热力学-统计物理第六章近独立粒子的最概然分布

合集下载

热力学与统计物理学第六章(应用)_近独立粒子的最概然分布

热力学与统计物理学第六章(应用)_近独立粒子的最概然分布

al ln N E ln l al 0 l l al ln l 0 l 1,2,
l
al l e
l
或者
al
e
l
l
玻耳兹曼系统的最概然分布:麦克斯韦-玻耳兹曼分布(M.B) 拉氏乘子由下式确定:
不是独立变量
al 0
需满足条件:
N al 0
l
E l al 0
l
引入拉格朗日乘子 和
,建立辅助函数:
W (a1 , a2 , , al , ) ln N E
其全微分:
al ln N E ln l al 0 l l 26
l l
N ln N al ln al al ln l
当 al 有 al 的变化时,应有 ln 0
l l
ln ln al 1al ln lal
l l
25
的结论,因为
al ln ln l l

l
l
1
(经典极限条件或 所有的l 非简并性条件)
la
F . D.
l ! l l 1 l al 1 al ! ! l l a l ! l a l

l
M . B. al ! N!
l
l a
M . B. al ! N!
确定第 i 个粒子的力 学运动状态。
确定系统的微观运动状态需要
2 Nr
个变量。
qi1 ,, qir ; pi1 ,, pir i 1,2,, N

第六章近独立粒子的最概然分布

第六章近独立粒子的最概然分布

近独立粒子的最概然分布热力学和统计物理的关系:热力学是热运动的宏观理论,以实验总结的定律触发,经过严密的逻辑推理得到物体宏观热性质间的联系,宏观过程进行的方向和限度,从而结实热现象的有关规律。

而统计物理是热运动的微观理论,基本观点是认为宏观物质系统由大量微观粒子组成,宏观性质是大量微观粒子的集体表现,宏观热力学量则是相应微观力学量的统计平均值。

热力学验证统计物理,而统计物理揭示了热力学的本质。

μ空间:设粒子的自由度为r 。

经典力学中,粒子在任意时刻的力学运动状态由粒子的r 个广义坐标12r q ,q ,q 和与之共轭的r 个广义动量12r p ,p ,p 在该时刻的数值确定。

粒子的能量ε是其广义坐标和广义动量的函数:1r 1r (q ,q ;p ,p )ε=ε用1r 1r q ,q ;p ,p 共2r 个变量为直角坐标构成一个2r 维空间,称为μ空间。

粒子运动状态的经典描述和量子描述:① 一维谐振子在经典力学中,任一时刻,粒子的位置由它的位移x 确定,与之共轭的动量为p mx ∙=,它的能量是其动量和势能之和:222p 1m x 2m 2ε=+ω 在量子力学中,圆频率为ω的线性谐振子,能量的可能值为:n 1(n )2ε=ω+ ② 转子在经典力学中,用球极坐标(r,,)θϕ描述质点的位置: x rsin cos ,y rsin sin ,z rcos =θϕ=θϕ=ϕ.与坐标共轭的动量为222p mr ,p mr sin ∙∙θϕ=θ=θϕ质点的能量可以表示为22211(p p )2I sin θϕε=+θ在量子力学中,转子的能量是:2M 2Iε= 其中,2M 只能取分立值22M l(l 1),l 0,1,2,=+=③ 自由粒子在经典力学中,在三维空间中运动,在任意时刻的位置可由坐标(x,y,z)确定,与之共轭的动量为:x y z p mx,p my,p mz ∙∙∙=== 自由粒子的能量就是它的动能:222x y z 1(p p p )2mε=++. 在量子力学中,设粒子处在边长为的立方容器内,粒子三个动量分量的可能值为x x x 2p n ,n 0,1,2,L π==±± y y y 2p n ,n 0,1,2,L π==±± z z z 2p n ,n 0,1,2,Lπ==±± x y z n ,n ,n 就是表征三维自由粒子运动状态的量子数,三维自由粒子能量的可能取值为22222x y z 222x y z 2n n n 12(p p p )2m m L++πε=++=态密度:在体积V 内,动量大小在p 到p+dp 的范围内,自由粒子可能状态数为234V p dp h π,根据公式,算出,在体积V 内,在到的能量范围内,自由粒子可能的状态数为312232V D()d (2m)d hπεε=εε D()ε表示单位能量间隔内的可能状态数,称为态密度。

