高中数学《线性规划》练习题

合集下载

高中数学线性规划各类习题精选5

高中数学线性规划各类习题精选5

2.已知点 P( x , y) 在不等式组 ⎨ y - 1 ≤ 0 表示的平面区域内运动,则 z = x - y 的最大 ⎪ x + 2 y - 2 ≥ 0 3.若实数 x, y 满足 ⎨ x + y ≥ 0,则 z = 3x +2 y 的最大值是()5.设变量 x, y 满足约束条件 ⎨ y ≥ 3x ,若目标函数 z = x + y 的最大值为 14,则 a 值⎪x + ay ≤ 7 A .1B . 1 6.已知实数 x, y 满足 ⎨ x - y ≤ 0 ,则 2 x - y 的最大值为()1高中数学线性规划各类习题精选 5学校:___________姓名:___________班级:___________考号:___________一、单选题1.设 , 满足约束条件,若目标函数 的最大值为 12,则A .B .的最小值为( )C .D .4⎧ x - 2 ≤ 0 ⎪ ⎩值是()A . -1B . -2C .2D .3⎧ x - y + 1 ≥ 0⎪ ⎪ ⎩x ≤ 0A .13B .9C .1D .34.已知实数 , 满足,如果目标函数 的最小值为 ,则实数 等于()A .6B .5C .4D .3⎧x ≥ 0 ⎪⎩为()1 1 1 或C .D .2 32 3⎧ x + y - 1 ≤ 0 ⎪⎪ ⎩ x ≥ 01⎪ y ≥ 09.若实数 x, y 满足条件 ⎨ y - x ≤ 2 ,则 z = x - 2 y 的最小值为( ) ⎪ y ≥ 0 A .-1 B .-2 C . - 5 12.已知 a > 0 , x, y 满足约束条件 { x + y ≤ 3 ,若 z = 2 x + y 的最大值为 ,y ≥ a (x - 2) A . 113.已知 x 、y 满足约束条件 ⎨ x - y ≤ 0 则 z = x + 2 y 的最大值为( )14.已知 x, y 满足 ⎨ x + y ≤ 4记目标函数 z = 2 x + y 最大值为 a ,最小值为 b ,则⎪x - y - 2 ≤ 0⎧ x - y ≥ 0 ⎪2 x + y ≤ 27.若不等式组 ⎨ ,表示的平面区域是一个三角形,则 a 的取值范围是( )⎪⎩ x + y ≤ a4 4 4A .a≥B .0<a≤1C .1 ≤a≤D .0<a≤1 或 a≥3338.设 x ,y 满足约束条件,则 z=2x-3y 的最小值是( )A .-7B .-6C .-5D .-3⎧ y + x ≤ 1 ⎪⎩7D . -2 2⎧ x ≤ 0 ⎪ y ≥ 010.已知由不等式 ⎨ 确定的平面区域 Ω 的面积为 7,则 k 的值()⎪ y - kx ≤ 2 ⎪⎩ y - x - 4 ≤ 0A . -2B . -1C . -3D . 211.如果实数 x 、y 满足关系,则 的取值范围是( )A .[3,4]B .[2,3]C .D .x ≥ 1112则 a = ( )1 B .C .1D .242⎧ x + y - 1 ≤ 0 ⎪⎪ ⎩x ≥ 0A 、﹣2B 、﹣1C 、1D 、2⎧ x ≥ 1⎪⎪⎩ y ≤ 2 217.若 x, y 满足约束条件 ⎨ y ≥ 0 ,则目标函数 z = 2 x + 3 y 的最大值为________ . ⎪2x + y ≤ 2 18.若实数 x , y 满足 ⎨ x + y ≥ 0 ,则目标函数 z = x + 2 y 的取值范围是_______. ⎪ x ≤ 0 19.实数 x, y 满足 ⎨ x - y ≥ 1 ,则目标函数 z = x + y - 3 的最小值是______.⎪ x - 2 y ≤ 2 21.已知变量 x, y 满足 ⎨ x + y - 4 ≤ 0 ,则点 (x, y )对应的区域面积是 __________, ⎪ x ≥ 1 ( ya +b =A .1B .2C .7D .8⎧ x + y - 2 2 ≥ 0 ⎪⎪15.