第一章 二次函数专题复习一(含答案)
中考数学复习《二次函数》专题训练-附带参考答案

中考数学复习《二次函数》专题训练-附带参考答案一、选择题1.抛物线y=−2x2+3的顶点为().A.(0,3)B.(−2,3)C.(2,3)D.(0,−3)2.将抛物线y=4x2向上平移6个单位,再向右平移9个单位,得到的抛物线的解析式为().A.y=4(x+9)2+6B.y=4(x−9)2+6C.y=4(x+9)2−6D.y=4(x−9)2−63.一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A. B. C. D.4.已知二次函数y=ax2+bx+2(a≠0),经过点P(m,12).当y≤−1时,x的取值范围为t−1≤x≤−3−t.则如下四个值中有可能为m的是()A.2 B.3 C.4 D.55.已二次函数y=mx2+(m−2)x+2的图象关于y轴对称,则下列结论不正确的是().A.m=2B.抛物线的开口向上C.当x>0时,y随x的增大而增大D.当x=2时,函数有最小值26.已知二次函数y=(x−1)(x−2),若关于x的方程(x−1)(x−2)=m(m<0)的实数根为α,β,且α<β,则下列不等式正确的是()A.α<1,β<2B.1<α<β<2C.1<α<2<βD.α<1<β<27.小明在期末体育测试中掷出的实心球的运动路线呈抛物线形,若实心球运动的抛物线的解析式为y= (x−3)2+k,其中y是实心球飞行的高度,x是实心球飞行的水平距离,已知该同学出手点A的坐标为(0,−1916),则实心球飞行的水平距离OB的长度为()9A.7m B.7.5m C.8m D.8.5m8.如图,已知抛物线y =ax 2+bx+c (a ≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(﹣1,0),其部分图象如图所示,有下列结论:①4ac <b 2;②abc >0;③方程ax 2+bx+c =0的两个根是x 1=﹣1,x 2=3;④当x <0时,y 随x 增大而增大;⑤8a+c <0.其中结论正确的有( )A .5个B .4个C .3个D .2个二、填空题9.若抛物线y =x 2−x +k 与x 轴只有一个交点,则k 的值为 . 10.二次函数y =﹣3(x+1)2的最大值为 .11.若二次函数y =ax 2−bx −1的图象经过点(2,1),则2023−2a +b = .12.为执行国家药品降价政策,给人民群众带来实惠,某药品经过两次降价,每盒零售价由16元降为y 元,设平均每次降价的百分率是x ,则y 关于x 的函数表达式为 .13.如图,已知二次函数y =ax 2+bx+c 的图象过点(3,0),对称轴为直线x =1,则下列结论:①abc <0;②ax 2+bx+c =0的两个根是x 1=﹣1,x 2=3;③当x <1时,y 随着x 的增大而增大 ;④4a+2b+c <0. (填写序号).三、解答题14.已知二次函数y =14x 2+x .(1)确定该抛物线的开口方向、顶点坐标和对称轴;(2)当x 取何值时,y 随x 的增大而增大?当x 取何值时,y 随x 的增大而减小?15.已知抛物线2y x bx c =++经过()3,0A ,对称轴是直线1x =.点()11,B n y -,()222,C n y +两点在抛物(1)求抛物线的解析式;(2)当n 取何值时,12y y -取最大值.16.如图,交易会上主办方利用足够长的一段围墙,用围栏围成一个长方形的空地,中间用围栏分割出2个小长方形展厅,并且在与墙平行的一边上各开了一扇宽为1.5m 的门,总共用去围栏36m .(1)若长方形展厅ABCD 的面积为290m ,求边AB 的长为多少米? (2)当边AB 的长为多少米时,长方形展厅ABCD 的面积最大?17.某商店以每顶60元的价格新进一批头盔,经市场调研发现,售价定为每顶100元时,每月可售出200顶为配合交管部门“一带(安全带)一盔(头盔)”整治活动,计划将头盔降价出售,经调查发现:每降价4元,每月可多售出40顶,设该商店降价后每个头盔的价格为元,每月销售的头盔数量为y 顶.(1)直接写出y 与x 之间的函数关系式;(2)若该商店销售头盔每月的利润为w 元,求w 与x 之间的函数关系式;(3)在(2)的条件下,当x 取何值时,每月销售头盔的利润w 有最大值?最大值是多少?18.如图,抛物线252y ax bx =++与直线AB 交于点()51,0,4,2A B ⎛⎫- ⎪⎝⎭.点D 是直线AB 上方抛物线上的一个动点(不与点A B 、重合),经过点D 且与y 轴平行的直线交直线AB 于点C .(1)求抛物线的函数解析式;(2)若点D 为抛物线的顶点,点P 是抛物线上的动点,点Q 是直线AB 上的动点.是否存在以点,,,P Q C D 为顶点的四边形是以CD 为边的平行四边形,若存在,求出点Q 的坐标;若不存在,请说明理由.1.A 2.B 3.D 4.A 5.D 6.B 7.C 8.B 9.14 10.0 11.202212.y =16x 2−32x +16 13.①②③14.(1)解:∵y =14x 2+x =14(x 2+4x)=14(x 2+4x +4−4)=14(x +2)2−1 ∴抛物线开口向上,顶点坐标为(2,−1),对称轴为直线x =−2 (2)解:∵对称轴为直线x =−2,抛物线开口朝上当x <−2时,y 随x 的增大而减小,当x >−2时,y 随x 的增大而增大. 15.(1)解:由题可得:09312b cb =++⎧⎪⎨-=⎪⎩,解得:23b c =-⎧⎨=-⎩∴二次函数的解析式为2=23y x x --;(2)解:∵点()11,B n y -,()223,C n y +两点在抛物线上∴()()22112134y n n n n =----=- ()()22223223348y n n n n =+-+-=+ ∴()22123123212y y n n n -=--=-++ ∵30-<∴当2n =-时12y y -取最大值.16.(1)解:设AB 的长为x 米,则()3632 1.5393BC x x =-+⨯=-米,根据题意得:()39390x x -=解得13x = 210x = 答:AB 的长为3或10米.(2)解:设AB 的长为x 米,则()393BC x =-米,长方形展厅ABCD 的面积为S 由题意可得()2213507393339324S x x x x x ⎛⎫=-=-+=--+ ⎪⎝⎭∴对称轴为132x = ∴当132AB =时,所围成的长方形展厅ABCD 的面积最大. 17.(1)解:;(2)解:由题知与之间的函数关系式为;(3)解:抛物线开口向下 又当时,有最大值,最大值为9000.即当元,每月销售头盔的利润有最大值,最大利润是9000元.18.(1)解:由题意,将点()51,0,4,2A B ⎛⎫- ⎪⎝⎭代入252y ax bx =++中得5025516422a b a b ⎧-+=⎪⎪⎨⎪++=⎪⎩,解得122a b ⎧=-⎪⎨⎪=⎩ ∴抛物线的解析式为215222y x x =-++;(2)解:存在以点,,,P Q C D 为顶点的四边形是以CD 为边的平行四边形. 由()221519222222y x x x =-++=--+得顶点D 坐标为92,2⎛⎫ ⎪⎝⎭设直线AB 的解析式为y kx t =+将点()51,0,4,2A B ⎛⎫- ⎪⎝⎭代入,得0542k t k t -+=⎧⎪⎨+=⎪⎩解得1212k t ⎧=⎪⎪⎨⎪=⎪⎩∴直线AB 的解析式为1122y x =+ 当2x =时1132222y =⨯+=,∴32,2C ⎛⎫ ⎪⎝⎭∴93322CD =-= ∵以点,,,P Q C D 为顶点的四边形是以CD 为边的平行四边形,CD 在抛物线对称轴上 ∴PQ y ∥轴,且3PQ CD ==由题意,设215,222P m m m ⎛⎫-++ ⎪⎝⎭,则11,22Q m m ⎛⎫+ ⎪⎝⎭∴2151122222PQ m m m ⎛⎫=-++-+ ⎪⎝⎭2132322m m =-++=∴2132322m m -++=①或2132322m m -++=-②解①得1m =或2m =(舍去),则()1,1Q ; 解②得2m =-或5m =,则12,2Q ⎛⎫-- ⎪⎝⎭或()5,3Q ,综上,符合条件的Q 坐标为()1,1或12,2⎛⎫-- ⎪⎝⎭或()5,3.。
第一章 二次函数好题精选(含解析)

绝密★启用前期末复习第一章二次函数好题精选题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明评卷人得分一.选择题(共15小题)1.已知二次函数y=x2﹣bx+2(﹣2≤b≤2),当b从﹣2逐渐增加到2的过程中,它所对应的抛物线的位置也随之变动,下列关于抛物线的移动方向的描述中,正确的是()A.先往左上方移动,再往左下方移动B.先往左下方移动,再往左上方移动C.先往右上方移动,再往右下方移动D.先往右下方移动,再往右上方移动2.下表时二次函数y=ax2+bx+c的x,y的部分对应值:x…012…y…﹣1m﹣1n…则对于该函数的性质的判断:①该二次函数有最大值;②不等式y>﹣1的解集是x<0或x>2;③方程ax2+bx+c=0的两个实数根分别位于﹣<x<0和2<x<之间;④当x>0时,函数值y随x的增大而增大;其中正确的是()A.②③B.②④C.①③D.③④3.如图,是一次函数y=kx+b的图象,则二次函数y=2kx2﹣bx+1的图象大致为()A.B.C.D.4.如图,二次函数y=ax2+bx+c的图象经过点(0,1),对称轴为直线x=﹣1,下列结论:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c>0;⑤c﹣a>1.其中,正确结论的个数为()A.2B.3C.4D.55.在平面直角坐标系中,将抛物线y=﹣2x2平移后发现新抛物线的最高点坐标为(l,2),那么新抛物线的表达式为()A.y=﹣2(x﹣1)2+2B.y=﹣2(x﹣1)2﹣2C.y=﹣2(x+1)2+2D.y=﹣2(x+1)2﹣26.已知二次函数y=ax2+bx+c(a≠0)图象如图所示,下列结论:①abc<0;②2a﹣b<0;③a﹣b+c>0;④点(﹣3,y1),(1,y2)都在抛物线上,则有y1>y2.其中正确的结论有()A.4个B.3个C.2个D.1个7.抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,与x轴的一个交点坐标为(4,0),抛物线的对称轴是x=1,下列结论中:①abc>0;②2a+b=0;③方程ax2+bx+c=3有两个不相等的实数根;④抛物线与x轴的另一个交点坐标是(2,0);⑤若点A(m,n)在该抛物线上,则am2+bm+c≤a+b+c,其中说法正确的有()A.5个B.4个C.3个D.2个8.已知点(﹣1,y1)、(﹣2,y2)、(2,y3)都在二次函数y=﹣3ax2﹣6ax+12(a>0)上,则y1、y2、y3的大小关系为()A.y1>y3>y2B.y3>y2>y1C.y3>y1>y2D.y1>y2>y39.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如表所示.x…﹣3﹣2﹣101…y…﹣60466…下列说法:①抛物线与y轴的交点为(0,6);②抛物线的对称轴在y轴的右侧;③抛物线一定经过点(3,0);④在对称轴左侧,y随x增大而减小.⑤不等式ax2+(b ﹣3)x+c﹣6>0解集为﹣2<x<0.其中说法正确的有()A.1 个B.2 个C.3 个D.4 个10.若平面直角坐标系内的点M满足横、纵坐标都为整数,则把点M叫做“整点”.例如:P(1,0)、Q(2,﹣2)都是“整点”.抛物线y=mx2﹣4mx+4m﹣2(m>0)与x轴交于点A、B两点,若该抛物线在A、B之间的部分与线段AB所围成的区域(包括边界)恰有七个整点,则m的取值范围是()A.≤m<1B.<m≤1C.1<m≤2D.1<m<211.如图,已知点A(12,0),O为坐标原点,P是线段OA上任一点(不含端点O、A),二次函数y1的图象过P、O两点,二次函数y2的图象过P、A两点,它们的开口均向下,顶点分别为B、C,射线OB与射线AC相交于点D.则当OD=AD=9时,这两个二次函数的最大值之和等于()A.8B.3C.2D.612.已知,平面直角坐标系中,直线y1=x+3与抛物线y2=﹣+2x的图象如图,点P 是y2上的一个动点,则点P到直线y1的最短距离为()A.B.C.D.13.抛物线y=ax2+bx+c交x轴于A(﹣1,0),B(3,0),交y轴的负半轴于C,顶点为D.下列结论:①2a+b=0;②2c<3b;③当m≠1时,a+b<am2+bm;④当△ABD 是等腰直角三角形时,则a═;⑤当△ABC是等腰三角形时,a的值有3个.其中正确的有()个.A.5B.4C.3D.214.二维码已经给我们的生活带来了很大方便,它是由大小相同的黑白两色的小正方形(如图1中C)按某种规律组成的一个大正方形,现有25×25格式的正方形如图1,角上是三个7×7的A型大黑白相间正方形,中间右下一个5×5的B型黑白相间正方形,除这4个正方形外,若其他的小正方形白色块数y与黑色块数x正好满足如图2所示的函数图象,则该25×25格式的二维码共有多少块黑色的C型小正方形()A.153B.218C.100D.21615.如图,抛物线y=ax2﹣x+4与直线y=x+b经过点A(2,0),且相交于另一点B;抛物线与y轴交于点C,与x轴交于另一点E;点N在线段AB上,过点N的直线交抛物线于点M,且MN∥y轴,连接AM、BM、BC、AC;当点N在线段AB上移动时(不与A、B重合),下列结论中正确的是()A.MN+BN<ABB.∠BAC=∠BAEC.∠ACB﹣∠ANM=∠ABCD.四边形ACBM的最大面积为13第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明评卷人得分二.填空题(共10小题)16.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如下表:x…﹣2﹣1012…y…116323…则当y≤6时x的取值范围是.17.函数y=﹣3(x+2)2的开口,对称轴是,顶点坐标为.18.如图,抛物线y=ax2+bx+4经过点A(﹣3,0),点B在抛物线上,CB∥x轴,且AB平分∠CAO.则此抛物线的解析式是.19.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:①c>0;②若B(﹣,y1),C(﹣,y2)为图象上的两点,则y1<y2;③2a﹣b=0;④<0,其中正确的结论是.20.抛物线y=x2﹣5x+4与x轴交点A1、A2的坐标记为x1、x2,将x1≤x≤x2部分的抛物线记为C1;将抛物线C1绕点A2旋转180°得C2,交x轴于点A3;将C2绕点A3旋转180°得C3,交x轴于点A4,……,如此进行下去,若P(2018,m)在其中某段抛物线上,则m=.21.