热力学统计 第六章 课件

热力学统计 第六章 课件
系统的微观运动状态就是它的力学运动状态。
全同粒子组成的系统就是由具有完全相同的内禀属性 (相同的质量、电荷、自旋等)的同类粒子组成的系统。
近独立粒子组成的系统,是指系统中粒子之间相互作 用很弱,相互作用的平均能量远小于单个粒子的平均能量,因而 可以忽略粒子间的相互作用,将整个系统的能量表达为单 个粒子能量之和
3
不确定关系指出,粒子坐标的不确定值Δq和与之共
轭的动量的不确定值Δp满足ΔqΔp≈h。
如果用坐标q和动量p来描述粒子的运动状态,一个状 态必然对应于μ空间的一个体积,称之为一个相格。
对于自由度为1的粒子,相格大小为h。如果粒子自由 度为r,各自由度的坐标和动量的不确定值Δqi和Δpi分别 满足ΔqiΔpi≈h,相格的大小为 Δq1…Δqr Δp1 … Δpr≈hr
由此,前一式可理解为,将μ空间的体积Vdpxdpydpz除以 相格大小h3而得到的三维自由粒子在Vdpxdpydpz内的量子
态数。
对于自由粒子的动量,若采用球极坐标p、θ、φ来描 写,则有 px p sin cos , py p sin sin , pz p cos 动量空间体积元为p2sinθdpdθdφ。
§6.2 粒子运动状态的量子描述
微观粒子普遍具有波粒二象性。
德布罗意提出,能量为ε、动量为 p 的自由粒子联系 着圆频率为ω、波矢为 k 的平面波(德布罗意波)。
能量ε与圆频率ω,动量 p 与波矢 k 的关系为
, p k
此式称为德布罗意关系,适用于一切微观粒子。常量h和
ħ=h/2π都称为普朗克常量,数值为
经典描述 设粒子的自由度为r。 经典力学指出,粒子在任一时刻的力学运动状态由粒
子的r个广义坐标
q1,q2 ,…,qr 和与之共轭的r个广义动量 p1,p2,…,pr

热力学与物理统计第六章03

热力学与物理统计第六章03
在px到px+dpx可能的px有dnx个
在py到py+dpy可能的py有dny个
在pz到pz+dpz可能的pz有dnz个
第六章 近独立粒子的最概然分布
体积V=L3内,在px到px+dpx,py到py+dpy,pz到 pz+dpz的动量范围内自由粒子的量子态数
p
p p
由于不确定关系, xp h 。
第六章 近独立粒子的最概然分布
自由粒子的量子描述 首先讨论一维自由粒子,设粒子处于长度为L的一维 容器中,那么粒子可能的运动状态为 粒子运动应该满足周期性边界条件,粒子的德布罗 意波波长满足 那么,波矢满足 动量为
第六章 近独立粒子的最概然分布
能量为
nx就是表征一维自由粒子的运动状态的量子数
考虑三维自由粒子,设粒子处在边长为L的容器内
2
第六章 近独立粒子的最概然分布
体积V=L3内,在ε到ε+dε能量范围内自由粒子的量子 态数
D(ε)单位能量间隔内可能的状态数,称为态密度
第六章 近独立粒子的最概然分布
一维线性谐振子的经典描述及其μ 空间 质量为m的粒子在弹性力F=-Ax的作用下,将沿x轴 在原点附近做简谐振动,称为线性谐振子。振动 的圆频率为 粒子运动状态有坐标x和与之共轭的动量p来描述
第六章 近独立粒子的最概然分布
通常情况下,为了形象的描述粒子的运动状态,用 这2r个变量为直角坐标,建立一个2r维空间,我们 成为μ空间。粒子在某一时刻的运动状态与μ空间 中的一个点相对应。当粒子的运动状态随时间变化 时,粒子在μ空间的代表点发生相应的移动,描画 出一条轨迹。
第六章 近独立粒子的最概然分布
第六章 近独立粒子的最概然分布

