更新:重庆大学材料力学考研重点知识点详解

合集下载

重庆大学材料考研专业课必背知识点

重庆大学材料考研专业课必背知识点

历年考研真题-知识点总结第一章金属的晶体结构一、名词解释金属键:贡献出价电子的原子,则变为正离子,沉浸在电子云中,他们依靠运动于其间的公有化的自由电子的静电作用而结合起来,这种结合方式叫做金属键。

空间点阵:由这些阵点有规则地周期性重复排列所形成的三维空间阵列称为空间点阵。

晶胞:晶格中选取一个能够反映晶格特征,分析晶体中原子排列规律性的最小几何单元。

晶向(面)指数:为了研究和表述不同晶面(晶向)的原子排列情况及其在空间的位向,形成的一种方法。

同素异构转变:当外部条件(如温度和压强)改变时,金属内部由一种晶体结构向另外一种晶体结构的转变。

晶体缺陷:在实际应用的金属材料中,总是不可避免地存在着一些原子偏离规则排列的不完整性区域,这就是晶体缺陷。

刃型位错:简单立方晶体中,某一原子面在晶体内部中断,这个原子面中断处的边缘就是一个刃型位错。

螺型位错:由于位错线附近的原子是按螺旋形排列的,所以这种位错叫做螺型位错。

晶界:晶体结构相同但位向不同的晶粒之间的界面称为晶界。

亚晶界:实际晶体中,晶粒内的原子排列并不是十分整齐的,彼此间存在极小的位向差,这些晶块之间的内界面称为亚晶界。

共格界面:指界面上的原子同时位于两相晶格的结点上,为两种晶格所共有。

非共格界面:界面两边原子排列相差越大,则弹性畸变越大,这时相界的能量提高,当畸变能高至不能维持共格关系时,则成为非共格相界。

半共格界面:介于共格与非共格之间,界面上的两相原子部分地保持着对应关系。

晶体结构:晶体中原子在三维空间有规律的周期性的具体排列。

二、实际金属晶体中存在哪些晶体缺陷?他们对性能有什么影响?答:⑴ 根据晶体缺陷的几何形态特征,可将它们分为以下三类:∙点缺陷:其特征是三个方向上的尺寸都很小,相当于原子的尺寸,例如空位、间隙原子等。

∙线缺陷:其特征是在两个方向上的尺寸很小,另一个方向上的尺寸相对很大。

属一类的主要是位错。

∙面缺陷:其特征是在一个方向上的尺寸很小,另外来那个方向上的尺寸相对很大,例如晶界、亚晶界等。

(完整版)材料力学各章重点内容总结

(完整版)材料力学各章重点内容总结

材料力学各章重点内容总结第一章 绪论一、材料力学中工程构件应满足的3方面要求是:强度要求、刚度要求和稳定性要求。

二、强度要求是指构件应有足够的抵抗破坏的能力;刚度要求是指构件应有足够的抵抗变形的能力;稳定性要求是指构件应有足够的保持原有平衡形态的能力。

三、材料力学中对可变形固体进行的3个的基本假设是:连续性假设、均匀性假设和各向同性假设。

第二章 轴向拉压一、轴力图:注意要标明轴力的大小、单位和正负号。

二、轴力正负号的规定:拉伸时的轴力为正,压缩时的轴力为负。

注意此规定只适用于轴力,轴力是内力,不适用于外力。

三、轴向拉压时横截面上正应力的计算公式:N F Aσ= 注意正应力有正负号,拉伸时的正应力为正,压缩时的正应力为负。

四、斜截面上的正应力及切应力的计算公式:2cos ασσα=,sin 22αστα=注意角度α是指斜截面与横截面的夹角。

五、轴向拉压时横截面上正应力的强度条件[],maxmax N F A σσ=≤六、利用正应力强度条件可解决的三种问题:1.强度校核[],maxmax N F A σσ=≤一定要有结论 2.设计截面[],maxN F A σ≥ 3.确定许可荷载[],max N F A σ≤七、线应变l l ε∆=没有量纲、泊松比'εμε=没有量纲且只与材料有关、 胡克定律的两种表达形式:E σε=,N F l l EA∆= 注意当杆件伸长时l ∆为正,缩短时l ∆为负。