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的对称轴是直线x=﹣1,与x轴的一个交点是A(﹣3,0)其图象的一部分如图所示,对于下列说法:①2a=b;②abc >0,③若点B(﹣2,y1),C(﹣,y2)是图象上两点,则y1<y2;④图象与x轴的另一个交点的坐标为(1,0).其中正确的是(把正确说法的序号都填上)22.如图,有若干个边长为2的正方形,若正方形的一个顶点是正方形Ⅰ的中心O1,如图所示,类似的正方形Ⅲ的一个顶点是正方形Ⅱ的中心O2,并且正方形Ⅰ与正方形Ⅲ不重叠,如果若干个正方形都按这种方法拼接,需要m个正方形能使拼接处的图形的阴影部分的面积等于一个正方形的面积.现有一拋物线y=mx2+nx+3,其顶点在x轴上,则该抛物线的对称轴为.23.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为.24.直线y=kx+b与抛物线y=x2交于A(x1,y1),B(x2,y2)两点,当OA⊥OB时,直线AB恒过一个定点,该定点坐标为.[提示:直线l1:y=k1x+b1与直线l2:y=k2x+b2互相垂直,则k1•k2=﹣1]25.定义:如果二次函数y=a1x2﹣b1x+c1(a1≠0)与y=a2x2﹣b2x+c2(a2≠0)满足:a1+a2=0,b1=b2,c1+c2=0则称这两个函数互为“旋转函数”.现有下列结论:①函数y=﹣x2+3x﹣2的“旋转函数”是y=x2+3x+2;②函数y=(x+1)2﹣2的“旋转函数”是y=﹣(x﹣1)2+2;③函数y=﹣x2+mx﹣2与x2﹣2nx+n互为“旋转函数”,则(m+n)2018=1;④已知二次函数y=﹣的图象与x轴交于点A和点B,与y轴交于点C,点A、B、C关于原点的对称点分别是点A1,B1,C1,那么经过点A1、B1、C1的二次函数与函数y=﹣互为“旋转函数”.上述结论中正确的有(填序号).评卷人得分三.解答题(共15小题)26.已知二次函数y=﹣2x2+8x﹣6,完成下列各题:(1)写出它的顶点坐标C;.(2)它的图象与x轴交于A,B两点(点A在点B的左侧),顶点为C,求S△ABC 27.如图,二次函数y=x2+bx+c(a≠0)的图象经过点A(1,0)且与y轴交卡点C,点B和点C关于该二次函数图象的对称轴直线x=2对称,一次函数y=kx+b的图象经过点A及点B.(1)求二次函数与一次函数的解析式;(2)根据图象,直接写出不等式kx+b≤x2+bx+c的解集.28.企业的污水处理有两种方式:一种是输送到污水厂进行集中处理,另一种是通过企业的自身设备进行处理.某企业去年每月的污水量均为12000吨,由于污水厂处于调试阶段,污水处理能力有限,该企业投资自建设备处理污水,两种处理方式同时进行.1至6月,该企业向污水厂输送的污水量y1(吨)与月份x(1≤x≤6,且x取整数)之间满足的函数关系如下表:月份x(月)123456输送的污水量y1(吨)12000600040003000240020007至12月,该企业自身处理的污水量y2(吨)与月份x(7≤x≤12,且x取整数)之间满足二次函数关系式为y2=ax2+c(a≠0).其图象如图所示.1至6月,污水厂处理每吨污水的费用:z1(元)与月份x之间满足函数关系式:z1=x,该企业自身处理每吨污水的费用:z2(元)与月份x之间满足函数关系式:z2=x﹣x2;7至12月,污水厂处理每吨污水的费用均为2元,该企业自身处理每吨污水的费用均为1.5元.(1)请观察题中的表格和图象,用所学过的一次函数、反比例函数或二次函数的有关知识,分别直接写出y1,y2与x之间的函数关系式;(2)请你求出该企业去年哪个月用于污水处理的费用W(元)最多,并求出这个最多费用.29.(1)抛物线y=ax2+c经过点A (4,0)、点B (1,﹣3),求该抛物线的解析式.(2)如图1,要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,高度为3m,水柱落地处离池中心3m,水管应多长?(3)如图2,点P(0,m2)(m>0),在y轴正半轴上,过点P作平行于x轴的直线,分别交抛物线C1:y=x2于点A、B,交抛物线C2:y=x2于点C、D,求的值.30.如图是由边长为1个单位长度的小正方形组成的网格,线段AB的端点在格点上.(1)请建立适当的平面直角坐标系xOy,使得A点的坐标为(﹣3,﹣1),在此坐标系下,B点的坐标为;(2)将线段BA绕点B逆时针旋转90°得线段BC,画出BC;在第(1)题的坐标系下,C点的坐标为;(3)在第(1)题的坐标系下,二次函数y=ax2+bx+c的图象过O、B、C三点,D为此抛物线的顶点.试求出抛物线解析式及D点的坐标.31.我们将自变量为x的函数记作f(x),若点A(m,n)和B(n,t)都在函数f(x)的图象上,则称点B是点A在函数f(x)作用下的传承点.如点(1,3)是点(﹣1,1)在函数y=x+2作用下的传承点.(1)求点(3,﹣1)在函数y=﹣作用下的传承点的坐标;(2)直线y=kx+2与双曲线y=交于C、D两点,且D是C在这两个函数作用下的传承点,求直线与双曲线的解析式;(3)抛物线y=ax2+bx+c与直线y=ax+d交于抛物线对称轴两侧的E、F两点,点E的横坐标为2,且F是E在这两个函数作用下的传承点,抛物线y=ax2+bx+c的对称轴是直线x=﹣2,二次函数y=ax2+bx+c在E、F之间的最大值与最小值之差为8,求点E、F 的坐标.32.在平面直角坐标系中,▱ABOC如图所示,点A、C的坐标分表分别是(0,4)、(﹣1,0),将此平行四边形绕点O顺时针旋转90°,得到A′B′OC′.(1)若抛物线经过点C、A、A′,求此抛物线对应的函数解析式.(2)M是第一象限内抛物线上的一动点,问:当点M在何处时,△AMA′的面积最大?最大面积是多少?并求出此时点M的坐标.(3)若P为抛物线上一动点,N为X轴上的一动点,点Q坐标为(1,0),当点P、N、B、Q为构成平行四边形的四个顶点时,写出点P的坐标.33.如图,抛物线y=x2+bx+c的图象与x轴交于点A、B(A在B左侧),与y轴交于点C(0,﹣3),点D为抛物线的顶点,对称轴x=﹣1.(1)求抛物线的解析式;(2)求△ABC的面积;(3)P是对称轴左侧抛物线上一动点,以AP为斜边作等腰直角三角形,直角顶点M正好落在对称轴上,画出图形并求出P点坐标.34.已知关于x的二次函数y=ax2﹣(2a+2)x+b(a≠0)在x=0和x=6时函数值相等.(1)求a的值;(2)若该二次函数的图象与直线y=﹣2x的一个交点为(2,m),求它的解析式:(3)在(2)的条件下,直线y=﹣2x﹣4与x轴,y轴分别交于A,B,将线段AB向右平移n(n>0)个单位,同时将该二次函数在2≤x≤7的部分向左平移n个单位后得到的图象记为G,请结合图象直接回答,当图象G与平移后的线段有公共点时,n的取值范围.35.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答:(1)写出方程ax2+bx+c=0的两个根;(2)写出不等式ax2+bx+c<0的解集;(3)写出y随x的增大而增大时自变量x的取值范围;(4)若方程ax2+bx+c=k有实数根,求k的取值范围.36.已知抛物线y1=ax2+bx+c(a≠0,a≠c)过点A(1,0),顶点为B,且抛物线不过第三象限.(1)过点B作直线l垂直于x轴于点C,若点C坐标为(2,0),a=1,求b和c的值;(2)比较与0的大小,并说明理由;(3)若直线y2=2x+m经过点B,且与抛物线交于另外一点D(,b+8),求当≤x<5时y1的取值范围.37.如图,经过点A(0,﹣4)的抛物线y=x2+bx+c与x轴相交于点B(﹣2,0)和C,O为坐标原点.(1)求抛物线解析式;(2)将抛物线y=x2+bx+c向上平移个单位长度,再向左平移m(m>0)个单位长度,得到新抛物线,若新抛物线的顶点P在△ABC内,求m的取值范围.38.在平面直角坐标系xOy中,当点M不与坐标原点O重合时,将点M(a,b)绕点O顺时针旋转90°,得到点M′,再作点M′关于直线x=a的对称点,得到点M'',则称点M''为点M的旋转对称点.(1)点A(2,1)的旋转对称点为.(2)若点B(a,﹣3)的旋转对称点为(1,1),则a的值为.(3)如图,点C是直线y=2x+2上一点,点C为抛物线L1:y=x2+b1x+c1的顶点,点C 的旋转对称点为点D,点D为抛物线L2:y=﹣x2+b2x+c2的顶点,设点C的横坐标为m.①直接用含m的代数式表示点D的坐标.②当抛物线L1经过点D时,抛物线L2是否也同时经过点C?若同时经过,求出此时m的值;若不同时经过,说明理由.③当点C、D同时分别在抛物线L2内部、抛物线L1外部,且抛物线L1、L2分别与x轴围成的封闭区域内(不包含边界)横、纵坐标均为整数的点的个数相同时,直接写出此时m的取值范围.39.平面直角坐标系xOy中,过原点O及点A(0,4)、C(12,0)作矩形OABC,∠AOC的平分线交AB于点D.点P从点O出发,以每秒2个单位长度的速度沿射线OD方向移动;同时点Q从点O出发,以每秒4个单位长度的速度沿x轴正方向移动.设移动时间为t秒.(1)当点P移动到点D时,求出此时t的值.(2)当t为何值时,△PQB为直角三角形.(3)已知过O、P、Q三点的抛物线解析式为y=﹣+2t(t>0).问是否存在某一时刻t,将△PQB绕某点旋转180°后,三个对应顶点恰好都落在上述抛物线上?若存在,求出t的值;若不存在,请说明理由.40.如图,抛物线y=﹣x2+bx+c.经过A(﹣1,0),B(5,0)两点,与y轴交于C点.已知M(0,1),E(a,0),F(a+1,0),点P是第一象限内的抛物线上的动点.(1)求此抛物线的解析式;(2)当a=1时,求四边形MEFP的面积的最大值,并求此时点P的坐标;(3)若△PCM是以CM为底边的等腰三角形,求a为何值时,四边形PMEF周长最小?请说明理由.参考答案与试题解析一.选择题(共15小题)1.已知二次函数y=x2﹣bx+2(﹣2≤b≤2),当b从﹣2逐渐增加到2的过程中,它所对应的抛物线的位置也随之变动,下列关于抛物线的移动方向的描述中,正确的是()A.先往左上方移动,再往左下方移动B.先往左下方移动,再往左上方移动C.先往右上方移动,再往右下方移动D.先往右下方移动,再往右上方移动【分析】根据顶点坐标公式求二次函数y=x2﹣bx+2的顶点坐标,设顶点的横坐标为x,纵坐标为y,转化为关于x、y的函数关系式进行判断.【解答】解:∵抛物线y=x2﹣bx+2的顶点坐标为(,)设x=,y=,则y=﹣x2+2,∴顶点在抛物线y=﹣x2+2(﹣1≤x≤1)的一段上移动,∵抛物线开口向下,对称轴为y轴,∴先往右上方移动,再往右下方移动.故选:C.【点评】本题考查的是二次函数的图象与几何变换,熟知二次函数的性质是解答此题的关键.2.下表时二次函数y=ax2+bx+c的x,y的部分对应值:x…012…y…﹣1m﹣1n…则对于该函数的性质的判断:①该二次函数有最大值;②不等式y>﹣1的解集是x<0或x>2;③方程ax2+bx+c=0的两个实数根分别位于﹣<x<0和2<x<之间;④当x>0时,函数值y随x的增大而增大;其中正确的是()A.②③B.②④C.①③D.③④【分析】由图表可得二次函数y=ax2+bx+c的对称轴为直线x=1,a>0,即可判断①④不正确,由图表可直接判断②③正确.【解答】解:∵当x=0时,y=﹣1;当x=2时,y=﹣1;当x=,y=﹣;当x=,y=﹣;∴二次函数y=ax2+bx+c的对称轴为直线x=1,x>1时,y随x的增大而增大,x<1时,y随x的增大而减小.∴a>0即二次函数有最小值则①④错误由图表可得:不等式y>﹣1的解集是x<0或x>2;由图表可得:方程ax2+bx+c=0的两个实数根分别位于﹣<x<0和2<x<之间;故选:A.【点评】本题考查了抛物线与x轴的交点,二次函数的性质,二次函数的最值,理解图表中信息是本题的关键.3.如图,是一次函数y=kx+b的图象,则二次函数y=2kx2﹣bx+1的图象大致为()A.B.C.D.【分析】根据一次函数的图象可以判断k和b的正负,从而可以判断二次函数y=2kx2﹣bx+1的图象的开口方向和对称轴,从而可以解答本题.【解答】解:由一次函数y=kx+b的图象可得,k>0,b>0,∴二次函数y=2kx2﹣bx+1的图象开口向上,对称轴为x=>0,故选:B.【点评】本题考查二次函数的图象、一次函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.4.如图,二次函数y=ax2+bx+c的图象经过点(0,1),对称轴为直线x=﹣1,下列结论:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c>0;⑤c﹣a>1.其中,正确结论的个数为()A.2B.3C.4D.5【分析】根据二次函数的图象与性质即可求出答案.【解答】解:①由图象可知:x=1时,y<0,∴y=a+b+c<0,故①正确;②由图象可知x=﹣1时,y>1,∴y=a﹣b+c>1,故②正确;③由图象可知:<0,∴ab>0,又∵c=1,∴abc>0,故③正确;④由图象可知:(0,0)关于x=﹣1对称点为(﹣2,0)∴令x=﹣2,y>0,∴4a﹣2b+c>0,故④错误;⑤由图象可知:a<0,c=1,∴c﹣a=1﹣a>1,故⑤正确;故选:C.【点评】本题考查二次函数的图象与性质,解题的关键是熟练运用二次函数的图象,本题属于中等题型.5.在平面直角坐标系中,将抛物线y=﹣2x2平移后发现新抛物线的最高点坐标为(l,2),那么新抛物线的表达式为()A.y=﹣2(x﹣1)2+2B.y=﹣2(x﹣1)2﹣2C.y=﹣2(x+1)2+2D.y=﹣2(x+1)2﹣2【分析】平移不改变抛物线的开口方向与开口大小,即解析式的二次项系数不变,根据抛物线的顶点式可求抛物线解析式【解答】解:∵原抛物线解析式为y=﹣2x2,的顶点坐标是(0,0),平移后抛物线顶点坐标为(1,2),∴平移后的抛物线的表达式为:y=﹣2(x﹣1)2+2.故选:A.【点评】本题考查了抛物线的平移与解析式变化的关系.关键是明确抛物线的平移实质上是顶点的平移,能用顶点式表示平移后的抛物线解析式.6.已知二次函数y=ax2+bx+c(a≠0)图象如图所示,下列结论:①abc<0;②2a﹣b<0;③a﹣b+c>0;④点(﹣3,y1),(1,y2)都在抛物线上,则有y1>y2.其中正确的结论有()A.4个B.3个C.2个D.1个【分析】根据函数图象和二次函数的性质可以判断各个小题是否正确,从而可以解答本题.【解答】解:由图象可得,a>0,b>0,c<0,∴abc<0,故①正确,∵,a>0,b>0,∴b>2a,∴2a﹣b<0,故②正确,当x=﹣1时,y=a﹣b+c<0,故③错误,点(﹣3,y1),(1,y2)都在抛物线上,则有y1<y2,故④错误,故选:C.【点评】本题考查二次函数图象与系数的关系、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.7.抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,与x轴的一个交点坐标为(4,0),抛物线的对称轴是x=1,下列结论中:①abc>0;②2a+b=0;③方程ax2+bx+c=3有两个不相等的实数根;④抛物线与x轴的另一个交点坐标是(2,0);⑤若点A(m,n)在该抛物线上,则am2+bm+c≤a+b+c,其中说法正确的有()A.5个B.4个C.3个D.2个【分析】根据二次函数的图象与性质一一判断即可.【解答】解:∵抛物线开口向下,交y轴于正半轴,∴a<0,c>0,∵﹣=1,∴b=﹣2a>0,∴abc<0,故①错误,∵b=﹣2a,∴2a+b=0,故②正确,观察图象可知,抛物线与直线y=3有两个交点,∴方程ax2+bx+c=3有两个不相等的实数根,故③正确,∵抛物线的对称轴x=1,与x轴交于(4,0),∴另一个交点坐标(﹣2,0),故④错误,∵x=1时,函数有最大值,∴点A(m,n)在该抛物线上,则am2+bm+c≤a+b+c,故⑤正确,故选:C.【点评】本题考查二次函数的图象与性质,解题的关键是熟练掌握基本知识,学会利用数形结合的思想思考问题,属于中考常考题型.8.已知点(﹣1,y1)、(﹣2,y2)、(2,y3)都在二次函数y=﹣3ax2﹣6ax+12(a>0)上,则y1、y2、y3的大小关系为()A.y1>y3>y2B.y3>y2>y1C.y3>y1>y2D.y1>y2>y3【分析】二次函数抛物线开口向下,且对称轴为x=﹣1.根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小.【解答】解:∵二次函数y=﹣3ax2﹣6ax+12,a>0,∴该二次函数的抛物线开口向下,且对称轴为:x=﹣1.∵点(﹣1,y1)、(﹣2,y2)、(2,y3)都在二次函数y=﹣3ax2﹣6ax+12的图象上,而三点横坐标离对称轴x=﹣1的距离按由近到远为:(﹣1,y1)、(﹣2,y2)、(2,y3),∴y1>y2>y3.故选:D.【点评】本题考查二次函数的性质、解题的关键是灵活运用二次函数的性质解决问题,属于中考常考题型.9.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如表所示.x…﹣3﹣2﹣101…y…﹣60466…下列说法:①抛物线与y轴的交点为(0,6);②抛物线的对称轴在y轴的右侧;③抛物线一定经过点(3,0);④在对称轴左侧,y随x增大而减小.⑤不等式ax2+(b ﹣3)x+c﹣6>0解集为﹣2<x<0.其中说法正确的有()A.1 个B.2 个C.3 个D.4 个【分析】由表格可知(0,6),(1,6)两点纵坐标相等,抛物线对称轴为x==,且抛物线开口向下,根据抛物线的开口方向,对称轴解题.【解答】解:观察表格可知,抛物线与y轴的交点为(0,6),故①正确;观察表格可知,抛物线对称轴为x==>0,对称轴在y轴的右侧,故②正确;抛物线的对称轴为x=,点(﹣2,0)的对称点是(3,0),所以抛物线一定经过点(3,0),故③正确;观察表格可知,对称轴左侧,y随x增大而增大,故④错误;整理得ax2+bx+c>3x+6,∵直线y=3x+6与x轴的交点为(﹣2,0),与y轴的交点为(0,6),∴直线y=3x+6与抛物线y=ax2+bx+c的交点为(2,0),(0,6),由表格可知抛物线开口向下,∴不等式ax2+(b﹣3)x+c﹣6>0解集为﹣2<x<0,故⑤正确;故选:D.【点评】本题考查了二次函数的性质.关键是根据表格,判断二次函数的对称轴及开口方向.10.若平面直角坐标系内的点M满足横、纵坐标都为整数,则把点M叫做“整点”.例如:P(1,0)、Q(2,﹣2)都是“整点”.抛物线y=mx2﹣4mx+4m﹣2(m>0)与x轴交于点A、B两点,若该抛物线在A、B之间的部分与线段AB所围成的区域(包括边界)恰有七个整点,则m的取值范围是()A.≤m<1B.<m≤1C.1<m≤2D.1<m<2【分析】画出图象,利用图象可得m的取值范围【解答】解:∵y=mx2﹣4mx+4m﹣2=m(x﹣2)2﹣2且m>0,∴该抛物线开口向上,顶点坐标为(2,﹣2),对称轴是直线x=2.由此可知点(2,0)、点(2,﹣1)、顶点(2,﹣2)符合题意.①当该抛物线经过点(1,﹣1)和(3,﹣1)时(如答案图1),这两个点符合题意.将(1,﹣1)代入y=mx2﹣4mx+4m﹣2得到﹣1=m﹣4m+4m﹣2.解得m=1.此时抛物线解析式为y=x2﹣4x+2.由y=0得x2﹣4x+2=0.解得x1=2﹣≈0.6,x2=2+≈3.4.∴x轴上的点(1,0)、(2,0)、(3,0)符合题意.则当m=1时,恰好有(1,0)、(2,0)、(3,0)、(1,﹣1)、(3,﹣1)、(2,﹣1)、(2,﹣2)这7个整点符合题意.∴m≤1.【注:m的值越大,抛物线的开口越小,m的值越小,抛物线的开口越大】答案图1(m=1时)答案图2(m=时)②当该抛物线经过点(0,0)和点(4,0)时(如答案图2),这两个点符合题意.此时x轴上的点(1,0)、(2,0)、(3,0)也符合题意.将(0,0)代入y=mx2﹣4mx+4m﹣2得到0=0﹣4m+0﹣2.解得m=.此时抛物线解析式为y=x2﹣2x.当x=1时,得y=×1﹣2×1=﹣<﹣1.∴点(1,﹣1)符合题意.当x=3时,得y=×9﹣2×3=﹣<﹣1.∴点(3,﹣1)符合题意.综上可知:当m=时,点(0,0)、(1,0)、(2,0)、(3,0)、(4,0)、(1,﹣1)、(3,﹣1)、(2,﹣2)、(2,﹣1)都符合题意,共有9个整点符合题意,∴m=不符合题.∴m>.综合①②可得:当<m≤1时,该函数的图象与x轴所围城的区域(含边界)内有七个整点,故选:B.【点评】本题考查了二次函数图象与系数的关系,抛物线与x轴的交点的求法,利用图象解决问题是本题的关键.11.如图,已知点A(12,0),O为坐标原点,P是线段OA上任一点(不含端点O、A),二次函数y1的图象过P、O两点,二次函数y2的图象过P、A两点,它们的开口均向下,顶点分别为B、C,射线OB与射线AC相交于点D.则当OD=AD=9时,这两个二次函数的最大值之和等于()A.8B.3C.2D.6【分析】过B作BF⊥OA于F,过D作DE⊥OA于E,过C作CM⊥OA于M,则BF+CM 是这两个二次函数的最大值之和,BF∥DE∥CM,求出AE=OE=6,DE=3.设P(2x,0),根据二次函数的对称性得出OF=PF=x,推出△OBF∽△ODE,△ACM∽△ADE,得出=,=,代入求出BF和CM,相加即可求出答案【解答】解:过B作BF⊥OA于F,过D作DE⊥OA于E,过C作CM⊥OA于M,∵BF⊥OA,DE⊥OA,CM⊥OA,∴BF∥DE∥CM,∵OD=AD=9,DE⊥OA,∴OE=EA=OA=6,由勾股定理得:DE==3.设P(2x,0),根据二次函数的对称性得出OF=PF=x,∵BF∥DE∥CM,∴△OBF∽△ODE,△ACM∽△ADE,∴=,=,∵AM=PM=(OA﹣OP)=(12﹣2x)=6﹣x,即=,=,解得:BF=,CM=3﹣x,∴BF+CM=3.故选:B.【点评】本题考查了二次函数的最值,勾股定理,等腰三角形的性质,以及相似三角形的性质和判定的应用,题目比较好,但是有一定的难度,属于综合性试题.12.已知,平面直角坐标系中,直线y1=x+3与抛物线y2=﹣+2x的图象如图,点P 是y2上的一个动点,则点P到直线y1的最短距离为()A.B.C.D.【分析】设过点P平行直线y1的解析式为y=x+b,当直线y=x+3与抛物线只有一个交点时,点P到直线y1的距离最小,如图设直线y1交x轴于A,交y轴于B,直线y=x+交x轴于C,作CD⊥AB于D,PE⊥AB于E,想办法求出CD的长即可解决问题;【解答】解:设过点P平行直线y1的解析式为y=x+b,当直线y=x+3与抛物线只有一个交点时,点P到直线y1的距离最小,由,消去y得到:x2﹣2x+2b=0,当△=0时,4﹣8b=0,∴b=,∴直线的解析式为y=x+,如图设直线y1交x轴于A,交y轴于B,直线y=x+交x轴于C,作CD⊥AB于D,PE ⊥AB于E,则A(﹣3,0),B(0,3),C(﹣,0)∴OA=OB=3,OC=,AC=,∴∠DAC=45°,∴CD==,∵AB∥PC,CD⊥AB,PE⊥AB,∴PE=CD=,故选:B.【点评】本题考查二次函数的性质、一次函数图象上的点的特征,二元二次方程组等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.13.抛物线y=ax2+bx+c交x轴于A(﹣1,0),B(3,0),交y轴的负半轴于C,顶点为D.下列结论:①2a+b=0;②2c<3b;③当m≠1时,a+b<am2+bm;④当△ABD 是等腰直角三角形时,则a═;⑤当△ABC是等腰三角形时,a的值有3个.其中正确的有()个.A.5B.4C.3D.2【分析】根据二次函数图象与系数的关系,二次函数与x轴交于点A(﹣1,0)、B(3,0),可知二次函数的对称轴为x==1,即﹣=1,可得2a与b的关系;将A、B两点代入可得c、b的关系;函数开口向下,x=1时取得最小值,则m≠1,可判断③;根据图象AD=BD,顶点坐标,判断④;由图象知BC≠AC,从而可以判断⑤.【解答】解:①∵二次函数与x轴交于点A(﹣1,0)、B(3,0).∴二次函数的对称轴为x==1,即﹣=1,∴2a+b=0.故①正确;②∵二次函数y=ax2+bx+c与x轴交于点A(﹣1,0)、B(3,0).∴a﹣b+c=0,9a+3b+c=0.又∵b=﹣2a.∴3b=﹣6a,a﹣(﹣2a)+c=0.∴3b=﹣6a,2c=﹣6a.∴2c=3b.故②错误;③∵抛物线开口向上,对称轴是x=1.∴x=1时,二次函数有最小值.∴m≠1时,a+b+c<am2+bm+c.即a+b<am2+bm.故③正确;④∵AD=BD,AB=4,△ABD是等腰直角三角形.∴AD2+BD2=42.解得,AD2=8.设点D坐标为(1,y).则[1﹣(﹣1)]2+y2=AD2.解得y=±2.∵点D在x轴下方.∴点D为(1,﹣2).∵二次函数的顶点D为(1,﹣2),过点A(﹣1,0).设二次函数解析式为y=a(x﹣1)2﹣2.∴0=a(﹣1﹣1)2﹣2.解得a=.故④正确;⑤由图象可得,AC≠BC.故△ABC是等腰三角形时,a的值有2个.(故⑤错误)故①③④正确,②⑤错误.故选:C.【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.14.二维码已经给我们的生活带来了很大方便,它是由大小相同的黑白两色的小正方形(如图1中C)按某种规律组成的一个大正方形,现有25×25格式的正方形如图1,角上是三个7×7的A型大黑白相间正方形,中间右下一个5×5的B型黑白相间正方形,除这4个正方形外,若其他的小正方形白色块数y与黑色块数x正好满足如图2所示的函数图象,则该25×25格式的二维码共有多少块黑色的C型小正方形()A.153B.218C.100D.216【分析】根据函数图象中的数据可以求得二次函数的解析式,从而可以得到x与y的关系,再根据题意即可得到关于x的方程,从而可以求得x的值,本题得以解决.【解答】解:设y=ax2+bx+c,,得,∴y=0.1x2﹣8x+153,∵C型小正方形白色块数与黑色块数之和是:25×25﹣7×7×3﹣5×5=453,∴x+(0.1x2﹣8x+153)=453,解得,x1=100,x2=﹣30(舍去),∴y=0.1×1002﹣8×100+153=353,即C型小正方形黑色块数为100,故选:C.【点评】本题考查二次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用二次函数的性质解答.15.如图,抛物线y=ax2﹣x+4与直线y=x+b经过点A(2,0),且相交于另一点B;抛物线与y轴交于点C,与x轴交于另一点E;点N在线段AB上,过点N的直线交。
第一章 二次函数专题复习一(含答案)

专题一 求二次函数的解析式[见A 本P6]一 利用一般式y =ax 2+bx +c (a≠0)求二次函数的解析式(教材P33目标与测定题第2题)已知二次函数y =ax 2+bx +c ,当x =1时,y =3;当x =-2时,y =7;当x =3时,y =-3,求a ,b ,c 的值,并写出该二次函数的表达式. 解:依题意,得⎩⎪⎨⎪⎧3=a +b +c ,7=4a -2b +c ,-3=9a +3b +c ,解得⎩⎪⎨⎪⎧a =-13,b =-53,c =5所求的函数解析式为y =-13x 2-53x +5[2013·徐州]二次函数y =ax 2+bx +c 图象上部分点的坐标满足下表∶x…-3 -2 -1 01…y…-3-2-3-6-11…则该函数图象的顶点坐标为( B )A .(-3,-3)B .(-2,-2)C .(-1,-3)D .(0,-6) 【解析】 ∵x =-3和-1时的函数值都是-3,相等, ∴二次函数的对称轴为直线x =-2, ∴顶点坐标为(-2,-2). 故选B.如图1,抛物线的函数表达式是( D )图1A .y =x 2-x +2B .y =x 2+x +2C .y =-x 2-x +2D .y =-x 2+x +2 【解析】 根据题意,设二次函数的表达式为y =ax 2+bx +c ,因为抛物线过点(-1,0),(0,2),(2,0),所以⎩⎪⎨⎪⎧a -b +c =0,c =2,4a +2b +c =0, 解得a =-1,b =1,c =2,所以这个二次函数的表达式为y =-x 2+x +2.[2012·绥化]如图2,二次函数y =ax 2-4x +c 的图象经过坐标原点,与x 轴交于点A (-4,0).(1)求二次函数的解析式;(2)在抛物线上存在点P ,满足S △AOP =8,请直接写出点P 的坐标.图2解:(1)由已知条件得∶⎩⎪⎨⎪⎧c =0,a ×(-4)2-4×(-4)+c =0,解得⎩⎪⎨⎪⎧c =0,a =-1,∴此二次函数的解析式为y =-x 2-4x .(2)∵点A 的坐标为(-4,0),∴AO =4. 设点P 的坐标为(x ,h ),则S △AOP =12AO ·|h |=12×4×|h |=8,解得|h |=4.①当点P 在x 轴上方时,-x 2-4x =4,解得x =-2, ∴点P 的坐标为(-2,4);②当点P 在x 轴下方时,-x 2-4x =-4,解得x1=-2+22,x2=-2-22,∴点P的坐标为(-2+22,-4)或(-2-22,-4),综上所述,点P的坐标为(-2,4)或(-2+22,-4)或(-2-22,-4).[2013·临沂]如图3,抛物线经过A(-1,0),B(5,0),C(0,-52)三点.(1)求抛物线的解析式;(2)点M为x轴上一动点,在抛物线上是否存在一点N,使A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.