,且符合题意,∴32x =32×40=60. 答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米. (2)设安排甲队工作m 天,则安排乙队工作1200−60m 40天, 根据题意得:7m +5×1200−60m 40≤145,解得:m ≥10.答:至少安排甲队工作10天.【解析】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,根据工作时间=工作总量÷工作效率结合甲队改造360米的道路比乙队改造同样长的道路少用3天,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设安排甲队工作m天,则安排乙队工作天,根据总费用=甲队每天所需费用×工作时间+乙队每天所需费用×工作时间结合总费用不超过145万元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式.23.【答案】解:(1)∵⊙O与边AB相切于点E,且CE为⊙O的直径,∴CE⊥AB,∵AB=AC,AD⊥BC,∴BD=DC,又∵OE=OC,∴OD∥EB,∴OD⊥CE;(2)连接EF,∵CE为⊙O的直径,且点F在⊙O上,∴∠EFC=90°,∵CE⊥AB,∴∠BEC=90°.∴∠BEF+∠FEC=∠FEC+∠ECF=90°,∴∠BEF=∠ECF,∴tan∠BEF=tan∠ECF∴BF EF =EFFC,又∵DF=1,BD=DC=3,∴BF=2,FC=4,∴EF=2√2,∵∠EFC=90°,∴∠BFE=90°,由勾股定理,得BE=√BF2+EF2=2√3,∵EF∥AD,∴BE EA =BFFD=21,∴AE=√3.【解析】(1)⊙O与边AB相切于点E,且CE为⊙O的直径,得到CE⊥AB,由等腰三角形的性质三线合一得到BD=DC,根据三角形的中位线的性质得到结论;(2)连接EF,由CE为⊙O的直径,且点F在⊙O上,得到∠EFC=90°,又因为 CE⊥AB,得到∠BEF+∠FEC=∠FEC+∠ECF=90°,推出∠BEF=∠ECF,于是得到tan∠BEF=tan∠ECF,得到等积式,求得EF=2,由勾股定理得BE,再根据平行线分线段成比例,列出比例式求解.本题考查了切线的性质,圆周角定理,锐角三角形函数,勾股定理,平行线的性质,正确的作出辅助线是解题的关键.24.【答案】解:(1)①如图1,∵m=4,∴反比例函数为y=4x,当x=4时,y=1,∴B(4,1),当y=2时,∴2=4x,∴x=2,∴A(2,2),设直线AB的解析式为y=kx+b,∴{4k+b=12k+b=2,∴{k=−1 2b=3,∴直线AB的解析式为y=-12x+3;②四边形ABCD是菱形,理由如下:如图2,由①知,B(4,1),∵BD∥y轴,∴D (4,5),∵点P 是线段BD 的中点,∴P (4,3),当y =3时,由y =4x 得,x =43, 由y =20x 得,x =203, ∴PA =4-43=83,PC =203-4=83,∴PA =PC ,∵PB =PD ,∴四边形ABCD 为平行四边形,∵BD ⊥AC ,∴四边形ABCD 是菱形;(2)四边形ABCD 能是正方形,理由:当四边形ABCD 是正方形,记AC ,BD 的交点为P ,∴BD =AC当x =4时,y =m x =m 4,y =n x =n 4 ∴B (4,m4 中学数学二模模拟试卷一、选择题(本题共有12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的)1.四个实数0,-1,12,√2中最小的数是 A.0 B.-1 C. 12 D. √22.右图所示是一个圆柱形机械零件,则它的主视图是3.港珠澳大桥是连接香港,珠海和澳门的超大型跨海通道,总长55公里,数据55公里用科学计数法表示为A.5.5×104米B.5.5×103米C.0.55×104米 A.55×103米4.下列图形是中心对称图形但不是轴对称图形的是5.某小组6人在一次中华好诗词比赛中的成绩是85,90,85,95,80,85,则这组数据的众数是 A.80 B.85 C.90 D.956.化简x 2−1x+x−1x 2的结果是A.x−1xB.x+1xC.x 2−xD. x 2+x7.如图1,已知a ∥b ,将一块等腰直角三角板的两个顶点分别放在直线a,b 上,若∠1=23°,则∠2的度数为A.68B.112C.127D.1328.如图2,某数学兴趣小组为了测量树AB 的高度,他们在与树的底端B 同一水平线上的C 处,测得树顶A 处的仰角为α,且B ,C 之间的水平距离为a 米,则树高AB 为 A.a •tan α米 B.a tan α米 C. a •sin α米 D.a •cos α米9.下列命题中,是真命题的是A.三角形的内心到三角形的三个顶点的距离相等B.连接对角线相等的四边形各边中点所得的四边形是矩形C.方程2−x x−3+13−x=1的解是x=2D.若5x =3, 52x =610.从A 城到B 城分别有高速铁路与高速公路相通,其中高速铁路全程400km ,高速公路全程480km ,高铁行驶的平均速度比客车在高速公路行驶的平均速度多120km/h,从A 城到B 城乘坐高铁比客车少用4小时,设客车在高速公路行驶 的平均速度为xkm/h,依题意可列方程为 A.480x−400x+120=4 B.400x+120−480x=4C.480x−400x+4=120 D.480x−4−400x=12011.