第六章_近独立粒子的最概然分布

第六章_近独立粒子的最概然分布

2017年3月24日星期五
第六章 近独立粒子的最概然分布
4.本章的知识结构体系:
力学描述 系统微观 经典描述 粒子运 几何描述 态的描述 动状态 定域系 系统运动状 的描述 量子描述 量子态 玻色系 态的描述 非定域系 费米系 分布 定域系 最概然 等概率 与微 玻色 分布 原理 观态 费米系 关系
由力学知,粒子的运动状态是由能量来度量的。对近 独立粒子而言,粒子的能量仅与粒子本身状态有关而与其 它粒子的运动状态无关。 因此,近独立粒子系统的能量不包含粒子间的相互作 用能部分,而只是各粒子的动能之和。
2017年3月24日星期五 第六章 近独立粒子的最概然分布
一、粒子微观运动状态的经典描述
1.粒子运动状态的经典描述:
2017年3月24日星期五
第六章 近独立粒子的最概然分布
任何统计理论要涉及解决以下三个问题:
①研究对象是什么——引入何种假设、模型,如何描 述其研究对象的运动状态(力学、几何); ②如何求出概率分布——这是核心; ③如何求出热力学量的统计表达式。 本章为7、8两章作准备,研究解决前两个问题。
2.本章研究的系统:
2017年3月24日星期五 第六章 近独立粒子的最概然分布
第六章 近独立粒子的最概然分布
1.统计物理的基本观点和方法:
基本观点:
①宏观物体是由大量微观粒子组成的。 ②物质的宏观热性质是大量微观粒子运动的集体表现, 宏观物理量是相应微观量的统计平均值。(例:温度)
方法:
深入到微观,从单个粒子的力学规律以及粒子间的相互 作用出发,对大量粒子组成的体系运用概率统计的方法。
就组成系统的各个微观粒子而言,它们是遵 守力学运动规律的。如果粒子遵守经典力学的运 动规律,对粒子运动的描述称为经典描述;如果 粒子遵守量子力学运动规律,对粒子运动状态的 描述就称为量子描述。本节先讨论粒子运动的经 典描述。

第六章:近独立粒子的最概然分布 热力学统计物理汪志诚

第六章:近独立粒子的最概然分布  热力学统计物理汪志诚

新课:§6.1 粒子运动状态的经典描述
1-d线性谐振子 自由度: 1 相空间维数:2 位置:x
动量:p mx
p2 1 m 2 x 2 能量: 2m 2
半长轴
a 2m
能量椭圆:
p2 x2 1 2 2m m 2
能量曲面包围的相体积:
( ) ab 2
例二、线性谐振子
自由度: 1 空间维数:2
位置:x
动量:p mx
p2 1 2 2 m x 能量: 2m 2
能量椭圆
p2 x2 1 2 2m m 2
p
x
新课:§6.1 粒子运动状态的经典描述小结
例三、转子 自由度:2
空间维数:4
z
, 位置:
p r 2 动量: p r 2 sin 2
新课:§6.1 粒子运动状态的经典描述
能量ε包围的相体积:
0 x L px
2 px px 2m 2m


V , 0
2 px
dxdpx dx
0
L
2 m
2 m
dpx 2 2m L
2m
新课:§6.1 粒子运动状态的经典描述
无外力矩时,转子的总角动 量守恒量
M rp r M 2 p mr p 0 z // M 选 则 2
1 1 1 1 2 2 2 ( p p ) ( p ) 2 2 2I sin 2 I sin
(2)三维自由粒子: 分解 自由度:r 3, r 6 位置:x y z 投影
动量:p x mx p y my
三个2-d子相空间

第六章 近独立粒子的最概然分布(复习要点)

第六章  近独立粒子的最概然分布(复习要点)

第六章 近独立粒子的最概然分布(复习要点) 一、粒子微观运动状态的描述: 1、粒子运动状态的经典描述:①、相空间、自由度;广义坐标、广义动量;粒子微观状态()r r p p p q q q ,,,,,,2121⇔。

②、经典粒子的微观状态与μ空间体积元的对应关系: 对于经典系统,由于对坐标和动量的测量总存在一定的误差,假设0h p q =∆∆,这时经典系统的粒子运动状态不能用一个点表示,而必须用一个体积元表示,该体积元的大小rr rh p p qq 011=⋅δδδδ 即经典系统中粒子的一个微观状态在 μ 空间所占的体积。