图3解:(1)设抛物线的解析式为y=ax2+bx+c,根据题意,得⎩⎪⎨⎪⎧a-b+c=025a+5b+c=0c=-52,解得⎩⎪⎨⎪⎧a=12b=-2c=-52,∴抛物线的解析式为y=12x2-2x-52;(2)存在.(Ⅰ)当存在的点N在x轴的下方,如图所示,∵四边形ACNM是平行四边形,∴CN∥x轴,∴点C与点N关于对称轴x=2对称,∵C点的坐标为(0,-52),∴点N 的坐标为(4,-52).(Ⅱ)当存在的点N ′在x 轴上方时,如图所示,作N ′H ⊥x 轴于点H , ∵四边形ACM ′N ′是平行四边形, ∴AC =M ′N ′,∠N ′M ′H =∠CAO , ∴Rt △CAO ≌Rt △N ′M ′H ,∴N ′H =OC , ∵点C 的坐标为(0,-52),∴N ′H =52,即N 点的纵坐标为52,∴12x 2-2x -52=52, 解得x 1=2+14,x 2=2-14.∴点N ′的坐标为(2-14,52)和(2+14,52).综上所述,满足题目条件的点N 共有三个, 分别为(4,-52),(2-14,52)和(2+14,52).二 利用顶点式y =a (x -h )2+k (a≠0)求二次函数的解析式(教材P23作业题第5题)根据下列条件,分别求二次函数的解析式∶(1)已知图象的顶点坐标为(-1,-8),且过点(0,-6); (2)已知图象经过点(3,0),(2,-3),并以直线x =0为对称轴.解:(1)设y =a (x +1)2-8,把点(0,-6)代入,得-6=a -8,解得a =2, ∴y =2x 2+4x -6.(2)设y =ax 2+c ,则⎩⎪⎨⎪⎧9a +c =0,4a +c =-3, 解得⎩⎨⎧a =35,c =-275,∴y =35x 2-275.【思想方法】 若已知二次函数图象的顶点坐标或对称轴方程与最大值(或最小值),可设所求二次函数的解析式为y =a (x +m )2+k ,将已知条件代入,求出待定系数,最后将解析式化为一般形式即可.已知某二次函数的图象如图4所示,则这个二次函数的解析式为( D )图4A .y =2(x +1)2+8B .y =18(x +1)2-8C .y =29(x -1)2+8 D .y =2(x -1)2-8一抛物线的形状、开口方向与y =12x 2-4x +3相同,顶点在(-2,1),则此抛物线的解析式为( C )A .y =12(x -2)2+1B .y =12(x +2)2-1C .y =12(x +2)2+1D .y =-12(x +2)2+1【解析】 抛物线的形状、开口方向与y =12x 2-4x +3相同,所以a =12.顶点在(-2,1),所以抛物线的解析式是y =12(x +2)2+1.已知抛物线经过两点A (1,0),B (0,3),且对称轴是直线x =2,求其解析式. 解: ∵抛物线对称轴是直线x =2且经过点A (1,0), 由抛物线的对称性可知:抛物线还经过点(3,0), 设抛物线的解析式为y =a (x -x 1)(x -x 2)(a ≠0), 即y =a (x -1)(x -3), 把B (0,3)代入得3=3a , ∴a =1.∴抛物线的解析式为:y =x 2-4x +3.三 利用平移规律求二次函数的解析式(教材P34目标与评定第8题)将y =4x 2的图象先向左平移32个单位,再向下平移34个单位,求最终所得图象的函数解析式,并说出它的二次项系数、一次项系数和常数项.解:y =4x 2的图象向左平移32个单位,得到y =4⎝⎛⎭⎫x +322的图象,再向下平移34个单位,得到y =4⎝⎛⎭⎫x +322-34的图象,即最终所得图象的解析式为y =4⎝⎛⎭⎫x +322-34,化为一般式为y =4x 2+12x +334,所以它的二次项系数是4,一次项系数是12,常数项是334.【思想方法】 (1)可按照口诀“左加右减,上加下减”写出平移后的解析式;(2)平移所得函数的解析式与平移的先后顺序无关.[2013·恩施州]把抛物线y =12x 2-1先向右平移1个单位,再向下平移2个单位,得到的抛物线的解析式为( B )A .y =12(x +1)2-3B .y =12(x -1)2-3C .y =12(x +1)2+1D .y =12(x -1)2+1[2013·湖南邵阳]如图5所示,已知抛物线y =-2x 2-4x 的图象E ,将其向右平移两个单位后得到图象F .求图象F 所表示的抛物线的解析式.图5解:方法一:由平移知图象F 的二次项系数为-2,y =-2x 2-4x =-2(x +1)2+2,顶点坐标为(-1,2),平移后图象F 的顶点坐标为(1,2),所以图象F 的解析式为y =-2x (x -1)2+2;方法二:y =0时,即-2x 2-4x =0,x =0或x =-2,平移后图象F 与x 轴交点为(0,0)和(2,0),所以图象F 的解析式为y =-2(x -2);方法三:根据图象平移之间的关系,可是图象F 的解析式为y =-2(x -2)2-4(x -2)=-2x 2+4x . .已知二次函数y =ax 2+bx -3的图象经过点A (2,3),B (-1,0).(1)求二次函数的解析式;(2)填空∶要使二次函数的图象与x 轴只有一个交点,应把图象沿y 轴向上平移________个单位.解:(1)∵二次函数y =ax 2+bx -3的图象经过点A (2,3),B (-1,0), ∴把A (2,3),B (-1,0)分别代入解析式,得⎩⎪⎨⎪⎧4a +2b -3=3,a -b -3=0,解得⎩⎪⎨⎪⎧a =2,b =-1, 则二次函数的解析式为y =2x 2-x -3. (2)∵y =2x 2-x -3=2⎝⎛⎭⎫x -142-258, 设应把图象沿y 轴向上平移m 个单位, 则平移后的解析式为y =2⎝⎛⎭⎫x -142-258+m , 此时二次函数的顶点坐标为⎝⎛⎭⎫14,-258+m . 要使二次函数的图象与x 轴只有一个交点,则此交点必为抛物线的顶点, ∴-258+m =0,即m =258,∴应把图象沿y 轴向上平移258个单位.。
浙教版九年级上册第一章 二次函数(含答案)

浙教版九年级上册第一章二次函数一、选择题1.下列函数中,是二次函数的是( )A .y =3x ﹣2B .y =1x 2C .y =x 2+1D .y =(x ﹣1)2﹣x 22.二次函数 y =k x 2−6x +3 的图象与x 轴有交点,则k 的取值范围是( )A .k <3B .k <3 且 k ≠0C .k ≤3D .k ≤3 且 k ≠03.已知二次函数y =−12x 2+bx 的对称轴为x =1,当m ≤x ≤n 时,y 的取值范围是2m ≤y ≤2n .则m +n 的值为( )A .−6或−2B .14或−74C .14D .−24.已知二次函数y =a x 2+bx +c (a ≠0)的图象如图所示,在下列5个结论:①abc >0;②b <a +c ;③4a +2b +c >0;④2c <3b ;⑤a +b <m(am +b)(m ≠1的实数),其中正确的结论有( )A .1个B .2个C .3个D .4个5.如图,二次函数y =−x 2+x +2及一次函数y =x +m ,将该二次函数在x 轴上方的图象沿x 轴翻折到x 轴下方,图象的其余部分不变,得到一个新函数,当直线y =x +m 与新图象有4个交点时,m 的取值范围是( )A .14<m <−3B .254<m ≤1C .−2<m <1D .−3<m <−2二、填空题6.若y =(m−3)x m2−5m +8+2x−3是关于x 的二次函数,则m 的值是 .7.二次函数 y =−(x−6)2+8 的最大值是 .8.已知抛物线y =a x 2−2ax 经过A (m−1,y 1),B (m,y 2),C (m +3,y 3)三点,且y 1<y 3<y 2≤−a 恒成立,则m 的取值范围为 .9.飞机着陆后滑行的距离s (米)与滑行时间t (秒)的关系满足s =−32t 2+bt .当滑行时间为10秒时,滑行距离为450米,则飞机从着陆到停止,滑行的时间是 秒.10.如图,抛物线y =−87x 2+247x +2与x 轴交于A 、B 两点,与y 轴交于C 点,P 为抛物线对称轴上动点,则PA +PC 取最小值时,点P 坐标是 .11.若定义一种新运算:m@n ={m−n(m ≤n)m +n−3(m >n),例如:1@2=1−2=−1,4@3=4+3−3=4.下列说法:(1)−7@9= ;(2)y =(−x +1)@(x 2−2x +1)与直线y =m(m 为常数)有1个交点,则m 的取值范围是 .三、单选题12. 已知y =(a−1)x 2−2x +a 2是关于x 的二次函数,其图象经过(0,1),则a 的值为( )A .a =±1B .a =1C .a =−1D .无法确定13.抛物线 y =−3x 2+6x +2 的对称轴是( )A .直线 x =2B .直线 x =−2C .直线 x =1D .直线 x =−114.已知二次函数y =3x 2+2x−1,把图象向右平移n 个单位长度后,使两个函数图象与x 轴的交点中,相邻的两个交点之间的距离都相等,则n 的值为( )A .43B .83C .23或83D .43或8315.已知一个二次函数y =a x 2+bx +c 的自变量x 与函数y 的几组对应值如下表,x …−4−2035…y…−24−80−3−15…则下列关于这个二次函数的结论正确的是( )A.图象的开口向上B.当x>0时,y的值随x的值增大而增大C.图象经过第二、三、四象限D.图象的对称轴是直线x=116.直线y=ax+b与抛物线y=a x2+bx+b在同一坐标系里的大致图象正确的是()A.B.C.D.四、解答题17.已知二次函数过点A(0,−2),B(−1,0),C(2,0).(1)求此二次函数的解析式;(2)当x为何值时,这个二次函数取到最小值?并求出这个最小值.18.已知二次函数y=x2−4x+1.(1)将该二次函数化成y=a(x+ℎ)2+k的形式.(2)自变量x在什么范围内时,y随x的增大而增大?19.在平面直角坐标系中,已知抛物线y=a x2−2a2x−3(a≠0).(1)若a=1,当−2<x<3时,求y的取值范围;(2)已知点A(2a−1,y1),B(a,y2),C(a+2,y3)都在该抛物线上,若(y1−y3)(y3−y2)>0,求a 的取值范围.20.在平面直角坐标系xOy中,已知抛物线y=x2−2tx+t2−t.(1)求抛物线的顶点坐标(用含t的代数式表示);(2)点P(x1,y1),Q(x2,y2)在抛物线上,其中t−1≤x1≤t+2,x2=1−t.①若y1的最小值是−2,求y1的最大值;②若对于x1,x2,都有y1<y2,求t的取值范围.21.若一个函数的解析式等于另两个函数解析式的和,则这个函数称为另两个函数的“生成函数”.现有关于x的两个二次函数y1,y2,且y1=a(x−m)2+4(m>0),y1,y2的“生成函数”为:y=x2+4x+14;当x=m时,y2=15;二次函数y2的图象的顶点在y轴上.(1)求m的值;(2)求二次函数y1,y2的解析式.22.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,如何定价才能使得利润最大?小明同学,为了完成以上问题,小明分析:调整价格包括涨价和降价两种情况.小明先探索了涨价的情况,下面是小明的思路,请你帮助小明完善以下内容:(1)假设每件涨价x元,则所得利润y与x的函数关系式为 ;其中x的取值范围是 ;在涨价的情况下,定价 元时,利润最大,最大利润是 .(2)请你参考小明(1)的思路继续思考,在降价的情况下,求最大利润是多少?(3)在(1)(2)的讨论及现在的销售情况,回答商家如何定价能使利润能达到最大?23.在平面直角坐标系中,二次函数y=−x2+bx+c(b、c为常数)的图象经过点A(3,0)和点B(0,3 ).(1)求这个二次函数的表达式.(2)当0≤x≤m+1时,二次函数y=−x2+bx+c的最大值与最小值的差为1,求m的取值范围.(3)当m≤x≤m+1(m>0)时,设二次函数y=−x2+bx+c的最大值与最小值的差为ℎ,求ℎ与m之间的函数关系式.(4)点P在直线x=m上运动,若在坐标平面内有且只有两个点P使△PAB为直角三角形,直接写出m 的取值范围.答案解析部分1.【答案】C 2.【答案】D 3.【答案】D 4.【答案】B 5.【答案】D 6.【答案】27.【答案】88.【答案】−12<m <09.【答案】2010.【答案】(32,87)11.【答案】(1)−16(2)−3<m <−112.【答案】C 13.【答案】C 14.【答案】D 15.【答案】D 16.【答案】D17.【答案】(1)y =x 2−x−2(2)当x =12时,y 的最小值为−9418.【答案】(1)y =(x−2)2−3(2)当x >2时,y 随x 的增大而增大19.【答案】(1)解:当a =1时,y =x 2−2x−3,抛物线开口向上,对称轴为直线x =1,x =−2比x =3距离对称轴远,∴x =1时,y =1−2−3=−4为函数最小值,当x =−2时,y =4+4−3=5为函数最大值,∴当−2<x <3时,−4≤y <5;(2)解:∵对称轴为直线x =a ,∴当a >0时,抛物线开口向上,函数有最小值y 2,∴y3−y2>0,∵(y1−y3)(y3−y2)>0,∴y1−y3>0,即y1>y3,∴|2a−1−a|>|a+2−a|,解得a>3,当a<0时,抛物线开口向下,函数有最大值y2,∴y3−y2<0,∵(y1−y3)(y3−y2)>0,∴y1−y3<0,即y1<y3,∴|2a−1−a|>|a+2−a|,解得a<−1,∴a的取值范围是a>3或a<−1.20.【答案】(1)(t,−t)(2)①2;②t<−12或t>32.21.【答案】(1)m=1(2)y1=−2(x−1)2+4;y2=3x2+1222.【答案】(1)y=−10x2+100x+6000;0⩽x⩽30;65;6250元(2)解:设每件降价x元,则每星期售出商品的利润w元,则w=(20−x)(300+20x)=−20x2+100x+6000,∵函数的对称轴为x=−1002×(−20)=2.5,∴当x=2.5(元)时,则w=−20×2.52+100×2.5+6000=6125(元);(3)解:∵6250>6125,∴用涨价方式比降价方式获得利润大,当定价为65元时,利润最大.23.【答案】(1)解:将A(3,0)、B(0,3)代入y=−x2+bx+c中,得{−9+3b+c=0,c=3.解得{b=2,c=3.∴y=−x2+2x+3.(2)解:∵函数图象的顶点坐标为(1,4),∴点B(0,3)关于对称轴直线x=1的对称点的坐标为(2,3),4−3=1.∴1≤m+1≤2,∴0≤m≤1(3)解:当0<m ≤12时,ℎ=4−(−m 2+2m +3)=m 2−2m +1.当12<m ≤1时,ℎ=4−(−m 2+4)=m 2.当m >1时,ℎ=−m 2+2m +3−(−m 2+4)=2m−1.(4)m =0或m =3或m <3−322或m >3+322.。
浙教版九年级上册数学第一章《二次函数》单元测试(含答案)