如图3,一小球从斜坡O 点处抛出,球的抛出路线可以用二次函数y =−12x 2+4x 刻画,斜坡可以用一次函数y =12x 刻画,则下列结论错误的是A.当小球到达最高处时,它离斜坡的竖直距离是6mB.当小球落在斜坡上时,它离O 点的水平距离是7mC.小球在运行过程中,它离斜坡的最大竖直距离是6mD.该斜坡的坡度是1:212.如图4,已知四边形ABCD 是边长为4的正方形,E 是CD 上一动点,将△ADE 沿直线AE 折叠后,点D 落在点F 处,DF 的延长线交BC 于点答案请填在答题卡内答案请填在答题卡内答案请填在答题卡内答案请填在答题卡内G,EF的延长线交BC于点H,AE与DG交于点O,连接OC,则下列结论中:①AE=DG;②EH=DE+BH;③OC的最小值为2√5−2;④当点H为BC中点时,∠CFG=45°,其中正确的有A.1个B.2个C.3个D.4个第二部分(非选择题,共64分)二、填空题(每小题3分,共12分)请把答案填在答题卷相应的表格里13.分解因式:4x2−4xy+y2=14.图5是一个可以自由转动的转盘,该转盘被平均分成6个扇形,随机转动该转盘一次,则转盘停止后指针指向词所在扇形的概率是15.如图6,菱形ABCD中,AB=6,∠DAB=60°,DE⊥AB于E,DE交AC于点F,则△CEF的面积是16.如图7,在平面直角坐标系XOY中,以O为圆心,半径为√10的圆O与双曲线y=kx(x>0)交于点A,B两点,若△OAB的面积为4,则k的值为三、解答题(本题共7小题,其中第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22题9分,第23题9分,共52分)17.计算:|√3−2|−(12)−1−(2019−π)0−3tan30°18.解不等式组{x−3≤2(x−2)x3−1>3x−14,并把它的解集在数轴上表示出来。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广东省广州市数学中考二模试卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共8题;共16分)
1. (2分)(-1)4的相反数是()
A . -1
B . 1
C . 0
D . 4
2. (2分) (2010七下·浦东竞赛) 0.000000375与下列数不等的是()
A . ;
B .
C . ;
D . .
3. (2分)(2019·重庆模拟) 如图⊙O的半径为5,弦AB=,C是圆上一点,则∠ACB的度数是()
A . 30°
B . 45°
C . 60°
D . 90°
4. (2分)
已知:如图,△ABC中,AD⊥BC于D,下列条件:
(1)∠B+∠DAC=90°;
(2)∠B=∠DAC;
(3);
(4)AB2=BD•BC.
其中一定能够判定△ABC是直角三角形的有()
A . 3个
B . 2个
C . 1个
D . 0个
5. (2分)(2019·朝阳模拟) 如图,在平面直角坐标系中,矩形ABCD的对角线AC经过坐标原点O,矩形的边分别平行于坐标轴,点B在函数(k≠0,x>0)的图象上,点D的坐标为(﹣4,1),则k的值为()
A .
B .
C . 4
D . ﹣4
6. (2分) (2019七上·福田期末) 对如图的几何体变换位置或视角,则可以得到的几何体是()
A .
B .
C .
D .
7. (2分) (2019八上·洪山期末) 下列因式分解,错误的是()
A . x2+7x+10=(x+2)(x+5)
B . x2﹣2x﹣8=(x﹣4)(x+2)
C . y2﹣7y+12=(y﹣3)(y﹣4)
D . y2+7y﹣18=(y﹣9)(y+2)
8. (2分)(2019·铁岭模拟) 如图,在边长为6的菱形中, ,以点为圆心,菱形的高为半径画弧,交于点 ,交于点 ,则图中阴影部分的面积是()
A .
B .
C .
D .
二、填空题 (共6题;共6分)
9. (1分)(﹣3×106)•(4×104)的值用科学记数法表示为________ .
10. (1分)已知关于x的方程x2﹣6x+m﹣1=0有两个不相等的实数根,则m的取值范围是________
11. (1分)从-3,-2,-1,0,2,3这七个数中,随机取出一个数,记为a,那么a使关于x的方程
有整数解,且使关于x的不等式组有解的概率为________.
12. (1分) (2017八下·姜堰期末) 如图,ΔABC中,∠ACB=90°,∠ABC=25°,以点C为旋转中心顺时针旋转后得到ΔA′B′C′,且点A在A′B′上,则旋转角为________.
13. (1分)已知,若B(﹣2,0),A为象限内一点,且点A坐标是二元一次方程x+y=0的一组解,请你写出一个满足条件的点A坐标________ (写出一个即可),此时△ABO的面积为________ .
14. (1分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①a+b+c<0;②a–b+c<0;
③b+2a<0;④abc>0,其中正确的是________ (填写正确的序号)。

三、解答题 (共10题;共69分)
15. (5分) (2020七上·合肥期末)
(1)计算:;
(2)先化简,再求值:,其中,.