这里0h 由测量精度决定的一个常数。

经典理论上00→h将μ空间划分为许多体积元lτ∆,以lε表示运动状态处在lτ∆内的粒子所具有的能量,则体积元lτ∆内粒子可能的运动状态数为r l lh 0τω∆=k l p p q q l r r l ,...2,1;)(11=∆∆∆∆=∆ τ其中2、粒子运动状态的量子描述:①、波粒二象性、波函数、量子力学中力学量的算符表示;薛定谔方程一组量子数波函数粒子微观运动状态↔↔这组量子数的数目等于粒子的自由度数(不考虑自旋,考虑自旋时应乘为自旋量子数,S S 12+)②、微观体积下,微观粒子的运动状态由波函数确定或由r (r 为自由度数。

空间自由度和一个自旋自由度)个量子确定。

并且微观粒子能量值和动量值的分离性很显著。

③、宏观体积下,量子态与相体积的关系---半经典近似如果粒子局域于宏观体积下运动,能量值和动量值是准连续的。

若粒子的自由度为r ,一个量子态占据的相体积为rh 。

在相体积元rrdp dp dq dq d ∙∙∙∙= 11τ内的可能微观量子态为rrr r h dp dp dq dq h d ∙∙∙∙= 11τ考虑r=3的六维相空间,相体积元zyxdp dp dxdydzdp d =τ内的微观量子态为33hdp dp dxdydzdp hd zy x =τ二、系统微观运动状态的描述1、全同粒子与近独立粒子系; ①、系统由具有完全相同属性(相同的质量、电荷、自旋等)的同类粒子组成。

热力学与统计物理教案:第六章 近独立粒子的最概然分布

热力学与统计物理教案:第六章 近独立粒子的最概然分布

为随机事件 A 出现可能性的客观量度,称为事件 A 发生的概率 PA :
lim PA
N
NA N
PA 0 , A 不可能发生; PA 1, A 肯定发生
显然 0 PA 1 。事实上,试验的次数不可能无限多,但是,只要试验次数足够多,我们就可
以用 NA 来表示事件发生的概率。如掷一质量均匀的硬币,若只掷少数几次,正面向上和背 N
统计物理中讨论的系统是由大量微观粒子组成的,大约有1023 数量级。描述大量粒子组
成的系统的宏观性质的物理量称为宏观量,描述单个粒子性质的物理量称为微观量。 粒子(指微观粒子)的运动状态是指它的力学运动状态。如果粒子遵从经典力学的运动
规律,对粒子运动状态的描述称为经典描述。如果粒子遵从量子力学规律,对粒子运动状态 的描述称为量子描述。当然,从本质上讲,微观粒子遵从量子力学规律,不过在一定极限条 件下,经典理论还是有意义的。 粒子运动状态的经典描述
相体积。 统计物理中的几个例子
(1)自由粒子
当自由粒子在三维空间中运动时,其自由度 3 ,所以相空间是 6 维的,粒子在任一时刻 的位置由坐标 x, y, z 确定,共轭的动量分别为 px mx , py my , pz mz ,
相空间坐标分别为 x, y, z, px , py , pz 。
微观粒子服从量子力学规律。
波粒二象性: 粒子 波
, p k
, p 粒子量,
,
k
波量
普朗克常量 h 1.0551034 J S , 2
量纲: T E L P M
海森堡不确定关系 qp ~ h
经典:粒子沿轨道运动。
量子:无轨道, x, p 不能同时确定。
量子态——量子力学中微观粒子的运动状态。 量子态数的计算,量子态的描述
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不同的系统微观状态——其中任意一个的数值改变。 几何表示: μ空间 N 个代表点。 任意一个代表点的位置发生变化——不同的系统微观状态。
经典统计(与玻耳兹曼统计具有类似的形式)。
四、 量子系统的微观状态 非定域系粒子不可区分,确定几个粒子在哪个量子 态,不确定哪几个粒子在这个量子态。 泡利不相容原理: 自旋整半数的粒子,在一个量子态
粒子间有相互作用,但可忽略不计
主要内容
系统微观状态的经典描述和量子描述 等概率原理 三种微观状态分布(波耳兹曼分布、波色分布、
费米分布)及相互关系
§ 6.1 粒子运动状态的经典描述
粒子的 运动状 态
指粒子 力学运 动状态
粒子遵守经典力学规 粒子遵守量子力学规
一、 广义动量和广义坐标
经典描述 量子描述
量子态由一组量子数表征。
简并度
一个能级对应的不同的量子态的数目。
V L3 ,中d量子态数
D()4h 3 V(2m)3/21/2d.
量子描述与经典描述之间的关系
对于宏观大小的容积, ħ是很小的量,量子描述趋近
于经典描述。
以一维自由粒子为例,其相空间的体积元为 x。p
p pp
p
由于不确定关系,xph 。
简并度 一个能级对应的不同的量子态的数目。
p x22 p m y2p z22 m 2 22( L n x2 n y2 n z2).
2 22 mL2
能级的简并度
nx 1, ny nz 0, ny 1, nx nz 0,