已知不等式组 ⎨ x ≤ 2 2 表示平面区域 Ω ,过区域 Ω 中的任意一个点 P ,⎪作圆 x 2 + y 2 = 1的两条切线且切点分别为 A ,B ,当 ∆PAB 的面积最小时,cos ∠APB的值为( )A . 7 1 3B .C .D .8 2 43 2二、填空题16.2011•宝坻区一模)设 x , 满足约束条件 则 z=2x+y 的最大值为 .⎧ x ≥ 0 ⎪⎩⎧ x - y + 1 ≥ 0 ⎪⎩⎧2x + y ≤ 4 ⎪⎩20.在直角坐标系中,△的三个顶点坐标分别为 , , ,动点△是内的点(包括边界).若目标函数的最大值为 2,且此时的最优解所确定的点是线段上的所有点,则目标函数 的最小值为.⎧ x - 4 y + 3 ≤ 0⎪⎩x 2 + y 2 u = 的取值范围为__________.xy22.若实数 x ,y 满足 ⎨x > 0,则 的取值范围是_________ .⎪ y ≤ 224.已知实数 x, y 满足 ⎨ y ≥ x ,则 z =x - y2 的最大值为 .⎪2 x + y - 6 ≥ 0 y 1 ⎪ 26.设 x , y 满足约束条件: ⎨ y ≥x 的可行域为 M ,若存在正实数 a ,使函数 2y = 2a sin( + )cos( + ) 的图象经过区域 M 中的点,则这时 a 的取值范围M (a, b )在由不等式 ⎨ y ≥ 0 确定的平面区域内,则点 N (a - b , a + b )所 ⎪x + y ≤ 2 ⎨ x ≤ 2 ⎪ x + y - 1 ≥ 0 29.设 z = x + y ,其中实数 x, y 满足 ⎨ x - y ≤ 0 ,若 z 的最大值为12 ,则 z 的最小值⎪0 ≤ y ≤ k⎧x - y + 1 ≤ 0 ⎪y x ⎩x + y ≤ 723.已知点 P (x, y ) 满足{ y ≥ x,过点 P 的直线与圆 x 2 + y 2 = 50 相交于 A , B 两 x ≥ 2点,则 AB 的最小值为.⎧ x ≥ 0 ⎪⎩25.设 x , 满足约束条件,向量, ,且,则m 的最小值为_____.⎧ x ≥ 1⎪⎪⎪⎩2 x + y ≤ 10x π x π2 4 2 4是.27.已知点⎧ x ≥ 0 ⎪⎩在的平面区域面积是.⎧ x - 2 y + 1 ≥ 0 ⎪28.已知不等式组⎩ 表示的平面区域为 D ,若函数 y =| x - 1| +m 的图像上存在区域 D 上的点,则实数 m 的取值范围是________.⎧ x + 2 y ≥ 0⎪⎩为.30.已知实数 x , y 满足约束条件 ⎨ y ≤ x,时,所表示的平面区域为 D ,则 ⎪2x + y - 9 ≤ 0⎧x ≥ 0, ⎪⎩z = x + 3 y 的最大值等于,若直线 y = a( x + 1) 与区域 D 有公共点,则 a 的取值范围是.试题分析:画出不等式组 ⎨ y - 1 ≤ 0 表示的可行域如图, z = x - y 即 y= x-Z ⎪ x + 2 y - 2 ≥ 0 参考答案1.A【解析】试题分析:作出 , 满足约束条件下平面区域,如图所示,由图知当目标函数经过点取得最大值 12,即,亦即,所以=,当且仅当,即时等号成立,故选 A .考点:1、简单的线性规划问题;2、基本不等式.【方法点睛】运用线性规划求解最值时,关键是要搞清楚目标函数所表示的直线的斜率与可行域便捷直线的斜率之间的大小关系,以好确定在哪个端点,目标函数取得最大值,在哪个端点,目标函数取得最小值;已知 ﹙ ﹚求的最小值,通常转化为= ( ),展开后利用基本不等式求解.2.C【解析】⎧ x - 2 ≤ 0 ⎪ ⎩即 t 增大,由图象得,当直线 y = - x + 过点 A(0,1) 时, t 取得最大值 2 ,即 z = 3x +2 y 的Z 的几何意义是直线 y= x-Z 在 y 轴上的截距的相反数,画直线 y= x ,平移直线 y= x ,当过点 B (2,0)时 z 有最大值 2.故选:C .考点:简单的线性规划及利用几何意义求最值.