八、低碳钢的轴向拉伸实验:会画过程的应力-应变曲线,知道四个阶段及相应的四个极限应力:弹性阶段(比例极限p σ,弹性极限e σ)、屈服阶段(屈服极限s σ)、强化阶段(强度极限b σ)和局部变形阶段。

会画低碳钢轴向压缩、铸铁轴向拉伸和压缩时的应力-应变曲线。

九、衡量材料塑性的两个指标:伸长率1100l l lδ-︒=⨯︒及断面收缩率1100A A Aϕ-︒=⨯︒,工程上把5δ︒≥︒的材料称为塑性材料。

十、卸载定律及冷作硬化:课本第23页。

重庆大学考研材料力学习题集全面分析

重庆大学考研材料力学习题集全面分析

模拟考试:在备考过程中,进行模拟考 试,检验自己的学习效果
制定时间表:根据习题集的内容和自己 的时间安排,制定合理的时间表
调整计划:根据模拟考试的结果,调整 学习计划,提高学习效率
练习时间安排
每天安排至少2小时进行习题集的练习 每周进行一次总结,回顾本周的练习内容和难点 每月进行一次模拟考试,检验自己的学习效果 在考试前一周,重点复习错题和难点,查漏补缺
综合题则要求学 生能够将所学知 识应用于实际问 题的解决
习题集特点
涵盖全面:包括各种类型的材料力学习题 难度适中:适合不同水平的考生进行复习 解析详细:每道题都有详细的解答和分析 更新及时:根据最新考试大纲和真题进行更新和调整
3
习题集内容分析
力学基础部分
材料力学:应力、应变、弹 性模量等基本概念和原理
通过对习题集的分析,考生可以找 到自己的薄弱环节,有针对性地进 行复习和提升。
熟悉考试题型和难度
习题集涵盖了各种题型,有助于考 生全面了解考试题型
通过练习习题集,考生可以检验自 己的学习效果,查漏补缺
添加标题
添加标题
添加标题
添加标题
习题集的难度与真题接近,有助于 考生适应考试难度
习题集可以帮助考生掌握解题技巧, 提高解题速度和准确性
习题难度:从易到难,循序渐进
添加标题
添加标题
添加标题
添加标题
习题类型:选择题、填空题、计算 题、证明题等
习题来源:历年考研真题、教材课 后习题、教师自编题等
习题集结构
习题集分为基础 题、提高题和综 合题三部分
基础题主要考查 学生对基本概念、 定理和公式的理 解和掌握
提高题侧重于考 查学生对知识点 的灵活运用和综 合分析能力

材料力学考研重点总结

材料力学考研重点总结

材力基本考试就那几块,从第一册开始第二章第三章轴向拉压,扭转,一般只出选择,通常与第二册第一章弯曲中心结合着考,每年两个选择差不多,注意一下基础知识,仔细看一下书,总结一下基础知识就可以,把拉压和扭转的能量公式记住,在第二册能量法计算位移和力的时候会用到,第四章弯曲要出两道大题,主要是画剪力弯矩图和杆件的强度校核,强度校核一般与第七章强度理论和主应力还有第二册主应变结合在一起考,这章是重点要把课后的五十八道习题仔细做一遍,做会了。

第五章挠度和转角只看叠加法,记住书后附表中的每一个基本图示,把书上的例题和课后几道题看透了就行,第六章一般与第二册能量法结合起来考一个用能量法解超静定的题,要是时间不够的话就不要看了,直接等看第二册能量法的时候再一起看,第七章很重要,要出选择和大题,强度理论不用说每年都是重点,应力应变计算那主要看一类题就行,就是:用应变片测得在三十度的应变是多少多少,告诉你弹模,泊松比,让你求应力一类题,我忘记是课后哪个题了,我记得课后给的一般是30或者45度角的,总之看这一类题就行了,第八章主攻弯剪扭组合变形,只要这一个弄懂,其他什么弯扭组合,斜弯曲就迎刃而解了,对于铆钉连接计算看一下书上的例题就行,剪切和挤压也是以例题为主。

第九章通常与第二册动应力结合起来,考一个压杆稳定的大题,这部分以真题为主,看一下真题就知道他的具体类型和具体形式了。

接下来是第二册,第一章主看开口薄壁界面的弯曲中心和切应力流,第二章不看,第三章能量法必看,从头看到尾,遇题就做,遇知识点就背,可以说这章是真正花时间的,一定要看好,理解透。