nz 1, ny nx 0.
2
2 22
mL2
简并度
nx 1,ny 1,nz 0, nz 1,ny 1,nx 0.
在量子力学中,微观粒子的运动状态为量子态。
量子态由一组量子数表征,每组量子数的数目等于粒 子的自由度数目。
量子态中粒子的占据几率用波函数描述。
(x,y,z,t)2dxdydz 表示t 时刻x,y,z处在dxdydz内发
三、举例
现粒子的几率。
1、自旋状态
z
Sz 2
粒子质量 m,电荷 –e, 自旋角动量 。(量子化的)
注意:一个微观状态对应一个确定的分布,而 一个分布却可以包含大量不同的微观状态。
1 2
l
1 2
l
a 1 a 2 a l
1、玻耳兹曼系统 粒子可以编号。
2
自旋磁矩: eS
m
两个量子态,一个量子数
Sz
2
z
e 2m
BeB
2m
2、线性谐振子 (n1)
2
一个量子数 n。 n0,1,2,
3、自由粒子
一维情况,粒子在长 L 的区间。
视粒子为波。它
在区间 L 内应形
成驻波。波长
L nx
波矢
2
kx L nx
o
L
一个量子数 nx 0,1,2,3,
px kx 2Lnx
量子一词来自拉丁语,原意为“多少”,代表“相当数量 的某事” ,是一个不可分割的基本个体。例如,一个“光的 量子”是光的单位。
其基本概念是物质性质也许是“可量子化的”。“量子化 ” 指其物理量的数值会是一些特定的数值,而不是任意值。
例如,一定状态下的原子中,电子的能量是可量子化的。 这能决定原子的稳定和一般问题。
L
dnz 2dpz
V L3 , pxpx,dpx py 和py dpy 中的pz量子pz 态d数pz 为
dxn dyn dzn(2 L)3dxp dyp dzphV3 dpxdpydpz
理解:
由测不准关系,对一维粒子
, 最精