【名师点睛】本题考查线性规划解题的基本方法,本题属于基础题,要求依据二元一次不等式组准确画出可行域,利用线性目标函数中直线的纵截距的几何意义,令 z= 0 ,画出直线 y = x ,在可行域内平移该直线,确定何时z 取得最大值,找出此时相应的最优解,依据线性目标函数求出最值,这是最基础的线性规划问题.3.B【解析】试题分析:设 t = x + 2 y ,将 t = x + 2 y 化成 y = - 1 tx + ,作出可行域与目标函数基准线2 21 1 t y = - x (如图所示)当直线 y = - x +2 2 2 t向右上方平移时,直线在 y 轴上的截距 增大,21 t2 2最大值是 32 = 9 ;故选 B .考点:1.简单的线性规划;2.指数运算..( (【易错点睛】本题考查简单的线性规划问题以及指数运算,属于中档题;利用简单的线性规划知识求有关线性目标函数的最值时,一般是先画出可行域,再结合目标函数的几何意义进行求解,容易忽视的是不能准确目标函数直线与可行域边界的倾斜程度(通过比较目标函数直线的斜率和某条边界的斜率的大小),导致寻找最优解出错.4.B【解析】试题分析:由下图可得 在 处取得最大值,由,故选 B.考点:线性规划.【方法点晴】本题考查线性规划问题,灵活性较强,属于较难题型 考生应注总结解决线性规划问题的一般步骤: 1)在直角坐标系中画出对应的平面区域,即可行域; 2)将目标函数变形为;(3)作平行线:将直线 平移,使直线与可行域有交点,且观察在可行域中使 最大(或最小)时所经过的点,求出该点的坐标; 4)求出最优解:将(3)中求出的坐标代入目标函数,从而求出 的最大(小)值.5.C【解析】试题分析:首先根据已知约束条件画出其所表示的平面区域,如下图所示,然后由目标函数z = x + y 的最大值为 14,此时目标函数经过点 A(0, 7 ) ,所以14 = 0 + a 7 1,所以 a = ,故应选 C .a 2试题分析:作出不等式组 ⎨2x + y ≤ 2 表示的平面区域,如图 ∆OAB (内部含边界),再作 ⎪ y ≥ 0 B考点:1、简单的线性规划问题.6.A【解析】试题分析:在坐标系内作出可行域,由图可知当目标函数z = 2 x - y 经过可行域内的点1 1 1 1 1A( , ) 时有最大值 z = 2 ⨯ - = ,故选 A .2 2 2 2 2BAO考点:线性规划.7.D【解析】⎧ x - y ≥ 0 ⎪⎩直线 l : x + y = 0 ,过 A , 作与 l 平行的直线 l , l ,由图可知当直线 x + y = a 夹在直线 l 与 l1 21之间或在直线 l 上方时,题设不等式组表示的区域是三角形,计算得0 < a ≤ 1 或 a ≥ 2选 D .4 3.故考点:二元一次不等式组表示的平面区域.8.B【解析】试题分析:由么时候纵截距所求.得,作出可行域如图,平移直线,看什最大,即最小,所以由图可知,过点C时,所得值即为考点:线性规划问题.9.D【解析】试题分析:作出可行域,如图所示.⎪⎪ ⎧ y = x + 2 z = x - 2 y 取得最小值,由 ⎨ 得: ⎨ ,所以点 A 的坐标为 - , ⎪ ,所 ⎪ y = 3 - 3 = - 试题分析:作出不等式组 ⎨ y ≥ 0所表示的平面区域,如图所示,可知其围成的区域 ⎪ y - x - 4 ≤ 0 ⎧ y - kx = 2 2 4k - 2 1 2作直线 l : x - 2 y = 0 ,再作一组平行于 l 的直线 l : z = x - 2 y ,当直线 l 经过点 A 时,0 0⎧1 x =-2 ⎛ 13 ⎫ ⎩ y = - x + 1⎝ 2 2 ⎭ ⎪⎩ 2以 z 1 7min = - 2 2 ,故选 D .考点:线性规划.10.B【解析】⎧ x ≤ 0 ⎪⎩是等腰直角三角形且面积为 8 .由于直线 y = kx + 2 恒过点 B(0, 2) ,且原点的坐标恒满足y - kx ≤ 2 ,当 k = 0 时,y ≤ 2 ,此时平面区域 Ω 的面积为 6 ,由于 6 < 7 ,由此可得 k < 0 .