第四章看一下应变片的贴法和主应变和应变圆的画法,这里会与第七章结合出大题,但是有一点,凡是用应变圆可以解决的都可以用应力圆解决,接下来就是看一下动荷载和疲劳验算,疲劳不出大题,动荷载只需要记住匀加速上升,水平冲击,自由落体,向下匀速冲击几种情况下的动荷载系数Kd就行。

基本就是这些,其他就没什么了,等我再回去看看有什么落下的,我再给你补充,哦对了我QQ是344963551,你可以直接加我QQ,我们再聊也材力下册重点概括材力第二册,第一章主看开口薄壁界面的弯曲中心和切应力流,第二章不看,第三章能量法必看,从头看到尾,遇题就做,遇知识点就背,课后题自己选三分之二来做,可以说这章是真正花时间的,一定要看好,理解透。

“材料力学”重点归纳

“材料力学”重点归纳

“材料力学”重点归纳
第一章静力学基础
掌握:静力学基本概念和定理:力、力偶、平衡力系、等效力系、合力投影定理、合力矩定理、力线平移定理、静力学的基本任务等。

重点掌握:掌握各种力系的简化和平衡方程应用。

了解材料力学的发展沿革,理解本课程的任务、内容、目的。

第二章材料力学绪论
掌握:了解材料力学的基本任务和杆件的基本变形。

重点掌握:材料力学的基本概念:弹性变形、塑性变形、破坏、强度、刚度、稳定性、内力、应力、应变等。

第三章应力分析和应变分析理论
掌握:应力状态、应力张量、应力张量不变量、空间应力圆、等效应力、八面体应力、变形位移、应变状态、应变张量、偏斜应力张量、偏斜应变张量等概念。

应力分析理论、应变分析理论。

重点掌握:应力状态、应力张量、应力张量不变量、空间应力圆、等效应力、八面体应力、变形位移、应变状态、应力分析理论。

第四章固体材料的弹性本构关系和塑性本构关系
掌握:固体材料弹性变形和塑性变形的主要特点、弹性本构关系(广义胡克定律)、主应力空间、屈服函数、常用屈服条件、常用强度理论等。

重点掌握:固体材料弹性变形和塑性变形的主要特点、弹性本构关系(广义胡克定律)、常用屈服条件和强度理论等。

第五章材料力学实验
了解和掌握金属材料单轴拉伸和压缩力学实验的原理和方法。

(完整版)材料力学必备知识点

(完整版)材料力学必备知识点

天行健,君子以自强不息。

地势坤,君子以厚德载物。

——《易经》其身正,不令而行;其身不正,虽令不从。

——《论语》材料力学必备知识点1、 材料力学的任务:满足强度、刚度和稳定性要求的前提下,为设计既经济又安全的构件,提供必要的理论基础和计算方法。

2、 变形固体的基本假设:连续性假设、均匀性假设、各向同性假设。

3、 杆件变形的基本形式:拉伸或压缩、剪切、扭转、弯曲。

4、 低碳钢:含碳量在0.3%以下的碳素钢。

5、 低碳钢拉伸时的力学性能:弹性阶段、屈服阶段、强化阶段、局部变形阶段极限:比例极限、弹性极限、屈服极限、强化极限6、 名义(条件)屈服极限:将产生0.2%塑性应变时的应力作为屈服指标7、 延伸率δ是衡量材料的塑性指标塑性材料 随外力解除而消失的变形叫弹性变形;外力解除后不能消失的变形叫塑性变形。

>5%的材料称为塑性材料: <5%的材料称为脆性材料8、 失效:断裂和出现塑性变形统称为失效9、 应变能:弹性固体在外力作用下,因变形而储存的能量10、应力集中:因杆件外形突然变化而引起的局部应力急剧增大的现象11、扭转变形:在杆件的两端各作用一个力偶,其力偶矩大小相等、转向相反且作用平面垂直于杆件轴线,致使杆件的任意两个横截面都发生绕轴线的相对转动。

12、翘曲:变形后杆的横截面已不再保持为平面;自由扭转:等直杆两端受扭转力偶作用且翘曲不受任何限制;约束扭转:横截面上除切应力外还有正应力13、三种形式的梁:简支梁、外伸梁、悬臂梁14、组合变形:由两种或两种以上基本变形组合的变形15、截面核心:对每一个截面,环绕形心都有一个封闭区域,当压力作用于这一封闭区域内时,截面上只有压应力。

