关于静电场的高斯定理和静电场的环路定理
10-4高斯定理和环路定理

B
o
R
B d l 0 I
l
dl
l
二、安培环路定理
1. 安培环路定理的表述
B dl 0 ?
l
表述: 在真空的稳恒磁场中,磁感应强度 B 沿任一
闭合路径的积分的值,等于 0 乘以该闭合路径所 包围的各电流的代数和. 表达式: 注意 电流 I 正负的规定 : I 与 L 成右螺旋时, 为正;反之为负.
定理表达式中B是闭合积分环路上各点的
总磁感应强度,是由空间所有电流共同激发的
L
闭合环路不包围的电流对 B dl 没有贡献
该定理可用于求解对称性磁场的B分布
与静电场的高斯定理的应用相似
B dl 0 说明磁场不是保守场,而是非保守场,也叫涡旋场
L
定理只适用于稳恒电流的磁场
对称性分析 选择合适的高斯面 根据定理求解
二、安培环路定理的应用
1.分析磁场的对称性:根据电流的分布来分析;
一个重要结论: 若 Idl1 和 Idl2 关于某个面为镜象对称,则 此对对称电流元在该面上产生的合磁场 必与该面垂直
2. 选取合适的闭合积分路径和积分回路的绕向
过场点 积分路径上各点B大小相等, B//dl 规则曲线
m2 (2)计算 单位:韦伯(wb) 1Wb=1T·
a . dS垂 直B
b. dS跟B成角
d m B dS
d m B cosdS
c. 通过任一曲面的 磁通量
B dS
m B dS
S
B
dS dS n 源自B例 如图载流长直导线的电流为 I , 试求通过矩 形面积的磁通量.
电场的高斯定理和环路定理的成立条件和物理内涵

电场的高斯定理和环路定理的成立条件和物理内涵
电场的高斯定理和环路定理的成立条件和物理内涵
高斯定理(Gauss’s Theorem)和环路定理(The Ampere-Maxwell Law)是物理学上电场中重要的两个定理,描述了电流的流动以及电荷的影响。
高斯定理提供了一种描述电场的方法,即在宏观尺度上,电荷的总量决定其受影响的范围。
它可以通过一个球面的贴片来表示,每一贴片上的电荷量为零。
具体来说,它定义了任何内测面内电荷的累加值就可以表示外部电场,也就是高斯定理说明电荷就等于外部电场。
这个定理让人可以方便地描述一个电荷四周的电场,并且可以很容易地计算出电荷外围的电场强度和朝向。
环路定理中,它指出电流可以通过一个环形路径,以及流入和流出环形路径的电荷量之和,就可以反映该环形路径上的电场强度和方向。
也就是说,环路定理表明,电流的和就可以表示其所环绕的某个空间电场。
总之,高斯定理和环路定理在电学中都有重要的地位,它们不仅让我们更好地描述电场,也给出了电荷对外部电场的影响,极大地促进了理解电场的发展。
8-3-4静电场高斯定理、环路定理

(3)无限大带电平面电场中的电场线
+
+ + + + + + + +
+
+
+++++++++
3、电场线(E)线的特点: (1)曲线上每一点的切线方向与该点的场强方向相一致; (2)电场线起始于正电荷,终止于负电荷,不形成闭合曲线; (3)任何两条电场线不会相交。 按照电场线的规定所作出的电场线只能定性描述电场的分布,而无法 反映场强的大小。 为了反映场强大小分布,可利用电场线的疏密程度来反映 。密、强; 疏、弱。 4、电场线数密度:垂直穿过单位面积的电场线数 N 均匀电场: 电场线数密度 S E dN N 非均匀电场: 电场线数密度 ds S 规定: 电场线数密度等于场强大小 即 均匀电场: E 非均匀电场:
S
+
8.3.3 真空中的高斯定理 1、求几种情况下的电场强度通量
(1)包围点电荷球面的电场强度通量 通过
R S
球面上取面元 ds ,
∵球面上: E
ds 的电场强度通量为
d e E ds
q 方向:沿半径向外。 40 R 2 1 q d e E ds ds 2 40 R 1 通过球面的电场强度通量 e E ds
ra
r q0 q a 0
dl θ F q0 E
q0 q q0 q 1 q0 q 1 ( ) 4 0 ra rb 4 0 rb 4 0 ra
(2)任意静电场 元功: 总功:
dA F dl q0 E dl
(2)包围点电荷,任意闭合曲面S的电场强度通量
高斯定理和环路定理