由⎨可得 D( , ) ,依题意应有 ⨯ 2⨯ | |= 1 ,解得 k = -1 或 k = 3 ⎩ y - x - 4 = 0k - 1 k - 1 2 k - 1 (舍去),故选 B .考点:简单的线性规划问题.11.D【解析】试题分析:由题意得,画出不等式组表示的可行域(如图所示),又范围,其中,当取点大值.,此时可看出可行域内点与点时,目标函数取得最小值;当取点之间的连线的斜率的取值时,目标函数取得最考点:二元一次不等式组表示的平面区域及其应用.【思路点晴】本题主要考查了二元一次不等式组表示的平面区域及其应用求最值,属于基础题,解答的关键是把目标函数化简为,转化为可行域内点和点12.C之间的连线的斜率的取值,其中认真计算是题目的一个易错点.目标函数z=2x+y经过点A ⎛2a+3a⎫,⎝a+1a+1⎭2⨯2a+3+=,解得a=1,故选C.【解析】试题分析:根据题意作出x,y满足约束条件下的平面区域,如图所示,由图知,当a11 a+1a+12⎪11时取得最大值,所以2考点:简单的线性规划问题.13.D【解析】试题分析:根据约束条件可作出可行域如图,作出直线y=-1x,经过平移得当直线过点2A(0,1)时,z取到最大值2.考点:线性规划.14.D【解析】(⎪⎩y≤2212+12=2,OA=1,OA⊥AP,所以∠APO=30︒,∠APB=2∠APO=60︒,试题分析:不等式组表示的平面区域如图所示,由图易得目标函数z=2x+y在A(3,1)处取得最大值7,在B1,-1)处取得最小值1,则a+b=8,故答案为D.考点:线性规划的应用.15.B【解析】⎧x+y-22≥0⎪⎪试题分析:不等式⎨x≤22表示平面区域Ω为下图所示的∆DEF边界及内部的点,⎪由图可知,当点P在线段DE上,且OP⊥DE时,∆P AB的面积最小,这时OP=-22所以cos∠APB=12,故选B.y DB OPAFE x考点:1.线性规划;2.直线与圆的位置关系.【方法点睛】本题主要考查的是线性规划以及直线与圆的位置关系,属中档题.线性规划类问题的解题关键是先正确画出不等式组所表示的平面区域,然后确定目标函数的几何意义,通过数形结合确定目标函数何时取得最值.解题时要看清楚是求“最大值”还是求“最小值”,否则很容易出现错误;画不等式组所表示的平面区域时要通过特殊点验证,防止出现错误.16.2【解析】试题分析:先画出对应的可行域,结合图象求出目标函数取最大值时对应的点,代入即可求出其最值.解:约束条件对应的可行域如图:由图得,当z=2x+y位于点B(1,0)时,z=2x+y取最大值,此时:Z=2×1+0=2.故答案为:2.(考点:简单线性规划.17.6【解析】试题分析:如图画出可行域,目标函数 z = 2 x + 3 y 平移到 (0, 2)处有最大值 0 + 3⨯ 2 = 6 .考点:1、可行域的画法;2、最优解的求法.【方法点晴】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”: 1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最有解);(3)将最优解坐标代入目标函数求出最值.18. [0,2]【解析】试题分析:线性约束条件对应的可行域为直线 x - y + 1 = 0, x + y = 0, x = 0 围成的三角形及其内部,顶点为 (0,0 ), (0,1), - 1 , 1 ⎫,当 z = x + 2 y 过点 (0,0 )时取得最小值 0,过点 (0,1)(0, -1), (2,0 ), ⎛ 5 , 2 ⎫⎪ ,当 z = x + y - 3 过点 (0, -1) 时取得最小值 -4⎢⎣2, 3 ⎥⎦⎝ 2 2 ⎭时取得最大值 2,所以其范围是[0,2]考点:19. -4【解析】试题分析:线性约束条件对应的可行域为直线2 x + y = 4, x - y = 1, x - 2 y = 2,顶点为⎝ 3 3 ⎭考点:线性规划问题20.