。若用q.p 描述运动状态,即代表点的
位置时,则μ空间内h大小的相体积内只能有一个运
等能线:
p2 Ax2 1
的椭圆。
2m 2
x
半长轴 a 2 2
A m2
2
半短轴 b 2m
椭圆面积 Sab2
两个椭圆面积差 S 2
z
3、转子(双原子分子的转动)
r
质点坐标:(x, y, z)
O
y 动能:1m(x 2y2z 2)
2
如果用球极坐标r,θ,φ
x
描述质点位置:
x r si c n o ,y r si sn i ,z n r co
一、全同和近独立粒子的宏观系统
全同粒子 具有相同物理性质(质量、电荷,自旋等)的 微观粒子
氢气、氧气、纯水、纯铁等等。
空气、合金等不是全同粒子系统。
近独立粒子 粒子之间的相互作用可以忽略不计。(有微弱相 互作用,以保证系统可从非平衡态到达平衡态。
系统粒子数 N
能量
N
E
i
i 1
这些粒子有不同的运动状态 (j 相空间不同的体积元)。 其中处于运动状态 j的粒子有 个n j,则系统能量又为
具有 r个自由度的粒子具有
广义坐标: q1, qr
广义动量: p1, pr
能量:
( q 1 , q r ,p 1 , p r)
粒子运动状态: 广义坐标和广义动量的一组确定值
(q 1 , q r,p 1 ,p r)
两个不同的运动状态:两组广义坐标和广义动量中 至少一个元不同。如
(q 1 , q i q r,p 1 , p r)
统计假定,其正确性由其推论的正确与否决定。
等概率原理:系统每一个微观状态以相同的概率 出现。
导致物理结果: 同样条件,
宏观态1,微观状态数 n1 宏观态2,微观状态数 n2
宏观态1出现几率大。 n1 n2
于是:“宏观态1是平衡态”?!
必须计算每个宏观态的微观态数。
§6.5 分布和微观状态
一、分布的定义
系统的一个分布就是N 个粒子按能级的一套填布数
E, N,V 确定的宏观状态
能级 简并度
1 2 1 2
l l
粒子数 a 1 a 2 a l
al 表示一个分布,满足
alN , allE ;
l
l
二、 分布对应的微观状态数
微观状态:分布只管能级εL上的粒子数aL,当分 布{aL}一定时: ①对玻耳兹曼系,微观状态要确定出是哪些粒 子在这些能级中,在什么量子态上。 ②对非定域系,微观状态要确定出aL个粒子对 ωL 个量子态的占据方式。
动状态。否则违反测不准关系,对于三维自由粒子,
h3大小的相格内只能有一个运动状态;对于有r 个自
由度的粒子,hr相体积内只能有一个状态。所以在相
体积之dw内的量了态数为
V L3 ,pp中d的p 量子态数 ,与动量的方向无关,积分之
dnhV3
p2sindpd
4V
h3
p2dp.
D(p)dp4Vp2dp
AB
A
B
AB
BA
B
A
BA
玻色统计
态1 态2 态3 AA
AA
AA AA
A
A
AA
费米统计
态1 态2 态3 AA
A
A
AA
§ 6.4 等概率原理
在系统可能出现的各种宏观状态中,只有一个是 平衡态。 如何从各种状态中将平衡态找出来?必须确定一个 标准。
系统的宏观热力学状态由参量 U,V,n确 定。
不同的宏观状态对应的微观状态数目不一样。 ——从微观状态出发研究不同的宏观状态的特征,以区分它 们,并确定何为平衡态。
E n j j j0

E
N
j0
nj
N
j
N p j j
j0
0 pj 1 p j 1 j
是个概率。
找到微观粒子系统对能量分布的概率,就可以求出系统的能量。
目的:求出系统在热平衡状态的概率分布。
二、可分辨和不可分辨粒子系统
微观粒子全同性原理 (量子理论):
微观粒子(位置可以在大范围变化——非定域系) 是不可分辨的。
运动状态 (x, p)
在边长 L 的线段上。p p1 p2 Nhomakorabeao
x1
代表点
另一个代表点。
Lx
随时间推移,代表点划 出轨迹。
等能面(线):相空间中具有相同能量的代表点连成的面(线)。
p2 2m
:表明轨迹划出来的直线。
2、一维线性谐振子
运动状态
p
o
(x, p) 二维的相空间
p2 Ax2
2m 2
1
统计物理
热现象的微观统计理论
统计物理的基本观点和方法
基本观点: ①宏观物体是由大量微观粒子组成的。 ②物质的宏观热性质是大量微观粒子运动的集体 体现,宏观物理量是相应微观量的统计平均值。
方法: 深入到微观,从单个粒子的力学规律以及粒子间的相互作用 出发,对大量粒子组成的体系运用概率统计的方法。
建立统计物理要解决以下三个问题:
研究对象的描述——引入何种假设、模型,如何 描述研究对象的运动状态(力学、几何)(第六章前 3节)。
如何求出概率分布——这是核心(第六章后5节)。
如何求出热力学量的统计表达式(七 、八 两章)。
主要内容
系统微观状态的经典描述和量子描述 等概率原理及微观状态分布 玻耳兹曼统计 玻色统计与费米统计
第六章 近独立粒子的最概然分布
x
x
波粒
二相性
重叠
t1
t2 t
经典系统:粒子可分辨
t1
t2
t
量子系统:粒子不可分辨
定域的量子系统(定域系)粒子可分辨(如粒子有固定的平衡 位置,如固体的原子)。
三、经典微观系统的运动状态 粒子可分辨。 系统的微观状态确定, 每个粒子的微观状态确定。
第 i 个粒子的微观状态 (q i1 , q ii q ir ,p i1 , p ir ) Nr 个广义坐标和 Nr 个广义动量都确定。
相关文档
最新文档