浙教版九年级上册数学二次函数一、单选题1.二次函数得顶点坐标是()A.B.C.D.2.二次函数y=x2﹣6x﹣4的顶点坐标为()A.(3,5)B.(3,﹣13)C.(3,﹣5)D.(3,13)3.抛物线经过点(﹣2,0),且对称轴为直线x=1,其部分图象如图所示.对于此抛物线有如下四个结论:①;②>;③若n>m>0,则时的函数值小于时的函数值;④点(,0)一定在此抛物线上.其中正确结论的个数是()A.4个B.3个C.2个D.1个4.如图,已知抛物线y=ax2+bx+c经过点(﹣1,0),以下结论:①2a+b>0;②a+c<0;③4a+2b+c>0;④b2﹣5a2>2ac.其中正确的是()A.①②B.③④C.②③④D.①②③④5.飞机着陆后滑行的距离s(米)关于滑行的时间t(米)的函数解析式是s=60t﹣1.5t2,则飞机着陆后滑行到停止下列,滑行的距离为()A.500米B.600米C.700米D.800米6.已知二次函数(其中m>0),下列说法正确的是()A.当x>2时,都有y随着x的增大而增大B.当x<3时,都有y随着x的增大而减小C.若x<n时,都有y随着x的增大而减小,则D.若x<n时,都有y随着x的增大而减小,则7.已知:二次函数,其中正确的个数为()①当时,y随x的增大而减小;②若图象与x轴有交点,则;③当时,不等式的解集是;④若将图象向上平移1个单位,再向左平移3个单位后过点(1,-2),则 .A.1个B.2个C.3个D.4个8.二次函数的图象如图所示,则点在()A.第一象限B.第二象限C.第三象限D.第四象限9.新定义:在平面直角坐标系中,对于点P(m,n)和点P′(m,n′),若满足m≥0时,n′=n-4;m<0时,n′=-n,则称点P′(m,n′)是点P(m,n)的限变点.例如:点P1(2,5)的限变点是P1′(2,1),点P2(-2,3)的限变点是P2′(-2,-3).若点P(m,n)在二次函数y=-x2+4x+2的图象上,则当-1≤m≤3时,其限变点P′的纵坐标n'的取值范围是()A.B.C.D.10.如图,二次函数(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).下列结论:①ab<0,②>4a,③0<b<1,④当x>﹣1时,y>0,其中正确结论的个数是()A.4个B.3个C.2个D.1个11.已知直线y=kx+b经过点A(0,6),且平行于直线y=-2x.(1)求该函数的解析式,并画出它的图象;(2)如果这条直线经过点P(m,2),求m的值;(3)若O为坐标原点,求直线OP的解析式;(4)求直线y=kx+b和直线OP与坐标轴所围成的图形的面积.。
专题01 二次函数(重点)(解析版)

专题01 二次函数(重点)一、单选题1.下列y 关于x 的函数中,属于二次函数的是( )A .y =(x +1)2﹣x 2B .y =ax 2+bx +cC .y =3x 2﹣1D .y =3x ﹣1【答案】C【分析】根据二次函数的定义逐项分析即可,二次函数的定义和概念 一般地,把形如²y ax bx c =++(0a ¹)(a b c 、、是常数)的函数叫做二次函数,其中a 称为二次项系数,b 为一次项系数,c 为常数项.【解析】A. y =(x +1)2﹣x 221x =+,不是二次函数,故该选项不正确,不符合题意;B. y =ax 2+bx +c (0a ¹),故该选项不正确,不符合题意;C. y =3x 2﹣1,是二次函数,故该选项正确,符合题意;D. y =3x ﹣1,是一次函数,故该选项不正确,不符合题意;故选C【点睛】本题考查了二次函数的定义,理解二次函数的定义是解题的关键.2.二次函数y =2(x ﹣1)2+2图象的顶点坐标( )A .(-1,2)B .(2,1)C .(1,2)D .(1,-2)【答案】C【分析】根据二次函数2()y a x h k =-+ 顶点坐标是()h k ,进行解答即可.【解析】解:∵二次函数2()y a x h k =-+顶点坐标是()h k ,,∴二次函数2212y x +=(﹣)图象的顶点坐标为(1,2).故选:C .【点睛】此题考查了二次函数的性质,掌握二次函数顶点式的特点是解题的关键.3.把抛物线y =2(x ﹣1)2+3先向右平移3个单位,再向上平移1个单位,得到的抛物线的解析式是( )A .y =2(x +2)2+4B .y =2(x ﹣4)2+4C .y =2(x +2)2+2D .y =2(x ﹣4)2+2【答案】B【分析】根据平移的性质先得到平移后得到的抛物线的顶点坐标为()4,4 ,即可求解.【答案】B【分析】利用抛物线与x 轴的交点个数可对A 进行判断;利用抛物线的顶点坐标可对B 进行判断;由顶点坐标得到抛物线的对称轴为直线x =-3,则根据二次函数的性质可对C 进行判断;根据抛物线的对称性得到抛物线y =ax 2+bx +c 上的点(-1,-4)的对称点为(-5,-4),则可对D 进行判断.【解析】解:A 、图象与x 轴有两个交点,方程ax 2+bx +c =0有两个不相等的实数根,b 2﹣4ac >0,所以b 2>4ac ,故A 选项不符合题意;B 、抛物线的开口向上,函数有最小值,因为抛物线的最小值为﹣6,所以ax 2+bx +c ≥﹣6,故B 选项符合题意;C 、抛物线的对称轴为直线x =﹣3,因为﹣4离对称轴的距离等于﹣2离对称轴的距离,所以m =n ,故C 选项不符合题意;D 、根据抛物线的对称性可知,(﹣1,﹣4)关于对称轴的对称点为(﹣5,﹣4),所以关于x 的一元二次方程ax 2+bx +c =﹣4的两根为﹣5和﹣1,故D 选项不符合题意.故选B .【点睛】本题考查了二次函数图象与系数的关系,二次函数与一元二次方程的关系,熟练运用数形结合是解题的关键.9.如图,ABC V 中,90C Ð=°,15AC =,20BC =.点D 从点A 出发沿折线A C B --运动到点B 停止,过点D 作DE AB ^,垂足为E .设点D 运动的路径长为x ,BDE △的面积为y ,若y 与x 的对应关系如图所示,则a b -的值为( )A .54B .52C .50D .48【答案】B 【分析】根据点D 运动的路径长为x ,在图中表示出来,设,25AE z BE z ==-,在直角三角形中,找到等量关系,求出未知数的值,得到BDE △的值.【解析】解:当10x =时,由题意可知,10,5AD CD ==,故选:B.【点睛】本题主要考查勾股定理,根据勾股定理列出等式是解题的关键,运用了数形结合的思想解题.10.如图,二次函数2y ax=+上移动,MN∥y轴,NR∥x轴,标的最大值为3,则a -b +c 的最大值是( )A .15B .18C .23D .32【答案】C 【分析】先求出N ,R 的坐标,观察图形可知,当顶点在R 处时,点B 的横坐标为3,由此求出a 值,当=1x -时y a b c =-+,当顶点在M 处时y a b c =-+取最大值,求此可解.【解析】解:(6,2)M --Q ,MN =2,NR =7,(6,4)N \--,(1,4)R -,由题意可知,当顶点在R 处时,点B 的横坐标为3,则抛物线的解析式为2(1)4y a x =--,将点B 坐标(3,0)代入上式得,20(31)4a =--,解得,1a =,当=1x -时,y a b c =-+,观察图形可知,顶点在M 处时,y a b c =-+取最大值,此时抛物线的解析式为:2(6)2y x =+-,将=1x -代入得,2(16)223y a b c =-+=-+-=,故选:C .【点睛】本题考查二次函数2y ax bx c =++图像的性质,解题关键时利用数形结合的思想,判断出抛物线顶点在R 处时点B 的横坐标取最大值,由此求出a 值.二、填空题【答案】41x -££【分析】根据图象,写出抛物线在直线上方部分的【解析】解:∵抛物线2y ax c =+∴不等式2ax c kx m +³+的解集是故答案为41x -££.所以当直线y x m =-+与新图象有4个交点时,m 的取值范围为62m -<<-.故答案为:62m -<<-.【点睛】本题考查了抛物线与x 轴的交点:把求二次函数2y ax bx c =++(a ,b ,c 是常数,0a ¹)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数图象与几何变换.(1)求A 、B 两点的坐标;(2)根据图象直接写出当21y y <时x 的取值范围.【答案】(1)()1,0A -,()3,0B(1)求点B的坐标和抛物线的表达式.(2)将抛物线顶点向上平移m的值.【答案】(1)B点坐标为(5,0)(2)254 m=(1)求直线AC 的函数表达式;(2)若将直线AC 沿y 轴的正方向向上平移【答案】(1)1y x =+(2)9n 4=(1)求抛物线的表达式;(2)如图1,点E 是抛物线上的第一象限的点,求ACE S V 的最大值,并求(3)如图2,在抛物线对称轴上是否存在一点P ,使ACP △是等腰三角形?若存在,直接写出点若不存在请说明理由.【答案】(1)抛物线解析式为:213222y x x =-++设点213(,2)22E x x x -++,则DE x =,213222DO x x =-++ACE AOC DCEAODE S S S S \=--V V V 梯形211311(4)(2)(22222x x x x =+-++--∵一次函数过定点(3,6)--,∴一次函数36y nx n =+-与n y x=-联立方程组得,36y nx x n y x =+-ìïí=-ïî,整理得,2(3nx n +∵有一个交点,(1)求此抛物线的表达式;(2)若点B是抛物线对称轴上的一点,且点①求B的坐标;②点P足抛物线上的动点,当【答案】(1)抛物线的表达式为(2)①点B的坐标为(2,6-设直线OA 与抛物线对称轴交于点()2BH m \=--.10OAB S =Q △,125102m \´+´=,6m \=-(正值已舍).即点B 的坐标为()2,6-.设直线AB 的解析式为y nx =把()()5,5,2,6A B --分别代入,得解得1;320.3n d ì=ïïíï=-ïî\直线AB 的解析式为13y =令2120433x x x -+=-,解得。
浙教版 九年级上册 第一章 二次函数考点分类(有答案)

二次函数考点分类一、典型例题类型一、二次函数的定义1.一个二次函数y=(k-1)x k2−3k+4+2x-1.(1)求k值.(2)求当x=0.5时y的值?2.已知函数y=(m2-m)x2+(m-1)x+2-2m.(1)若这个函数是二次函数,求m的取值范围.(2)若这个函数是一次函数,求m的值.(3)这个函数可能是正比例函数吗?为什么?类型二、二次函数图像的位置关系3.在同一坐标系中,二次函数y=ax2+bx与一次函数y=bx-a的图象可能是()A. B. C. D.4.已知a,b是非零实数,|a|>|b|,在同一平面直角坐标系中,二次函数y1=ax2+bx与一次函数y2=ax+b的大致图象不可能是()A. B. C. D.5. 已知函数y=ax 2+bx+c ,当y >0时,−21<x <31.则函数y=cx 2-bx+a 的图象可能是下图中的( ) A. B. C. D.类型三、二次函数图像与系数的关系6. 二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,下列结论:①abc >0;②b 2-4ac <0;③4a+c >2b ;④(a+c )2>b 2;⑤x (ax+b )≤a-b ,其中正确结论的是( )A .①③④B .②③④C .①③⑤D .③④⑤(6) (7) 7. 如图,已知二次函数y=ax 2+bx+c (a ≠0)的图象与x 轴交于点A (-1,0),与y 轴的交点B 在(0,-2)和(0,-1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc >0;②4a+2b+c >0;③4ac-b 2<-4a ;④31<a <32;⑤b >c .其中正确结论有 (填写所有正确结论的序号). 8. 设二次函数y=ax 2+bx+c (a >0,c >1),当x=c 时,y=0;当0<x <c 时,y >0.请比较ac 和1的大小,并说明理由.类型四、二次函数点的坐标9. 点A (m ,y 1),B (m+4,y 2),C (1,y 3)在二次函数y=ax 2-2ax+4的图象上,且y 1≤y 2≤y 3,则m 的取值范围是 .10. 设实数a 、b 、c 满足222111c b a ++=|a 1+b 1+c1|,则函数y=ax 2+bx+c 的图象一定经过一个定点,那么这 个定点的坐标是 .11. 如图,二次函数y=ax 2+bx 的图象经过点A (2,4)与B (6,0).点C 是该二次函数图象上A ,B 两点之间的一动点,横坐标为x (2<x <6),写出四边形OACB 的面积S 关于点C 的横坐标x 的函数表达式,并求S 的最大值及C 的坐标.类型五、二次函数平移、折叠12. 将抛物线y=x 2-2x+1向下平移2个单位,再向左平移1个单位,所得抛物线的解析式是( )A .y=x 2-2B .y=x 2+2x-1C .y=x 2-2x-1D .y=x 2+213. 在平面直角坐标系中,点P 的坐标为(1,2),将抛物线y=21x 2-3x+2沿坐标轴平移一次,使其经过点P ,则平移的最短距离为( ) A.21 B .1 C .5 D.25 14. 直线y=m 是平行于x 轴的直线,将抛物线y=-21x 2-4x 在直线y=m 上侧的部分沿直线y=m 翻折,翻折后的部分与没有翻折的部分组成新的函数图象,若新的函数图象刚好与直线y=-x 有3个交点,则满足条件的m 的值为 .二、课堂小测1. 若y=(a 2+a )x 2a −2a −1是二次函数,那么( )A .a=-1或a=3B .a ≠-1且a ≠0C .a=-1D .a=32. 二次函数y=x 2的图象平移后经过点(2,0),则下列平移方法正确的是( )A .向左平移2个单位,向下平移2个单位B .向左平移1个单位,向上平移2个单位C .向右平移1个单位,向下平移1个单位D .向右平移2个单位,向上平移1个单位3. 函数y=ax 2与y=ax+a (a <0)在同一平面直角坐标系内图象大致是( )A .B .C .D .4. 函数y=-(x-m )(x-n )(其中m <n )的图象与一次函数y=mx+n 的图象可能是( )A .B .C .D .5. 如图,抛物线y=ax 2+bx+c 的对称轴为x=-1,且过点(21,0),有下列结论: ①abc >0; ②a-2b+4c >0;③25a-10b+4c=0;④3b+2c >0;其中所有正确的结论是( )A .①③B .①③④C .①②③D .①②③④(5) (6)6. 已知二次函数y=ax 2+bx+c 图象的对称轴为x=1,其图象如图所示,现有下列结论:①abc >0,②b-2a <0,③a-b+c >0,④a+b >n (an+b ),(n ≠1),⑤2c <3b .正确的是( )A .①③B .②⑤C .③④D .④⑤7. 