16、根据强度条件 可以进行(强度校核、设计截面、确定许可载荷)三方面的强度计算。

17、低碳钢材料由于冷作硬化,会使(比例极限)提高,而使(塑性)降低。

18、积分法求梁的挠曲线方程时,通常用到边界条件和连续性条件;因杆件外形突然变化引起的局部应力急剧增大的现象称为应力集中;轴向受压直杆丧失其直线平衡形态的现象称为失稳19、圆杆扭转时,根据(切应力互等定理),其纵向截面上也存在切应力。

材料力学考研复习笔记

材料力学考研复习笔记

材料力学(一)轴向拉伸与压缩【内容提要】材料力学主要研究构件在外力作用下的变形、受力与破坏、失效的规律。

为设计既安全可靠又经济合理的构件,提供有关强度、刚度与稳定性分析的基本理论与方法。

【重点、难点】重点考察基本概念,掌握截面法求轴力、作轴力图的方法,截面上应力的计算。

【内容讲解】一、基本概念强度——构件在外力作用下,抵抗破坏的能力,以保证在规定的使用条件下,不会发生意外的断裂或显著塑性变形。

刚度——构件在外力作用下,抵抗变形的能力,以保证在规定的使用条件下不会产生过分的变形。

稳定性——构件在外力作用下,保持原有平衡形式的能力,以保证在规定的使用条件下,不会产生失稳现象。

杆件——一个方向的尺寸远大于其它两个方向的尺寸的构件,称为杆件或简称杆。

根据轴线与横截面的特征,杆件可分为直杆与曲杆,等截面杆与变截面杆。

二、材料力学的基本假设工程实际中的构件所用的材料多种多样,为便于理论分析,根据它们的主要性质对其作如下假设。

(一)连续性假设——假设在构件所占有的空间内均毫无空隙地充满了物质,即认为是密实的。

这样,构件内的一些几何量,力学量(如应力、位移)均可用坐标的连续函数表示,并可采用无限小的数学分析方法。

(二)均匀性假设——很设材料的力学性能与其在构件中的位置无关。

按此假设通过试样所测得的材料性能,可用于构件内的任何部位(包括单元体)。

(三)各向同性假设——沿各个方向均具有相同力学性能。

具有该性质的材料,称为各向同性材料。

综上所述,在材料力学中,一般将实际材料构件,看作是连续、均匀和各向同性的可变形固体。

三、外力内力与截面法(一)外力对于所研究的对象来说,其它构件和物体作用于其上的力均为外力,例如载荷与约束力。

外力可分为:表面力与体积力;分布力与集中力;静载荷与动载荷等。

当构件(杆件)承受一般载荷作用时,可将载荷向三个坐标平面(三个平面均通过杆的轴线,其中两个平面为形心主惯性平面)内分解,使之变为两个平面载荷和一个扭转力偶作用情况。

重庆大学考研材料力学习题集全面分析

重庆大学考研材料力学习题集全面分析

绪论一、是非题1.1材料力学主要研究杆件受力后变形与破坏的规律。

()1.2内力只能是力。

()1.3若物体各点均无位移,则该物体必定无变形。

()1.4截面法是分析应力的基本方法。

()二、选择题1.5构件的强度是指(),刚度是指(),稳定性是指()A.在外力作用下构件抵抗变形的能力B.在外力作用下构件保持其原有的平衡状态的能力C.在外力作用下构件抵抗破坏的能力1.6根据均匀性假设,可认为构件的()在各点处相同。

A.应力B.应变C.材料的弹性常数D.位移1.7下列结论中正确的是()A.内力是应力的代数和B.应力是内力的平均值C.应力是内力的集度D.内力必大于应力参考答案:1.1 V 1.2 X 1.3 V 1.4 X 1.5 C,A,B 1.6 C 1.7 C轴向拉压、选择题1.等截面直杆CD位于两块夹板之间,如图示。

杆件与夹板间的摩擦力与杆件自重保持平衡。

设杆CD两侧的摩擦力沿轴线方向均匀分布,且两侧摩擦力的集度均为q,杆CD的横截面面积为A,质量密度为,试问下列结论中哪一个是正确的?(A)q = -gA;(B)杆内最大轴力F zmax =ql ;(C)杆内各横截面上的轴力F N = P ~~;——2(D)杆内各横截面上的轴力F N =0。