【解析】试题分析:先根据约束条件画出可行域,设 z=ax+by ,将最大值转化为 y 轴上的截距,当直线 ax+by=z 与可行域内的边 BC 平行时,z=ax+by 取最大值时的最优解有无数个,将 等价为斜率, 数形结合,得,且 a×1+b×0=2,∴a=2,b=1,z=2x+y当直线 z=2x+y 过点 B 时,z 取最小值,最小值为-2考点:简单线性规划的应用21.8⎡ 10 ⎤ 5【解析】A B x y y x x 13 x t 13试题分析:不等式组表示的可行域是如图所示的三角形 ABC 边界及其内部,(1,3),(1,1),C (13 7 5, 5 1 13 8 y ) 故所求面积为 ⨯ (3 - 1)⨯ ( - 1) = , u = + ,其中 表示可行域上任2 5 5 x一点与原点连线的斜率, 函数性质得 u ∈ [2, 10]3y 7 y 1 7∈ [k , k ] = [ ,3] , t = , u = t + , t ∈ [ ,3] 故根据对勾 OC O A考点:线性规划,对勾函数.22. [2, +∞)【解析】试题分析:作出实数 x ,y 满足的平面区域,如图所示,由图知,斜率 y的取值范围是[2, +∞) .x考点:简单的线性规划问题.【方法点睛】运用线性规划求解最值时,关键是要搞清楚目标函数所表示的直线的斜率与可行域便捷直线的斜率之间的大小关系,以便确定在哪个端点处,目标函数取得最大值;在哪个端点处,目标函数取得最小值.23. 2 21【解析】试题分析:作出约束条件 ⎨ y ≥ x表示的可行域如图阴影部分(含边界), ⎪2 x + y - 6 ≥ 0 联立 ⎨,解得 A (2,2), 2 x + y - 6 = 0-x + y ≤ 7试题分析:不等式组{ y ≥ x 所表示的平面区域为如下图所示的 ∆DEF ,且 ∆DEF 在圆x ≥ 2x 2 + y 2 = 50 的内部,在 ∆DEF 区域内,其中点 D 到圆心 O 的距离最远,所以过点 D 且垂直于 OD 的弦 AB 最短,考点:1.线性规划;2.直线和圆的位置关系.【名师点睛】本题主要考查的是线性规划,属于容易题.线性规划类问题的解题关键是先正确画出不等式组所表示的平面区域,然后确定目标函数的几何意义,通过数形结合确定目标函数何时取得最值.解题时要看清楚是求“最大值”还是求“最小值”,否则很容易出现错误.24.-2【解析】⎧ x ≥ 0 ⎪⎩⎧ y = x⎩ 化目标函数 z = x - 2 y 为 y = x z,2 2由图可知,当直线y=x z-过A时,直线在y轴上的截距最小,z有最大值为2﹣2×2=﹣222.考点:简单的线性规划问题.25.-6【解析】试题分析:先根据平面向量共线(平行)的坐标表示,得m=2x-y,根据约束条件画出可行域,再利用m的几何意义求最值,只需求出直线m=2x-y过可行域内的点A时,从而得到m值即可.由向量向量,,且,得,根据约束条件画出可行域,设,将m最小值转化为y轴上的截距,当直线经过点(,)时,m最小,最小值是:2×1-8=-6.故答案为:-6.考点:平面向量共线的坐标表示;简单的线性规划26.[1,+∞).2cos1【解析】试题分析:如下图所示,画出不等式组所表示的区域,即可行域,而xπxπy=2a sin(+)cos(+)=2424π1a sin(x+)=a cos x,故可知问题等价于点(1,)不在函数y=a cos x的上方,即22111a cos1≥⇒a≥,+∞).22cos12cos1,∴正实数a的取值范围是[试题分析: M (a, b )在由不等式 ⎨ y ≥ 0 确定的平面区域内, ⎪x + y ≤ 2 ⎧a ≥ 0 ⎪⎪ 2 ∴ ⎨b ≥ 0 ,设 x = a - b , y = a + b ,则 ⎨ ⎪a + b ≤ 2 ⎪b = y - x ⎪⎩ 2 ⎩ ≥ 0 ,即 ⎨ y - x ≥ 0 ⎪ y ≤ 2 作出不等式组对应的平面区域如图:则对应区域为等腰直角三角形 AOB ,则 ⎨,y = 2 同理 B (- 2,2),则 ∆AOB 的面积为 S = ⨯ 4 ⨯ 2 = 4 .