已知点A (a-m ,y 1),B (a-n ,y 2),C (a+b ,y 3)都在二次函数y=x 2-2ax+1的图象上,若0<m <b <n ,则y 1、y 2,y 3的大小关系是( )A .y 1<y 2<y 3B .y 1<y 3<y 2C .y 3<y 1<y 2D .y 2<y 3<y 18. 如图在平面直角坐标系中,一次函数y=mx+n 与x 轴交于点A ,与二次函数交于点B 、点C ,点A 、B 、C 三点的横坐标分别是a 、b 、c ,则下面四个等式中不一定成立的是( )A .a 2+bc=c 2-abB .a b b c b b c --=-222C .b 2(c-a )=c 2(b-a )D .cb a 111+= (8) (9)(10)9. 已知四个二次函数的图象如图所示,那么a 1,a 2,a 3,a 4的大小关系是 .10. 如图,正方形的边长为4,以正方形中心为原点建立平面直角坐标系,作出函数y=31x 2与y=-31x 2的图象,则阴影部分的面积是 .11. 抛物线y=x 2+x+2的图象上有三个点(-3,a )、(-2,b )、(3,c ),则a 、b 、c 的大小关系是(用“<”连接).12. 已知二次函数y=x 2-4x+m (m 为常数)的图象上的两点A (x 1,y 1)、B (x 2,y 2),若x 1<2<x 2,且x 1+x 2>4,则y 1与y 2的大小关系为y 1 y 2.(填“>”或“<”或“=”)13. 若二次函数y=-(x+1)2+h 的图象与线段y=x+2(-3≤x ≤1)没有交点,则h 的取值范围是 .14. 在平面直角坐标系xOy 中,抛物线y=ax 2-2ax-3(a ≠0)与y 轴交于点A .(1)直接写出点A 的坐标;(2)点A 、B 关于对称轴对称,求点B 的坐标;(3)已知点P (4,0),Q(−a 1,0).若抛物线与线段PQ 恰有两个公共点,结合函数图象,求a 的取值范围.15. 已知抛物线y=(m+1)x 2+(21m-2)x-3. (1)当m=0时,不与坐标轴平行的直线l 1与抛物线有且只有一个交点P (2,a ),求直线l 1的解析式;(2)在(1)的条件下,将直线l 1向上平移,与抛物线交于M ,N 两点(M 在N 的右侧),过P 作PQ ∥y 轴交MN 于点Q .求证:S △PQM =S △PQN .三、课后作业1.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(-1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③,3a+c>0;④当x>-1时,y的值随x值的增大而增大;⑤4a+2b≥am2-bm(m为任意实数).其中正确的结论有 .2.点P1(-1,y1),P2(2,y2),P3(5,y3)均在二次函数y=-x2+2x+c的图象上,则y1,y2,y3的大小关系是 .3.已知二次函数y1=x2+2x-3的图象如图所示.将此函数图象向右平移2个单位得抛物线y2的图象,则阴影部分的面积为 .4.已知函数y=ax2+bx+c(a≠0,a、b、c为常数)的图象经过点A(-1,0)、B(0,2).(1)b= (用含有a的代数式表示),c= ;(2)点O是坐标原点,点C是该函数图象的顶点,若△AOC的面积为1,则a= ;(3)若x>1时,y<5.结合图象,直接写出a的取值范围.5. 如果x=0,1,2时,函数y=ax 2+bx+c 的值都是整数.求证:(1)2a ,2b 是整数.(2)对任何整数x ,函数y=ax 2+bx+c 的值都是整数.答案一、典型例题类型一、二次函数的定义1. (1)由题意得:k 2-3k+4=2,且k-1≠0,解得:k=2;(2)把k=2代入y=(k-1)x k 2−3k+4+2x-1得:y=x 2+2x-1,当x=0.5时,y=41. 2. (1)函数y=(m 2-m )x 2+(m-1)x+2-2m ,若这个函数是二次函数,则m 2-m ≠0,解得:m ≠0且m ≠1;(2)若这个函数是一次函数,则m 2-m=0,m-1≠0,解得m=0;(3)这个函数不可能是正比例函数,∵当此函数是一次函数时,m=0,而此时2-2m ≠0.类型二、二次函数图像的位置关系3. C4. D5. A类型三、二次函数图像与系数的关系6. C7. ①③④⑤8. 解:当x=c 时,y=0,即ac 2+bc+c=0,c (ac+b+1)=0,又c >1,所以ac+b+1=0,设一元二次方程ax 2+bx+c=0两个实根为x 1,x 2(x 1≤x 2)由x 1•x 2=ac >0,及x=c >1,得x 1>0,x 2>0又因为当0<x <c 时,y >0,所以x 1=c ,于是二次函数y=ax 2+bx+c 的对称轴:x =−a b 2≥c 即b ≤-2ac 所以b=-ac-1≤-2ac 即ac ≤1.类型四、点的坐标9. m ≤-110. (1,0).11. ∴S 关于x 的函数表达式为S=-x 2+8x (2<x <6),∵S=-x 2+8x=-(x-4)2+16,∴当x=4时,四边形OACB 的面积S 有最大值,最大值为16.类型五、二次函数平移、折叠12. A13. B 可能水平平移或者竖直平移14. m=6或425 二、课堂小测1. D2. C3. B4. C5. C6. D7. B8. A解:一次函数y=mx+n 与x 轴的轴交于点A ,故点(a ,0),将点A (a ,0)坐标代入一次函数表达式得:0=am+n , 解得:n=-am ,故一次函数的表达式为y=mx-am ,∵点B 、C 在一次函数上,故点B 、C 的坐标分别为(b ,mb-ma )、(c ,mc-ma ),设二次函数的表达式为y=Ax 2,点B 、C 在该二次函数上,则bm −ma =Ab 2①,mc −ma =Ac 2②(1)②-①得:A (b 2-c 2)=m (c-b ),等式两边同除以Ab 2得,,故B 正确(2)①÷② ,故C 正确(3)化简③得,故D 正确(4)化简A 得:a 2-c 2=-bc-ab ,化简得:a+b=c ,而从上述各式看,该式不一定成立9. a 1>a 2>a 3>a 410. 811. b<a<c12. <13. 解:x=1时,y=x+2=3,将(1,3)代入y=-(x+1)2+h 并解得:h=7, 联立y=-(x+1)2+h 和y=x+2并整理得:x 2+3x+(3-h )=0,∵△=3-4(3-h )<0,∴h <43, 故答案为h >7或h <43. 14. (1)A 的坐标为(0,-3);(2)B (2,-3)(3)83≤a ≤1或a <-315. 解:(1)当m=0时,y=x 2-2x-3.∵点P (2,a )为抛物线y=x 2-2x-3上的点,∴a=22-2×2-3=-3,∴点P 的坐标为(2,-3).设直线l 1的解析式为y=kx+b (k ≠0),∵点P (2,-3)为直线l 1上的点,∴2k+b=-3,∴b=-2k-3,∴直线l 1的解析式为y=kx-2k-3.将y=kx-2k-3代入y=x 2-2x-3,得:x 2-2x-3=kx-2k-3,整理,得:x 2-(2+k )x+2k=0.∵直线l 1与抛物线有且只有一个交点,∴△=[-(2+k]2-4×1×2k=0,解得:k 1=k 2=2,11 ∴直线l 1的解析式为y=2x-7(2)如图,过点Q 作直线l ∥x 轴,过点M 作ME ⊥直线l 于点E ,过点N 作NF ⊥直线l 于点F .∴MQ=NQS △PQM =21PQ •MQ ,S △PQN =21PQ •NQ ,∴S △PQM =S △PQN 三、课后作业1. ①③⑤2. y 2>y 1>y 33. 84. a+2,2;a=-2或6-42或6+42;a <-8+2155. (1)由题意知,c ,a+b+c ,4a+2b+c 均为整数,∴a+b=(a+b+c )-c 为整数,4a+2b=(4a+2b+c )-c为整数,∴2a=(4a+2b )-2(a+b )为整数,2b=(4a+2b )-2(2a )为整数;(2)当x 为偶数时,不妨设x=2k (k 不整数),则y=ax 2+bx+c=4ak 2+2bk+c=2(2ak 2)+2bk+c , ∵2a ,2b ,c ,k 均为整数,∴y=4ak 2+2bk+c 为整数;当a 为奇数时,设x=2k+1(k 为整数),则y=a (2k+1)2+b (2k+1)+c=4ak 2++4ak+2bk+(a+b+c ),∵4a ,2b ,k ,(a+b+c )均为整数, ∴y=a (2k+1)2+b (2k+1)+c 为整数.故对任何整数x ,函数y=ax 2+bx+c 的值都是整数.。
第1章二次函数全章复习与测试(原卷版)

第1章二次函数全章复习与测试【知识梳理】一.二次函数的定义(1)二次函数的定义:一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.其中x、y是变量,a、b、c是常量,a是二次项系数,b是一次项系数,c是常数项.y═ax2+bx+c(a、b、c是常数,a≠0)也叫做二次函数的一般形式.判断函数是否是二次函数,首先是要看它的右边是否为整式,若是整式且仍能化简的要先将其化简,然后再根据二次函数的定义作出判断,要抓住二次项系数不为0这个关键条件.(2)二次函数的取值范围:一般情况下,二次函数中自变量的取值范围是全体实数,对实际问题,自变量的取值范围还需使实际问题有意义.二.二次函数的图象(1)二次函数y=ax2(a≠0)的图象的画法:①列表:先取原点(0,0),然后以原点为中心对称地选取x值,求出函数值,列表.②描点:在平面直角坐标系中描出表中的各点.③连线:用平滑的曲线按顺序连接各点.④在画抛物线时,取的点越密集,描出的图象就越精确,但取点多计算量就大,故一般在顶点的两侧各取三四个点即可.连线成图象时,要按自变量从小到大(或从大到小)的顺序用平滑的曲线连接起来.画抛物线y=ax2(a≠0)的图象时,还可以根据它的对称性,先用描点法描出抛物线的一侧,再利用对称性画另一侧.(2)二次函数y=ax2+bx+c(a≠0)的图象二次函数y=ax2+bx+c(a≠0)的图象看作由二次函数y=ax2的图象向右或向左平移||个单位,再向上或向下平移||个单位得到的.三.二次函数的性质二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.③抛物线y=ax2+bx+c(a≠0)的图象可由抛物线y=ax2的图象向右或向左平移|﹣|个单位,再向上或向下平移||个单位得到的.四.待定系数法求二次函数解析式(1)二次函数的解析式有三种常见形式:①一般式:y=ax2+bx+c(a,b,c是常数,a≠0);②顶点式:y=a(x﹣h)2+k(a,h,k是常数,a≠0),其中(h,k)为顶点坐标;③交点式:y=a(x﹣x1)(x﹣x2)(a,b,c是常数,a≠0);(2)用待定系数法求二次函数的解析式.在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.五.抛物线与x轴的交点求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x 的一元二次方程即可求得交点横坐标.(1)二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系.△=b2﹣4ac决定抛物线与x轴的交点个数.△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.(2)二次函数的交点式:y=a(x﹣x1)(x﹣x2)(a,b,c是常数,a≠0),可直接得到抛物线与x轴的交点坐标(x1,0),(x2,0).六.图象法求一元二次方程的近似根利用二次函数图象求一元二次方程的近似根的步骤是:(1)作出函数的图象,并由图象确定方程的解的个数;(2)由图象与y=h的交点位置确定交点横坐标的范围;(3)观察图象求得方程的根(由于作图或观察存在误差,由图象求得的根一般是近似的).七.二次函数与不等式(组)二次函数y=ax2+bx+c(a、b、c是常数,a≠0)与不等式的关系①函数值y与某个数值m之间的不等关系,一般要转化成关于x的不等式,解不等式求得自变量x的取值范围.②利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.八.根据实际问题列二次函数关系式根据实际问题确定二次函数关系式关键是读懂题意,建立二次函数的数学模型来解决问题.需要注意的是实例中的函数图象要根据自变量的取值范围来确定.①描点猜想问题需要动手操作,这类问题需要真正的去描点,观察图象后再判断是二次函数还是其他函数,再利用待定系数法求解相关的问题.②函数与几何知识的综合问题,有些是以函数知识为背景考查几何相关知识,关键是掌握数与形的转化;有些题目是以几何知识为背景,从几何图形中建立函数关系,关键是运用几何知识建立量与量的等式.九.二次函数的应用(1)利用二次函数解决利润问题在商品经营活动中,经常会遇到求最大利润,最大销量等问题.解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量x的取值范围.(2)几何图形中的最值问题几何图形中的二次函数问题常见的有:几何图形中面积的最值,用料的最佳方案以及动态几何中的最值的讨论.(3)构建二次函数模型解决实际问题利用二次函数解决抛物线形的隧道、大桥和拱门等实际问题时,要恰当地把这些实际问题中的数据落实到平面直角坐标系中的抛物线上,从而确定抛物线的解析式,通过解析式可解决一些测量问题或其他问题.十.二次函数综合题(1)二次函数图象与其他函数图象相结合问题解决此类问题时,先根据给定的函数或函数图象判断出系数的符号,然后判断新的函数关系式中系数的符号,再根据系数与图象的位置关系判断出图象特征,则符合所有特征的图象即为正确选项.(2)二次函数与方程、几何知识的综合应用将函数知识与方程、几何知识有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件.(3)二次函数在实际生活中的应用题从实际问题中分析变量之间的关系,建立二次函数模型.关键在于观察、分析、创建,建立直角坐标系下的二次函数图象,然后数形结合解决问题,需要我们注意的是自变量及函数的取值范围要使实际问题有意义.十一.二次函数在给定区间上的最值二次函数在给定区间上的最值.对y=ax2+bx+c,(p≤x≤q),a>0时,当﹣≥q,则x=q时,y取得最小值;x=p时,y取得最大值当﹣≤p,则x=q时,y取得最大值;x=p时,y取得最小值当q≥﹣≥时,x=﹣时,y取得最小值,x=p时,y取最大值当≥﹣≥p时,x=﹣,y取得最小值,x=q时,y取得最大值a<0时,同样进行分类讨论.【考点剖析】一.二次函数的定义(共4小题)1.(2022秋•金华期末)若y=(m﹣2)x是二次函数,则m的值为()A.±2B.2C.﹣2D.±2.(2022秋•诸暨市期末)已知y关于x的二次函数解析式为y=(m﹣2)x|m|,则m=()A.