2.低碳钢试样拉伸时,横截面上的应力公式c -F N A适用于以下哪一种情况(A)只适用于二<c p; (B)只适用于二w :二e;(C)只适用于二w二s ;(D)在试样拉断前都适用。

3.在A和B两点连接绳索ACB,绳索上悬挂物重P,如图示。

点A和点B的距离保持不变,绳索的许用拉应力为[二]。

试问:当:-角取何值时,绳索的用料最省?(A) 0’ ;(B) 30’ ;(C) 45」; (D) 60」。

4.桁架如图示,载荷F可在横梁(刚性杆)DE上自由移动。

杆1和杆2的横截面面积均为A,许用应力均为[二](拉和压相同)。

求载荷F的许用值。

以下四种答案中哪一种是正确的?(A)(C)[匚]A ;5. 设受力在弹性范围内,问空心圆杆受轴向拉伸时,夕卜径与壁厚的下列四种变形关系中哪一种是正确的?(A)外径和壁厚都增大; (B)外径和壁厚都减小;(C)外径减小,壁厚增大;(D)外径增大,壁厚减小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

极惯性矩
I p 2dA
抗扭刚度
GI P
max
MT max Wp
MTl GIP
纯弯曲
惯性矩
I z y 2dA
抗弯刚度
EI Z
max
M max WZ
d 2 y M(x)
dx 2
EI Z
( 1 M(x)
挠度y 转角 dy
dx
EI Z
2. 四种基本变形的刚度,都可以写成:
刚度 = 材料的物理常数×截面的几何性质
7) 欧拉临界力,稳定性,压杆稳定性。
8)动荷载,交变应力,疲劳破坏。
二. 杆件四种基本变形的公式及应用
1. 四种基本变形:
基本变形
截面几何
刚度
应力公式
变形公式
备注
性质
拉伸与压缩
面积:A
抗拉(压) 刚度 EA
N A
l Nl EA
注意变截面及 变轴力的情况
剪切
面积:A
——
Q
——
实用计算法
A
圆轴扭转
内力 应力= 截面几何性质
对扭转的最大应力:截面几何性质取抗扭截面模量W p
I max
对弯曲的最大应力:截面几何性质取抗弯截面模量 W Z
IZ ymax
4. 四种基本变形的变形公式,都可写成:
内力 长度 变形= 刚度
因剪切变形为实用计算方法,不考虑计算变形。
弯曲变形的曲率
(1x)
d2y dx 2
,一段长为
1)物理常数:
某种变形引起的正应力:抗拉(压)弹性模量E;
某种变形引起的剪应力:抗剪(扭)弹性模量G。
2)截面几何性质:
拉压和剪切:变形是截面的平移: 取截面面积 A;
扭转:各圆截面相对转动一角度或截面绕其形心转动:
取极惯性矩 I ;
梁弯曲:各截面绕轴转动一角度:取对轴的惯性矩 I Z 。
3
3. 四种基本变形应力公式都可写成:
8.材料力学中的平面假设 寻找应力的分布规律,通过对变形实验的观察、分析、推论确定理论根据。 1) 拉(压)杆的平面假设 实验:横截面各点变形相同,则内力均匀分布,即应力处处相等。 2) 圆轴扭转的平面假设 实验:圆轴横截面始终保持平面,但刚性地绕轴线转过一个角度。横截面上正应力 为零。 3) 纯弯曲梁的平面假设 实验:梁横截面在变形后仍然保持为平面且垂直于梁的纵向纤维;正应力成线性分 布规律。
压应力 正应力 拉应力
线应变 应变:反映杆件的变形程度 角应变
变形基本形式:拉伸或压缩、剪切、扭转、弯曲。 4. 物理关系、本构关系 虎克定律;剪切虎克定律:
拉压虎克定律:线段的拉伸或压缩。
E
— —lቤተ መጻሕፍቲ ባይዱ
Pl EA
剪切虎克定律:两线段夹角的变化。 Gr
适用条件:应力~应变是线性关系:材料比例极限以内。 5. 材料的力学性能(拉压):
抗冲击
应力集中
较好地承受冲击、振动 不敏感
非常敏感