E
++
+ o+
++
P
dSE
S +e S
E S E dS 左 E dS 右 E dS 2ES
高斯面所包围的电量为
q eS
由高斯定理可知 2ES e S / 0
由此可知,电场强度为 电场强度的方向垂直于带电平面。
E e 2 0
e 0 电场强度方向离开平面 e 0 电场强度方向指向平面
(2)对于闭合曲面
约定:闭合曲面以向外为曲面法线的正方向。
出发点:一条穿过闭和曲 面的电场线对这个闭和曲
/2
n
面的电通量的贡献为零
E
电场线穿出闭合面为正通量,
电场线穿入闭合面为负通量。 n 0 / 2 E
二、高斯定理
1. 高斯定理的内容 在真空中的静电场内,通过任意闭合曲面的电通量,
3、关于高斯定理的说明
1、通过任意闭合曲面的电通量只决定于它所包围的电荷 的代数和,与闭合曲面内的电荷分布无关,闭合曲面外的电荷 对其电通量无贡献。但电荷的空间分布会影响闭合面上各点处 的场强大小和方向;
2、高斯面上电场强度是封闭曲面内和曲面外的电荷共同产 生的,并非只有曲面内的电荷确定;
3、 q 是电荷的代数和, qi 0 并非高斯面内一定无
电荷,E有d可s 能 是面内0正负电并荷非数高目斯相面同上;场强一qi 定处0处为也零只若是;表明,
s
e
Φ 0 4、 e
只能说明高斯面内电量的代数和为零,并非一定没
有电力线穿过;可能是穿进和穿出的一样多而以净电场线数目为零。
三、高斯定理的应用举例
大学物理2知识点总结

dt D
t
4、全电流定律:
L
B d l 0 ( Ic Id )
( B
2 )
全电流总连续。 Id 与Ic的区别: 5、 长直平行电流间单位长度上的相互作用力:
dF dl
0 I1I2
2 d
同向相吸反向相斥
直 电 流
圆 电 流
电流分布 一段导线
q
0
高斯面内自由 电荷的代数和
4、电容器及其电容 (1)定义: C = Q/U (2)平板电容器: 串联:
1 C
n
C
S
d
(3)电容器的串、并联:
i1
1 C
i
并联:C
1 Q 2 C
2
i1
n
C
i
W (4)电容器的能量 :
1 2
CU
2
2
1 2
UQ
5、电场能量密度: w
1 2
D d
k 加强 2 k 1 ) 减弱 ( 2
(k=0,1,2…)
5、薄膜干涉 的一般公式(⊥入射):
2n2e
2
k , k 1,2 明
(2 k 1)
2
——( )
, k 0 ,1 暗
加不加,看条件
均匀 B 中,起、止点一样的任意导线平动,ε一样。
(2)一段导体转动(转轴∥
1 2
2
均匀 B
)
B L (轴位于端点且⊥导体)
若导体与轴不⊥,可将其等效为在⊥轴方向 的投影的转动。 (3)线圈转动 (转轴⊥均匀
静电场的环路定理

q
j
V V V 1 2 k q q q 1 2 n 4 r r 4 r 0 1 4 0 2 0 n
q i
电势叠加原理
V V P i r 0 i i i 4
任意带电体场中的电势
VP q
4 0r
dq
a b
即:a、b两点的电势差 = A/q0
将单位正电荷 从ab电场力作的功 与路径无关
6
例: 已知真空中两金属圆筒电极间电压为U ,半径分别为 R1、 R2 。 求:负极上静止电子到正极时的速度? 解:由电势差的定义可得
A q ( V V )
( e)( U )
R
R
2
1
F
c
dl
q0
dr
b
r +dr
r
a
rb
+
积分
1 1 q q q q 0 0 A d r 2 a4 r 4 r 0 0 a r b
b
ra
q
——点电荷的电场力作功 只与被移动电荷距离场源电荷的距离相关 与路径无关
2
2.在点电荷系的电场中(或连续带电体的电场)
结论
b b b A q E d l q E d l q E d l 0 1 0 2 0 n a a a
电场强度的线积分与路径无关
电场力是保守力,静电场是保守力场。
3
二、环路定理
在任意电场中, 将q0从a
b L2 经L1
经L2
b电场力作功:
A q E d l 0 L
静电场高斯定理、环路定理

s
q1 0
E ds
S
E1 E2 Ei
q2 qi
0
0
En
qn
0
En1 0
Ek 0
) ds
i(
qk
qi
s内) 0
qn qi q2 S
结论:真空中穿过任意闭合曲面S的电场强度通量等于该闭合曲面内电
或者说将单位正电荷绕任意闭合路径一周静电场力所作的功等于零。
8.4.2 电势能
静电场力作功与路径无关,仅与始末位置有关,位置
确定做功本领确定,因此可以引入势能的概念,称为电势能。
1、电势能 电场中,将q0由a→b,电场力的功
bE
dl
q0
F q0E
为
b b
a
A
根据高斯定理
S
E
dS
1
q
E dS E ds E ds E ds
S
上底面 / 2 侧面 0 下底面 / 2
r S
h
0 E 2r h 0 E 2r h
场分布相同
当R< r < ∞时,∑q=q
E
1 4 0
q r2
讨论:点电荷的电场 r →∞ E→0;
r →0
E→ ∞。
例题 半径为R 的介质球,均匀带电q (q > 0 ),电容率为
ε,求:此带电球的电场。 解: ∵ 电场分布具有球对称性。
q
4 R3
o
麦克斯韦方程组的推导及说明