±2B.1C.﹣2D.±13.(2022秋•东阳市期中)下列函数是二次函数的是()A.y=x2B.y=x+1C.y=D.y=2x4.(2023•天台县一模)如图,在正方形ABCD中,AB=3,点E,F分别为AB,BC上的点,DE,AF交于点G,AE=BF=x.若四边形CDGF与△AEG的面积分别为S1,S2,则S1﹣S2与x的函数关系为()A.正比例函数关系B.一次函数关系C.反比例函数关系D.二次函数关系二.二次函数的图象(共2小题)5.(2023•拱墅区模拟)二次函数y=ax2﹣2x+1和一次函数y=ax﹣a(a是常数,且a≠0)在同一平面直角坐标系的图象可能是()A.B.C.D.6.(2023•宁波模拟)下列图象中,函数y=ax2﹣a(a≠0)与y=ax+a的图象大致是()A.B.C.D.三.二次函数的性质(共3小题)7.(2023•台州)抛物线y=ax2﹣a(a≠0)与直线y=kx交于A(x1,y1),B(x2,y2)两点,若x1+x2<0,则直线y=ax+k一定经过()A.第一、二象限B.第二、三象限C.第三、四象限D.第一、四象限8.(2023•瓯海区四模)已知两点A(﹣2,y1),B(4,y2)均在抛物线y=ax2+bx+c(a≠0)上,点C(x0,y0)是该抛物线的顶点,若y0≤y1<y2,则x0的取值范围是()A.x0≤﹣2B.x0<1C.﹣2<x0<1D.﹣2<x0<49.(2023•鹿城区校级模拟)二次函数y=ax2﹣2ax+c(a,c是常数,a≠0),下列选项正确的是()A.若图象经过(﹣1,1),(8,8),则a<0B.若图象经过(﹣1,1),(3,1),则a<0C.若图象经过(﹣1,1),(﹣5,5),则a>0D.若图象经过(﹣1,1),(8,﹣8),则a>0四.二次函数图象与系数的关系(共2小题)10.(2023•鄞州区校级一模)已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:①abc>0;②b>a+c;③4a+2b+c>0;④2c>3b;⑤a+b>m(am+b)(m≠1的实数)其中正确结论有()个A.2B.3C.4D.511.(2022秋•滨江区期末)已知二次函数y=(m﹣2)x2(m为实数,且m≠2),当x≤0时,y随x增大而减小,则实数m的取值范围是()A.m<0B.m>2C.m>0D.m<2五.二次函数图象上点的坐标特征(共4小题)12.(2023•西湖区校级二模)已知二次函数y=x2+ax+b=(x•x1)(x﹣x2)(a,b,x1,x2为常数),若1<x1<x2<3,记t=a+b,则()A.﹣3<t<0B.﹣1<t<0C.﹣1<t<3D.0<t<313.(2023•温州模拟)已知二次函数上的两点P(x1,y1),Q(x2,y2)满足x1=3+x2,则下列结论中正确的是()A.若,则y1>y2>﹣1B.若,则y2>0>y1C.若x1<﹣,则y1>0>y2D.若﹣<x1<1,则y2>y1>014.(2023•衢州二模)已知二次函数y=a(x﹣h)2+k的图象经过(0,4),(8,5)两点,若a<0,0<h<8,则h的值可能为()A.1B.2C.4D.615.(2023•永嘉县二模)若二次函数y=﹣x2+bx+c的图象经过三个不同的点A(0,4),B(m,4),C(3,n),则下列选项正确的是()A.若m=4,则n<4B.若m=2,则n<4C.若m=﹣2,则n>4D.若m=﹣4,则n>4六.二次函数图象与几何变换(共4小题)16.(2023•瓯海区二模)将抛物线y=3x2先向左平移1个单位,再向下平移2个单位,所得抛物线的表达式为()A.y=3(x﹣1)2+2B.y=3(x+1)2﹣2C.y=3(x+1)2+2D.y=3(x﹣1)2﹣217.(2023•绍兴模拟)将二次函数y=x2﹣2x﹣3的图象,先向右平移2个单位,再向上平移2个单位后的函数表达式为()A.y=(x﹣3)2﹣6B.y=(x+1)2﹣6C.y=(x﹣3)2﹣2D.y=(x+1)2﹣2 18.(2023•绍兴模拟)二次函数的图象经过平移后得到新的抛物线,此抛物线恰好经过点(﹣2,﹣2),下列平移方式中可行的是()A.先向左平移8个单位,再向下平移4个单位B.先向左平移6个单位,再向下平移7个单位C.先向左平移4个单位,再向下平移6个单位D.先向左平移7个单位,再向下平移5个单位19.(2023•舟山二模)抛物线y=﹣x2+2x+3与y轴交于点C,过点C作直线l垂直于y轴,将抛物线在y轴右侧的部分沿直线l翻折,其余部分保持不变,组成图形G,点M(m,y1),N(m+1,y2)为图形G上两点,若y1>y2,则m的取值范围是()A.B.C.D.七.二次函数的最值(共3小题)20.(2023•衢江区三模)在平面直角坐标系中,过点P(0,p)的直线AB交抛物线y=x2于A,B两点,已知A(a,b),B(c,d),且a<c,则下列说法正确的是()A.当ac>0且a+c=1时,p有最小值B.当ac>0且a+c=1时,p有最大值C.当ac<0且c﹣a=1时,p有最小值D.当ac<0且c﹣a=1时,p有最大值21.(2023春•乐清市月考)已知函数y=ax2+2ax+1在﹣3≤x≤2上有最大值9,则常数a的值是()A.1B.C.或﹣8D.1或﹣822.(2023•越城区三模)二次函数y=﹣x2+bx+c的图象经过点(1,0),(2,3),在a≤x≤6范围内有最大值为4,最小值为﹣5,则a的取值范围是()A.a≥6B.3≤a≤6C.0≤a≤3D.a≤0八.待定系数法求二次函数解析式(共10小题)23.(2022秋•温州期末)若抛物线y=x2﹣6x+c的顶点在x轴,则c=.24.(2022秋•滨江区期末)已知一个二次函数图象的形状与抛物线y=2x2相同,它的顶点坐标为(1,﹣3),则该二次函数的表达式为.25.(2023•宁波)如图,已知二次函数y=x2+bx+c图象经过点A(1,﹣2)和B(0,﹣5).(1)求该二次函数的表达式及图象的顶点坐标.(2)当y≤﹣2时,请根据图象直接写出x的取值范围.26.(2023•临平区校级二模)已知二次函数y=ax2+bx﹣3a(a,b是实数,a≠0).(1)若该函数图象经过点(1,﹣4),(0,﹣3).①求该二次函数表达式;②若A(x1,m),B(x2,m),C(s,t)是抛物线上的点,且s=x1+x2,求t的值;(2)若该二次函数满足当x≥0时,总有y随x的增大而减小,且过点(1,3),当a<b时,求4a+b的取值范围.27.(2023•西湖区校级三模)已知二次函数y1=ax(x+b)(a≠0)和一次函数y2=ax+m(a≠0).(1)若二次函数y1的图象过(1,0),(2,2)点,求二次函数的表达式;(2)若一次函数y2与二次函数y1的图象交于x轴上同一点A,且这个点不是原点.①求证:m=ab;②若y2y1的另一个交点B为二次函数y1的顶点,求b的值.28.(2023•绍兴)已知二次函数y=﹣x2+bx+c.(1)当b=4,c=3时,①求该函数图象的顶点坐标;②当﹣1≤x≤3时,求y的取值范围;(2)当x≤0时,y的最大值为2;当x>0时,y的最大值为3,求二次函数的表达式.29.(2023•钱塘区三模)已知函数y=x2+bx+c(其中b、c为常数).(1)当c=﹣1,且函数图象经过点(1,2)时,求函数的表达式及顶点坐标.(2)若该函数图象的顶点坐标为(m,k),且经过另一点(k,m),求m﹣k的值.(3)若该函数图象经过A(x1,y1),B(x1﹣t,y2),C(x1﹣2t,y3)三个不同点,记M=y2﹣y1,N=y3﹣y2,求证:M<N.30.(2023•舟山三模)在平面直角坐标系中,抛物线y=x2+bx+c(b,c是常数)经过点A(1,0),点B(0,3).点P在此抛物线上,其横坐标为m.(1)求此抛物线的解析式.(2)若﹣1≤x≤d时,﹣1≤y≤8,则d的取值范围是.(3)点P和点A之间(包括端点)的函数图象称为图象G,当图象G的最大值和最小值差是5时,求m的值.31.(2023•西湖区校级三模)在平面直角坐标系中,二次函数图象的表达式为y=ax2+(a+1)x+b,其中a ﹣b=4.(1)若此函数图象过点(1,3),求这个二次函数的表达式.(2)若(x1,y1)(x2,y2)为此二次函数图象上两个不同点,当x1+x2=2时,y1=y2,求a的值.(3)若点(﹣1,t)在此二次函数图象上,且当x≥﹣1时y随x的增大而增大,求t的范围.32.(2023•龙湾区模拟)已知二次函数y=ax2﹣4x+3(a>0).(1)若图象经过点(﹣1,8),求该二次函数的表达式及顶点坐标.(2)当0≤x≤m时,1≤y≤9,求a和m的值.九.二次函数的三种形式(共1小题)33.(2023•定海区模拟)将二次函数y=x2﹣4x+5化为y=(x﹣h)2+k的形式为.一十.抛物线与x轴的交点(共2小题)34.(2023•余杭区校级模拟)已知,二次函数y=x2+2x+c的图象与x轴交于点A(x1,0),B(x2,0)(x1<x2).若图象上另有一点P(m,n),则()A.当n>0时,m<x1B.当n>0时,m>x2C.当n<0时,m<0D.当n<0时,x1<m<x235.(2023春•镇海区期末)如图,二次函数y=﹣x2+bx+c的图象经过点A(﹣1,0),B(2,3).(1)求b,c的值;(2)结合图象,求当y>0时x的取值范围;(3)平移该二次函数图象,使其顶点为A点.请说出平移的方法,并求平移后图象所对应的二次函数的表达式.一十一.图象法求一元二次方程的近似根(共1小题)36.(2022秋•嘉兴期末)二次函数y=ax2+bx+c(a≠0)中,自变量x与函数y的对应值如下表:x…﹣2﹣101234…y…m﹣4.5m﹣2m﹣0.5m m﹣0.5m﹣2m﹣4.5…若1<m<1.5,则下面叙述正确的是()A.该函数图象开口向上B.该函数图象与y轴的交点在x轴的下方C.对称轴是直线x=mD.若x1是方程ax2+bx+c=0的正数解,则2<x1<3一十二.二次函数与不等式(组)(共2小题)37.(2023•余杭区模拟)已知二次函数y1=(ax+1)(bx+1),y2=(x+a)(x+b),(a,b为常数,且ab≠0),则下列判断正确的是()A.若ab<1,当x>1时,则y1>y2B.若ab>1,当x<﹣1时,则y1>y2C.若ab<﹣1,当x<﹣1时,则y1>y2D.若ab>﹣1,当x>1时,则y1>y238.(2022秋•嘉兴期末)我们规定:形如y=ax2+b|x|+c(a<0)的函数叫做“M型”函数.如图是“M型”函数y=﹣x2+4|x|﹣3的图象,根据图象,以下结论:①图象关于y轴对称;②不等式x2﹣4|x|+3<0的解是﹣3<x<﹣1或1<x<3;③方程﹣x2+4|x|﹣3=k有两个实数解时k<﹣3.正确的是()A.①②B.②③C.①③D.①②③一十三.根据实际问题列二次函数关系式(共3小题)39.(2022秋•西湖区期末)在一个边长为1的正方形中挖去一个边长为x (0<x <1)的小正方形,如果设剩余部分的面积为y ,那么y 关于x 的函数表达式为( ) A .y =x 2B .y =1﹣x 2C .y =x 2﹣1D .y =1﹣2x40.(2022秋•南湖区校级期中)某商店购进某种商品的价格是7.5元/件,在一段时间里,单价是13.5元,销售量是500件,而单价每降低1元就可多售出200件,当销售价为x 元/件时,获利润y 元,则y 与x 的函数关系为( ) A .y =(6﹣x )(500+x ) B .y =(13.5﹣x )(500+200x )C .y =(6﹣x )(500+200x )D .以上答案都不对41.(2023•洞头区二模)根据以下素材,探索完成任务.如何设计打印图纸方案?素材1如图1,正方形ABCD 是一张用于3D 打印产品的示意图,它由三个区块(Ⅰ,Ⅱ,Ⅲ)构成.已知AB =20cm ,点E ,F 分别在BC 和AB 上,且BE =BF ,设BE =xcm (0<x <20).素材2为了打印精准,拟在图2中的BC 边上设置一排间距为1cm 的定位坐标(B 为坐标原点),计算机可根据点E 的定位坐标精准打印出图案. 问题解决任务1确定关系用含x 的代数式表示:区块Ⅰ的面积=、区块Ⅱ的面积=、区块Ⅲ的面积=.任务2拟定方案为美观,拟将区块Ⅲ分割为甲、乙两个三角形区域,并要求区域乙是以DE为腰的等腰三角形,求所有方案中区域乙的面积或函数表达式.任务3优化设计经调查发现区域乙的面积为范围内的整数时,此时的E点为最佳定位点,请写出所有的最佳定位点E的坐标.一十四.二次函数的应用(共3小题)42.(2023•丽水)一个球从地面竖直向上弹起时的速度为10米/秒,经过t(秒)时球距离地面的高度h(米)适用公式h=10t﹣5t2,那么球弹起后又回到地面所花的时间t(秒)是()A.5B.10C.1D.243.(2023•定海区模拟)如图,C是线段AB上一动点,分别以AC、BC为边向上作正方形ACDE、BCFG,连结EG交DC于K.已知AB=10,设AC=x(5<x<10),记△EDK的面积为S1,记△EAC的面积为S2.则与x的函数关系为()A.正比例函数关系B.一次函数关系C.反比例函数关系D.二次函数关系44.(2023•路桥区一模)如图,不考虑空气阻力,以一定的速度将小球沿斜上方击出时,小球飞行的高度是飞行时间的二次函数.现以相同的初速度沿相同的方向每隔t秒依次击出三个质地一样的小球,小球在各自击出后1秒到达相同的最大飞行高度,若整个过程中同时出现在空中的小球个数最大值为2(不考虑小球落地后再弹起),则t的取值范围是()A.0<t<1B.1≤t<2C.D.一十五.二次函数综合题(共4小题)45.(2023•永嘉县校级模拟)对于二次函数y=ax2+bx+c,规定函数y=是它的相关函数.已知点M,N的坐标分别为(﹣,1),(,1),连接MN,若线段MN与二次函数y=﹣x2+4x+n 的相关函数的图象有两个公共点,则n的取值范围为()A.﹣3<n≤﹣1或1<n≤B.﹣3<n<﹣1或1≤n≤C.n≤﹣1或1<n≤D.﹣3<n<﹣1或n≥146.(2023•金东区二模)定义:若n为常数,当一个函数图象上存在横、纵坐标和为n的点,则称该点为这个函数图象关于n的“恒值点”,例如:点(1,2)是函数y=2x图象关于3的“恒值点”.(1)判断点(1,3),(2,8),(3,7)是否为函数y=5x﹣2图象关于10的“恒值点”.(2)如图1,抛物线y=2x2+bx+2与x轴交于A,B两点(A在B的左侧),现将抛物线在x轴下方的部分沿x轴翻折,抛物线的其余部分保持不变,所得的新图象如图2所示.①求翻折后A,B之间的抛物线解析式.(不必写出x的取值范围)②当新图象上恰好有3个关于c的“恒值点”时,请用含b的代数式表示c.47.(2023•浙江)在二次函数y=x2﹣2tx+3(t>0)中.(1)若它的图象过点(2,1),则t的值为多少?(2)当0≤x≤3时,y的最小值为﹣2,求出t的值;(3)如果A(m﹣2,a),B(4,b),C(m,a)都在这个二次函数的图象上,且a<b<3.求m的取值范围.48.