6. 安全系数、 许用应力、工作应力、应力集中系数 安全系数:大于1的系数,使用材料时确定安全性与经济性矛盾的关键。过小,使构 件安全性下降;过大,浪费材料。 许用应力:极限应力除以安全系数。
塑性材料
s ns
0 s
脆性材料
b nb
0 b
7. 材料力学的研究方法 1) 所用材料的力学性能:通过实验获得。 2) 对构件的力学要求:以实验为基础,运用力学及数学分析方法建立理论,预测理 论应用的未来状态。 3) 截面法:将内力转化成“外力”。运用力学原理分析计算。
极限荷载。
2) 单元体,应力单元体,主应力单元体。
3) 名义剪应力,名义挤压力,单剪切,双剪切。
4) 自由扭转,约束扭转,抗扭截面模量,剪力流。
5) 纯弯曲,平面弯曲,中性层,剪切中心(弯曲中心),主应力迹线,刚架,跨度, 斜
弯曲,截面核心,折算弯矩,抗弯截面模量。
6) 相当应力,广义虎克定律,应力圆,极限应力圆。
重庆大学材料力学复习(重点考点详解)
一. 材料力学的一些基本概念 1. 材料力学的任务:
解决安全可靠与经济适用的矛盾。 研究对象:杆件 强度:抵抗破坏的能力 刚度:抵抗变形的能力 稳定性:细长压杆不失稳。 2. 材料力学中的物性假设 连续性:物体内部的各物理量可用连续函数表示。 均匀性:构件内各处的力学性能相同。 各向同性:物体内各方向力学性能相同。 3. 材力与理力的关系, 内力、应力、位移、变形、应变的概念 材力与理力:平衡问题,两者相同; 理力:刚体,材力:变形体。 内力:附加内力。应指明作用位置、作用截面、作用方向、和符号规定。 应力:正应力、剪应力、一点处的应力。应了解作用截面、作用位置(点)、作用 方向、和符号规定。
一张σ-ε图,两个塑性指标δ、ψ ,三个应力特征点: p、 s、 b ,四个变化阶段:
弹性阶段、屈服阶段、强化阶段、颈缩阶段。
拉压弹性模量E,剪切弹性模量G,泊松比v, G
E (2 1 V)
1
塑性
塑性材料与脆性材料的比较: 变形
材料流动、断裂变形明显
脆性 无流动、脆断
强度
拉压 s 的基本相同
仅适用承压
受剪面积是铆钉杆的横截面积; b.双面受剪:
受剪面积有两个:考虑整体结构,受剪面积为2倍销钉截面积;运用截面法,外力一分 为二,受剪面积为销钉截面积。 c.圆柱面受剪:
受剪面积以冲头直径d为直径,冲板厚度 t 为高的圆柱面面积。 3.关于扭转
表中公式只实用于圆形截面的直杆和空心圆轴。等直圆杆扭转的应力和变形计算公式 可近似分析螺旋弹簧的应力和变形问题是应用杆件基本变形理论解决实际问题的很好例 子。 4.关于纯弯曲
9 小变形和叠加原理 小变形:
① 梁绕曲线的近似微分方程 ② 杆件变形前的平衡 ③ 切线位移近似表示曲线 ④ 力的独立作用原理 叠加原理:
① 叠加法求内力 ② 叠加法求变形。
2
10 材料力学中引入和使用的的工程名称及其意义(概念)
1) 荷载:恒载、活载、分布荷载、体积力,面布力,线布力,集中力,集中力偶,
l
的纯弯曲梁有:
(l x)
Mxl EI z
补充与说明:
1、关于“拉伸与压缩”
指简单拉伸与简单压缩,即拉力或压力与杆的轴线重合;若外荷载作用线不与轴线重
合,就成为拉(压)与弯曲的组合变形问题;杆的压缩问题,要注意它的长细比 (柔度)。
这里的简单压缩是指“小柔度压缩问题”。 2、关于“剪切”
实用性的强度计算法,作了剪应力在受剪截面上均匀分布的假设。要注意有不同的受 剪截面: a.单面受剪:
4
纯弯曲,在梁某段剪力 Q=0 时才发生,平面假设成立。 横力弯曲(剪切弯曲)可以视作剪切与纯弯曲的组合,因剪应力平行于截面,弯曲正应力 垂直于截面,两者正交无直接联系,所以由纯弯曲推导出的正应力公式可以在剪切弯曲中 使用。 5.关于横力弯曲时梁截面上剪应力的计算问题
相关文档
最新文档