⎧考点:1.三角函数的图象和性质;2.线性规划的运用.27.4【解析】⎧ x ≥ 0 ⎪ ⎩⎪ ⎩⎧ y - x = 0⎩ 得 ⎨ x = 2 ⎩ y = 21 2考点:简单的线性规划.28.[-2,1].【解析】试题分析:如下图所示,画出不等式组所表示的平面区域,考虑极端情况,函数图象经过点(2,-1),此时m=-2,函数图象经过点(1,1),此时m=1,∴实数m的取值范围是[-2,1].考点:线性规划的运用.29.-6【解析】试题分析:可行域如图:⎧ ∴由 ⎨ x - y ≤ 0 得 A (k, k ) ,目标函数 z = x + y 在 x = k. y = k 时取最大值,即直线 z = x + y ⎩ y = k在 y 轴上的截距 z 最大,此时,12 = k + k , k= 6 ∴得 B (-12,6 ),目标函数 z = x + y 在x = -12, k = 6 时取最小值,此时, z 的最小值为 z = -12 + 6 = -6考点:简单的线性规划3 30.12 , (-∞, ] . 4【解析】试题分析:如下图所示,画出不等式组所表示的可行域,作直线 l : x + 3 y = 0 ,平移 l ,即可知,当 x = y = 3 时,z 3 的取值范围是 (-∞, ] . 4 max = 3 + 9 = 12 ,直线 y = a( x + 1) 恒过点 (-1,0) ,∴可知实数 a考点:线性规划的运用.。

高中数学必修五线性规划

高中数学必修五线性规划

高中数学必修五:线性规划1. 设变量,x y 满足-100+20015x y x y y ≤⎧⎪≤≤⎨⎪≤≤⎩,则2+3x y 的最大值为() A .20 B .35 C .45 D .552..若直线x y 2=上存在点),(y x 满足约束条件⎪⎩⎪⎨⎧≥≤--≤-+m x y x y x 03203,则实数m 的最大值为( ) A .21 B .1 C .23 D .3.在平面直角坐标系中,若不等式组101010x y x ax y +-≥⎧⎪-≤⎨⎪-+≥⎩(α为常数)所表示的平面区域内的面积等于2,则a 的值为( )A. -5B. 1C. 2D. 34.已知O 为直角坐标系原点,P ,Q 的坐标均满足不等式组4325022010x y x y x +-≤⎧⎪-+≤⎨⎪-≥⎩,则co s P O Q∠的最小值为( ) A .12B.15 .当实数,x y 满足不等式⎪⎩⎪⎨⎧≤+≥≥220y x y x 时,恒有3ax y +≤成立,则实数a 的取值范围是( ) A .0a ≤ B .0a ≥ C .02a ≤≤ D .3a ≤6 .已知实数⎪⎩⎪⎨⎧≤+-≤≥.,13,1,m y x x y y y x 满足如果目标函数y x z 45-=的最小值为—3,则实数m=( )A .3B .2C .4D .3117.若A 为不等式组002x y y x ≤⎧⎪≥⎨⎪-≤⎩所示的平面区域,则当a 从-2连续变化到1时,动直线x +y=a 扫过A 中的那部分区域面积为( )A .2B .1C .34D .748.设实数,x y 满足约束条件:360200,0x y x y x y --≤⎧⎪-+≥⎨⎪≥≥⎩,若目标函数(0,0)z ax by a b =+>>的最大值为12,则2294a b +的最小值为( )A .12 B .1325 C .1 D .29.设y x ,满足约束条件⎪⎩⎪⎨⎧≤+≥≥,1434,,0y x x y x 则21++x y 的取值范围是( ) A .]617,21[B .]43,21[C .]617,43[D .),21[+∞10.若变量,x y 满足210201x y x y x -+≤⎧⎪-≥⎨⎪≤⎩,则点(2,)P x y x y -+表示区域的面积为( )A . 34B. 43C. 12D. 111.设不等式组 110330530x y x y x y 9+-≥⎧⎪-+≥⎨⎪-+≤⎩表示的平面区域为D ,若指数函数y=x a 的图像上存在区域D 上的点,则a 的取值范围是( )(A )(1,3] (B )[2,3] (C ) (1,2] (D )[ 3, +∞] 12.设不等式组1230x x y y x ≥⎧⎪-+≥⎨⎪≥⎩所表示的平面区域是1Ω,平面区域2Ω与1Ω关于直线3490x y --=对称。