(2023•金华模拟)定义:若一个函数图象上存在横坐标是纵坐标两倍的点,则称该点为这个函数图象的“倍值点”,例如:点(2,1)是函数y=x﹣1的图象的“倍值点”.(1)分别判断函数y=x+1,y=x2﹣x的图象上是否存在“倍值点”?如果存在,求出“倍值点”的坐标;如果不存在,说明理由;(2)设函数y=(x>0),y=﹣x+b的图象的“倍值点”分别为点A,B,过点B作BC⊥x轴,垂足为C.当△ABC的面积为2时,求b的值;(3)若函数y=x2﹣3(x≥m)的图象记为W1,将其沿直线x=m翻折后的图象记为W2,当W1,W2两部分组成的图象上恰有2个“倍值点”时,直接写出m的取值范围.【过关检测】一.选择题(共8小题)1.抛物线y=5(x﹣2)2+4的顶点坐标是()A.(2,4)B.(4,2)C.(﹣2,4)D.(﹣4,2)2.若A(a,b),B(a﹣2,c)两点均在函数y=(x﹣1)2﹣2021的图象上,且1≤a<2,则b与c的大小关系为()A.b<c B.b≤c C.b>c D.b≥c3.二次函数y=ax2+bx+c(a≠0)与x轴的两个交点横坐标x1,x2满足|x1|+|x2|=2.当时,该函数有最大值4,则a的值为()A.﹣4B.﹣2C.1D.24.抛物线y=﹣(x+2)2﹣3向右平移了3个单位,那么平移后抛物线的顶点坐标是()A.(﹣5,﹣3)B.(﹣2,0)C.(﹣1,﹣3)D.(1,﹣3)5.已知二次函数的图象(0≤x≤3.4)如图.关于该函数在所给自变量的取值范围内,下列说法正确的是()A.有最大值2,无最小值B.有最大值2,有最小值1.5C.有最大值2,有最小值﹣2D.有最大值1.5,有最小值﹣26.下列函数中,其图形与x轴有两个交点的为()A.y=﹣20(x﹣11)2﹣2011B.y=20(x﹣11)2+2011C.y=20(x+11)2+2011D.y=﹣20(x+11)2+20117.由二次函数y=2x2﹣12x+20,可知正确的是()A.其图象的开口向下B.其图象的对称轴为直线x=﹣3C.其最小值为2D.当x≤3时,y随x的增大而增大8.已知抛物线y=ax2+bx+c开口向下,与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①2a+b=0;②﹣1≤a≤﹣;③对于任意实数m,a (m2﹣1)+b(m﹣1)≤0总成立;④关于x的方程ax2+bx+c﹣n+1=0有两个不相等的实数根,其中结论正确的个数是()A.1个B.2个C.3个D.4个二.填空题(共7小题)9.如果将抛物线y=x2+2向左平移1个单位,那么所得新抛物线的表达式是.10.已知a,b,c满足a+c=b,4a+2b+c=0,则关于x的二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点间的距离为.11.如图,反比例函数y=(a≠0)的图象经过二次函数y=ax2+bx图象的顶点(﹣,m)(m>0),则m=.12.已知x=a和x=a+b(b>0)时,代数式x2﹣2x﹣3的值相等,则当x=6a+3b﹣2时,代数式x2﹣2x﹣3的值等于.13.合肥市2013年平均房价为6500元/m2.若2014年和2015年房价平均增长率为x,则预计2015年的平均房价y(元/m2)与x之间的函数关系式为.14.二次函数y=x2+x+c的图象与x轴有两个交点A(x1,0)、B(x2,0),且x1<x2,点P(m,n)是图象上一点,有如下结论:①当n<0时,m<0;②当m>x2时,n>0;③当n<0时,x1<m<x2;④当n>0时,x<x1;⑤当m时,n随着m的增大而减小,其中正确的有.15.直线y=x+b与抛物线交于A,B两点,O为坐标原点,若OA⊥OB,则b的值是.三.解答题(共7小题)16.若二次函数y=﹣x2+2(k﹣1)x+2k﹣k2的图象经过原点,求:(1)二次函数的解析式;(2)它的图象与x轴交点O、Q及顶点C组成的△OAC的面积.17.已知关于x的方程mx2+(3m+1)x+3=0.(1)求证:不论m为任何实数,此方程总有实数根;(2)若抛物线y=mx2+(3m+1)x+3与x轴交于两个不同的整数点,且m为正整数,试确定此抛物线的解析式;(整数点的横、纵坐标都为整数)(3)若点P(x1,y1)与Q(x1+n,y2)在(2)中抛物线上(点P、Q不重合),且y1=y2,求代数式4x12+12x1n+5n2+16n+200的值.18.如图,已知二次函数y=x2+bx+c的图象分别经过点A(1,0),B(0,3).(1)求该函数的解析式;(2)在抛物线上是否存在一点P,使△APO的面积等于4?若存在,求出点P的坐标;若不存在,说明理由.19.一个圆形喷水池的中心竖立一根高为2.25m顶端装有喷头的水管,喷头喷出的水柱呈抛物线形.当水柱与池中心的水平距离为1m时,水柱达到最高处,高度为3m.(1)求水柱落地处与池中心的距离;(2)如果要将水柱的最大高度再增加1m,水柱的最高处与池中心的水平距离以及落地处与池中心的距离仍保持不变,那么水管的高度应是多少?20.某商店购进一批进价为40元/件的日用商品,第一个月,按进价提高50%的价格出售,售出600件;第二个月,商店准备在不低于原售价的基础上进行加价销售,根据销售经验,提高销售单价会导致销售量的减少.销售量y(件)与销售单价x(元)的关系如图所示.(1)请直接写出y与x之间的函数表达式:;自变量x的取值范围为;(2)第二个月的销售单价定为多少元时,可获得最大利润?最大利润是多少?21.三、求直线y =2x +8与抛物线y =x 2的交点坐标A 、B 及△AOB 的面积.22.已知二次函数2()20y ax x c a =++≠的图象与x 轴的负半轴和正半轴分别交于A ,B 两点,与y 轴的负半轴交于点C ,3OA OC ==.(1)求二次函数的表达式及B 点坐标;(2)点D 位于第三象限且在二次函数的图象上,求DAC △的面积最大时点D 的坐标.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题一 求二次函数的解析式[见A 本P6]一 利用一般式y =ax 2+bx +c (a≠0)求二次函数的解析式(教材P33目标与测定题第2题)已知二次函数y =ax 2+bx +c ,当x =1时,y =3;当x =-2时,y =7;当x =3时,y =-3,求a ,b ,c 的值,并写出该二次函数的表达式. 解:依题意,得⎩⎪⎨⎪⎧3=a +b +c ,7=4a -2b +c ,-3=9a +3b +c ,解得⎩⎪⎨⎪⎧a =-13,b =-53,c =5所求的函数解析式为y =-13x 2-53x +5[2013·徐州]二次函数y =ax 2+bx +c 图象上部分点的坐标满足下表∶x…-3 -2 -1 01…y…-3-2-3-6-11…则该函数图象的顶点坐标为( B )A .(-3,-3)B .(-2,-2)C .(-1,-3)D .(0,-6) 【解析】 ∵x =-3和-1时的函数值都是-3,相等, ∴二次函数的对称轴为直线x =-2, ∴顶点坐标为(-2,-2). 故选B.如图1,抛物线的函数表达式是( D )图1A .y =x 2-x +2B .y =x 2+x +2C .y =-x 2-x +2D .y =-x 2+x +2 【解析】 根据题意,设二次函数的表达式为y =ax 2+bx +c ,因为抛物线过点(-1,0),(0,2),(2,0),所以⎩⎪⎨⎪⎧a -b +c =0,c =2,4a +2b +c =0, 解得a =-1,b =1,c =2,所以这个二次函数的表达式为y =-x 2+x +2.[2012·绥化]如图2,二次函数y =ax 2-4x +c 的图象经过坐标原点,与x 轴交于点A (-4,0).(1)求二次函数的解析式;(2)在抛物线上存在点P ,满足S △AOP =8,请直接写出点P 的坐标.图2解:(1)由已知条件得∶⎩⎪⎨⎪⎧c =0,a ×(-4)2-4×(-4)+c =0,解得⎩⎪⎨⎪⎧c =0,a =-1,∴此二次函数的解析式为y =-x 2-4x .(2)∵点A 的坐标为(-4,0),∴AO =4. 设点P 的坐标为(x ,h ),则S △AOP =12AO ·|h |=12×4×|h |=8,解得|h |=4.①当点P 在x 轴上方时,-x 2-4x =4,解得x =-2, ∴点P 的坐标为(-2,4);②当点P 在x 轴下方时,-x 2-4x =-4,解得x 1=-2+22,x 2=-2-22,∴点P 的坐标为(-2+22,-4)或(-2-22,-4),综上所述,点P 的坐标为(-2,4)或(-2+22,-4)或(-2-22,-4).[2013·临沂]如图3,抛物线经过A (-1,0),B (5,0),C (0,-52)三点.(1)求抛物线的解析式;(2)点M 为x 轴上一动点,在抛物线上是否存在一点N ,使A ,C ,M ,N 四点构成的四边形为平行四边形?若存在,求点N 的坐标;若不存在,请说明理由.图3解:(1)设抛物线的解析式为y =ax 2+bx +c ,根据题意,得⎩⎪⎨⎪⎧a -b +c =025a +5b +c =0c =-52,解得⎩⎪⎨⎪⎧a =12b =-2c =-52,∴抛物线的解析式为y =12x 2-2x -52;(2)存在.(Ⅰ)当存在的点N 在x 轴的下方,如图所示,∵四边形ACNM 是平行四边形,∴CN ∥x 轴, ∴点C 与点N 关于对称轴x =2对称, ∵C 点的坐标为(0,-52),∴点N 的坐标为(4,-52).(Ⅱ)当存在的点N ′在x 轴上方时,如图所示,作N ′H ⊥x 轴于点H , ∵四边形ACM ′N ′是平行四边形, ∴AC =M ′N ′,∠N ′M ′H =∠CAO , ∴Rt △CAO ≌Rt △N ′M ′H ,∴N ′H =OC , ∵点C 的坐标为(0,-52),∴N ′H =52,即N 点的纵坐标为52,∴12x 2-2x -52=52, 解得x 1=2+14,x 2=2-14.∴点N ′的坐标为(2-14,52)和(2+14,52).综上所述,满足题目条件的点N 共有三个, 分别为(4,-52),(2-14,52)和(2+14,52).二 利用顶点式y =a (x -h )2+k (a≠0)求二次函数的解析式(教材P23作业题第5题)根据下列条件,分别求二次函数的解析式∶(1)已知图象的顶点坐标为(-1,-8),且过点(0,-6); (2)已知图象经过点(3,0),(2,-3),并以直线x =0为对称轴.解:(1)设y =a (x +1)2-8,把点(0,-6)代入,得-6=a -8,解得a =2, ∴y =2x 2+4x -6.(2)设y =ax 2+c ,则⎩⎪⎨⎪⎧9a +c =0,4a +c =-3, 解得⎩⎨⎧a =35,c =-275,∴y =35x 2-275.【思想方法】 若已知二次函数图象的顶点坐标或对称轴方程与最大值(或最小值),可设所求二次函数的解析式为y =a (x +m )2+k ,将已知条件代入,求出待定系数,最后将解析式化为一般形式即可.已知某二次函数的图象如图4所示,则这个二次函数的解析式为( D )图4A .y =2(x +1)2+8B .y =18(x +1)2-8C .y =29(x -1)2+8 D .y =2(x -1)2-8一抛物线的形状、开口方向与y =12x 2-4x +3相同,顶点在(-2,1),则此抛物线的解析式为( C )A .y =12(x -2)2+1B .y =12(x +2)2-1C .y =12(x +2)2+1D .y =-12(x +2)2+1【解析】 抛物线的形状、开口方向与y =12x 2-4x +3相同,所以a =12.顶点在(-2,1),所以抛物线的解析式是y =12(x +2)2+1.已知抛物线经过两点A (1,0),B (0,3),且对称轴是直线x =2,求其解析式. 解: ∵抛物线对称轴是直线x =2且经过点A (1,0), 由抛物线的对称性可知:抛物线还经过点(3,0), 设抛物线的解析式为y =a (x -x 1)(x -x 2)(a ≠0), 即y =a (x -1)(x -3), 把B (0,3)代入得3=3a , ∴a =1.∴抛物线的解析式为:y =x 2-4x +3.三 利用平移规律求二次函数的解析式(教材P34目标与评定第8题)将y =4x 2的图象先向左平移32个单位,再向下平移34个单位,求最终所得图象的函数解析式,并说出它的二次项系数、一次项系数和常数项. 解:y =4x 2的图象向左平移32个单位,得到y =4⎝⎛⎭⎫x +322的图象,再向下平移34个单位,得到y =4⎝⎛⎭⎫x +322-34的图象,即最终所得图象的解析式为y =4⎝⎛⎭⎫x +322-34,化为一般式为y =4x 2+12x +334,所以它的二次项系数是4,一次项系数是12,常数项是334.【思想方法】 (1)可按照口诀“左加右减,上加下减”写出平移后的解析式;(2)平移所得函数的解析式与平移的先后顺序无关.[2013·恩施州]把抛物线y =12x 2-1先向右平移1个单位,再向下平移2个单位,得到的抛物线的解析式为( B )A .y =12(x +1)2-3B .y =12(x -1)2-3C .y =12(x +1)2+1D .y =12(x -1)2+1[2013·湖南邵阳]如图5所示,已知抛物线y =-2x 2-4x 的图象E ,将其向右平移两个单位后得到图象F .求图象F 所表示的抛物线的解析式.图5解:方法一:由平移知图象F 的二次项系数为-2,y =-2x 2-4x =-2(x +1)2+2,顶点坐标为(-1,2),平移后图象F 的顶点坐标为(1,2),所以图象F 的解析式为y =-2x (x -1)2+2;方法二:y =0时,即-2x 2-4x =0,x =0或x =-2,平移后图象F 与x 轴交点为(0,0)和(2,0),所以图象F 的解析式为y =-2(x -2);方法三:根据图象平移之间的关系,可是图象F 的解析式为y =-2(x -2)2-4(x -2)=-2x 2+4x . .已知二次函数y =ax 2+bx -3的图象经过点A (2,3),B (-1,0).(1)求二次函数的解析式;(2)填空∶要使二次函数的图象与x 轴只有一个交点,应把图象沿y 轴向上平移________个单位.解:(1)∵二次函数y =ax 2+bx -3的图象经过点A (2,3),B (-1,0), ∴把A (2,3),B (-1,0)分别代入解析式,得⎩⎪⎨⎪⎧4a +2b -3=3,a -b -3=0,解得⎩⎪⎨⎪⎧a =2,b =-1, 则二次函数的解析式为y =2x 2-x -3. (2)∵y =2x 2-x -3=2⎝⎛⎭⎫x -142-258,设应把图象沿y 轴向上平移m 个单位, 则平移后的解析式为y =2⎝⎛⎭⎫x -142-258+m , 此时二次函数的顶点坐标为⎝⎛⎭⎫14,-258+m . 要使二次函数的图象与x 轴只有一个交点,则此交点必为抛物线的顶点, ∴-258+m =0,即m =258,∴应把图象沿y 轴向上平移258个单位.。