13-6麦克斯韦方程组关于静电场和稳恒磁场的基本规律,可总结归纳成以下四条基本定理:静电场的高斯定理:静电场的环路定理:稳恒磁场的高斯定理:磁场的安培环路定理:上述这些定理都是孤立地给出了静电场和稳恒磁场的规律,对变化电场和变化磁场并不适用。
麦克斯韦在稳恒场理论的基础上,提出了涡旋电场和位移电流的概念:1.麦克斯韦提出的涡旋电场的概念,揭示出变化的磁场可以在空间激发电场,并通过法拉第电磁感应定律得出了二者的关系,即上式表明,任何随时间而变化的磁场,都是和涡旋电场联系在一起的。
2.麦克斯韦提出的位移电流的概念,揭示出变化的电场可以在空间激发磁场,并通过全电流概念的引入,得到了一般形式下的安培环路定理在真空或介质中的表示形式,即上式表明,任何随时间而变化的电场,都是和磁场联系在一起的。
综合上述两点可知,变化的电场和变化的磁场彼此不是孤立的,它们永远密切地联系在一起,相互激发,组成一个统一的电磁场的整体。
这就是麦克斯韦电磁场理论的基本概念。
在麦克斯韦电磁场理论中,自由电荷可激发电场,变化磁场也可激发电场,则在一般情况下,空间任一点的电场强度应该表示为又由于,稳恒电流可激发磁场,变化电场也可激发磁场,则一般情况下,空间任一点的磁感强度应该表示为因此,在一般情况下,电磁场的基本规律中,应该既包含稳恒电、磁场的规律,如方程组(1),也包含变化电磁场的规律,根据麦克斯韦提出的涡旋电场和位移电流的概念,变化的磁场可以在空间激发变化的涡旋电场,而变化的电场也可以在空间激发变化的涡旋磁场。
因此,电磁场可以在没有自由电荷和传导电流的空间单独存在。
变化电磁场的规律是:1.电场的高斯定理在没有自由电荷的空间,由变化磁场激发的涡旋电场的电场线是一系列的闭合曲线。
通过场中任何封闭曲面的电位移通量等于零,故有:2.电场的环路定理由本节公式(2)已知,涡旋电场是非保守场,满足的环路定理是3.磁场的高斯定理变化的电场产生的磁场和传导电流产生的磁场相同,都是涡旋状的场,磁感线是闭合线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于静电场的高斯定理和静电场的环路定理
静电场的高斯定理和静电场的环路定理是库仑定律的推论,所以称之为定理。
由于库仑定律是静电场的基本规律,适用于静电场,所以库仑定律的推论也适用于静电场。
电场有许多种:静电场(由静止电荷激发)、恒定电场(由运动然而空间分布不随时间改变的电荷体系激发的电场)、位电场(可以在其中建立电位函数的电场,位电场的电场强度等于电位的负梯度,分为恒定的与时变的,静电场和恒定电场就属于恒定的位电场)、涡旋电场。
静电场的高斯定理的文字表述是:静电场中,电场强度穿出闭合曲面的通量等于该闭合曲面所包围的总电量除以真空电容率。
静电场的高斯定理的数学表述式是:in 0d i S q
E S ε⋅=∑⎰ 。
英国著名物理学家麦克斯韦首先假设静电场的高斯定理的数学表示式in 0d i S q E S ε⋅=∑⎰ 适用于一切电场,也就是说,实际的电场强度(即总电场强度)
穿出闭合曲面的通量等于闭合曲面内的总电量除以真空电容率。
这个假设后来被实验证实了。
正因为这个原因,数学表示式in 0d i S q
E S ε⋅=∑⎰ 也叫做高斯定律。
由于德国数学家高斯根据库仑定律推出的这个静电场规律的数学表示式是普遍适用的,这让高斯在电磁学中享有很高的声誉。
in 0d i S q E S ε⋅=∑⎰ 有好几个称谓:高斯定理、高斯通量定理、电场的高斯定
理、电场的高斯通量定理、高斯定律、高斯通量定律、电场的高斯定律、电场的高斯通量定律。
对于静电场,这个规律叫做静电场的高斯定理,或者静电场的高斯通量定理。
高斯在数学方面有一项重要成就,叫做高斯公式(也可以叫做高斯通量公式
或者高斯散度公式)。
高斯公式的数学表示式是d d S V
f S f V ⋅=∇⋅⎰⎰ 。
其含义是:矢量场穿出闭合曲面的通量等于矢量场的散度在闭合曲面所包围的空间区域内的体积分。
高斯定理是电(磁)学规律,高斯公式是纯粹数学规律,两者截然不同。
但是把两者结合起来,就可以推出0E ρε∇⋅= 。
根据库仑定律还可以推出d 0l E l ⋅=⎰
,其含义是静电场强度沿任意回路的线积分恒等于零。
数学表示式d 0l E l ⋅=⎰ 除了适用于静电场,也适用于恒定电场,
还适用于位电场,但是不适用于涡旋电场。
所以,d 0l E l ⋅=⎰ 不是电磁学中普遍
适用的规律。
正因为这个原因,首先从库仑定律导出d 0l E l ⋅=⎰
的那个人没有名
气,我们甚至不知道他姓甚名谁。
大理大学工程学院教授罗凌霄
2020年3月11日。