(3)解方程:
16. (5分)将分别标有数字1,2,3的三张卡片洗匀后,背面朝上放在桌上.
(1)随机抽取一张,求抽到奇数的概率;
(2)随机抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,能组成哪些两位数?用树状图(或列表法)表示所有可能出现的结果.这个两位数恰好是4的倍数的概率是多少?
17. (5分)某文具店店主到批发中心选购甲、乙两种品牌的文具盒,预计购进乙品牌文具盒的数量y(个)与甲品牌文具盒的数量x(个)之间的函数关系如图所示.
(1)求y关于x的函数解析式(不必写出自变量x的取值范围);
(2)该店主用3000元选购了甲品牌的文具盒,用同样的钱选购了乙品牌的文具盒,乙品牌文具盒的单价比甲品牌的单价贵15元,求所选购的甲、乙文具盒的数量.
18. (7分)(2018·遵义模拟) 阅读下列材料:
社会消费品零售总额是指批发和零售业,住宿和餐饮业以及其他行业直接售给城乡居民和社会集团的消费品零售额,在各类与消费有关的统计数据中,社会消费品零售总额是表现国内消费需求最直接的数据.2012年,北京市全年实现社会消费品零售总额7702.8亿元,比上一年增长11.6%,2013年,全年实现社会消
费品零售总额8375.1亿元,比上一年增长8.7%,2014年,全年实现社会消费品零售总额9098.1亿元,比上一年
增长8.6%,2015年,全年实现社会消费品零售总额10338亿元,比上一年增长7.3%.
2016年,北京市实现市场总消费19926.2亿元,比上一年增长了8.1%,其中实现服务性消费8921.1亿元,增
长10.1%;实现社会消费品零售总额11005.1亿元,比上一年增长了6.5%.
根据以上材料解答下列问题:
(1)补全统计表:
2012﹣2016年北京市社会消费品零售总额统计表
年份2012年2013年2014年2015年2016年社会消费品零售总额(单位:亿元)________________________________________(2)选择适当的统计图将2012﹣2016年北京市社会消费品零售总额比上一年的增长率表示出来,并在图中
表明相应数据;
(3)根据以上信息,估计2017年北京市社会消费品零售总额比上一年的增长率约为________,你的预估理
由是________.
20. (5分)(2012·本溪) 如图,△ABC是学生小金家附近的一块三角形绿化区的示意图,为增强体质,他
每天早晨都沿着绿化区周边小路AB、BC、CA跑步(小路的宽度不计).观测得点B在点A的南偏东30°方向上,点
C在点A的南偏东60°的方向上,点B在点C的北偏西75°方向上,AC间距离为400米.问小金沿三角形绿化区
的周边小路跑一圈共跑了多少米?(参考数据:≈1.414,≈1.732)
21. (6分) (2015八上·番禺期末) 如图,点A,F,C,D在同一直线上,点B和E分别在直线AD的两侧,AB∥DE且AB=DE,AF=DC.求证:
(1) AC=DF;
(2)BC∥EF.
22. (7分) (2019九上·嘉兴期末) 嘉兴某公司抓住“一带一路”的机遇不断创新发展,生产销售某产品.该产品销售量y(万件)与售价x(元/件)之间存在图1(一条线段)所示的变化趋势,总成本P(万元)与销售量y(万件)之间存在图2所示的变化趋势,当6≤y≤10时可看成一条线段,当10≤y≤18时可看成抛物线P=- y2+8y+m.
(1)写出y与x之间的函数关系式;
(2)若销售量不超过10万件时,利润为45万元,求此时的售价为多少元/件?
(3)当售价为多少元时,利润最大,最大值是多少万元?(利润=销售总额-总成本)
23. (11分)(2017·冷水滩模拟) 如图,E,F分别是矩形ABCD的边AD,AB上的点,若EF=EC,且EF⊥EC.
(1)求证:△AEF≌△DCE;
(2)若CD=1,求BE的长.
24. (12分)如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图像与x轴交于A、B两点,与y轴交于点C,其顶点为P,连接PA、AC、CP,过点C作y轴的垂线l.已知顶点P的坐标为(-3,-4),线段PC之长为3
(1)求二次函数解析式。

(2) M为直线l上一点,且以M,C,O为顶点的三角形与以A,C,O为顶点的三角形相似,请直接写出点M的坐标。

(3)直线l上是否存在点D,使△PBD的面积等于△PAC的面积的3倍?若存在,求出点D的坐标;若不存在,
请说明理由.
参考答案一、单选题 (共8题;共16分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
二、填空题 (共6题;共6分)
9-1、
10-1、
11-1、
12-1、
13-1、
14-1、
三、解答题 (共10题;共69分)
15-1、
15-2、
15-3、16-1、17-1、18-1、18-2、
18-3、
20-1、21-1、
21-2、22-1、22-2、
22-3、
23-1、23-2、
24-1、
24-2、
24-3、。

相关文档
最新文档