高三数学线性规划试题答案及解析

高三数学线性规划试题答案及解析

高三数学线性规划试题答案及解析1.已知实数、满足不等式组,则的最大值是____________.【答案】20【解析】作出不等式组表示的可行域,如图四边形内部(含边界),作直线,平移直线,当过点时,取得最大值20.【考点】线性规划.2.设变量x,y满足约束条件,则的最大值是()A.7B.8C.9D.10【答案】C【解析】画出可行域及直线,如图所示.平移直线,当其经过点时,.选.【考点】简单线性规划3.已知满足不等式设,则的最大值与最小值的差为()A.4B.3C.2D.1【答案】A【解析】作出不等式组所表示的区域,,由图可知,在点取得最小值,在点取得最大值,故的最大值与最小值的差为.【考点】线性规划.4.设变量x、y满足则2x+3y的最大值是________.【答案】55【解析】由得A(5,15),且A为最大解,∴z=2×5+3×15=55max5.已知实数x,y满足则r的最小值为________.【答案】【解析】作出约束条件表示的可行域,如图中的三角形,三角形内(包括边)到圆心的最短距离即为r的值,所以r的最小值为圆心到直线y=x的距离,所以r的最小值为.6.设x,y满足约束条件若目标函数z=ax+by(a>0,b>0)的最小值为2,则ab的最大值为 ().A.1B.C.D.【答案】D【解析】由z=ax+by(a>0,b>0)得y=-x+,可知斜率为-<0,作出可行域如图,由图象可知当直线y=-x+经过点D时,直线y=-x+的截距最小,此时z最小为2,由得即D(2,3),代入直线ax+by=2得2a+3b=2,又2=2a+3b≥2,所以ab≤,当且仅当2a=3b=1,即a=,b=时取等号,所以ab的最大值为.7.已知O是坐标原点,点,若点为平面区域上的一个动点,则|AM|的最小值是()A.B.C.D.【答案】A【解析】作出表示的平面区域如图所示,;点A到直线的距离为,选A.【考点】线性规划.8.已知、满足约束条件,则的最小值为()A.B.C.D.【答案】B【解析】作出不等式组所表示的可行域如下图所示,联立,得,作直线,则为直线在轴上的截距的倍,当直线经过可行域上的点时,直线在轴上的截距最小,此时取最小值,即,故选B.【考点】线性规划9.已知实数x,y满足,则r的最小值为()A.B.1C.D.【答案】A【解析】在平面直角坐标系中画出不等式组表示的平面区域D,由于圆经过平面区域D,因此其半径r的最小值为圆心(-1,1)到直线y=x的距离,即.rmin【考点】简单线性规划.10.设变量x,y满足约束条件,则目标函数的最大值为( )A.2B.3C.4D.5【答案】D【解析】画出可行域及直线(如图),平移直线,当其经过时,最大,故选D.【考点】简单线性规划的应用11.设满足条件的点构成的平面区域的面积为,满足条件的点构成的平面区域的面积为(其中,分别表示不大于x,y的最大整数,例如,),给出下列结论:①点在直线左上方的区域内;②点在直线左下方的区域内;③;④.其中所有正确结论的序号是___________.【答案】①③【解析】.如下图所示,当点在A区域时,;当点在B区域时,;当点在C区域时,;当点在D区域时,;当点在E区域时,.所以.,所以点在直线右上方的区域内.所以只有①③正确.【考点】1、新定义;2、平面区域.12.设满足约束条件,则目标函数的最大值是()A.3B.4C.5D.6【答案】D【解析】由约束条件可得区域图像如图所示:则目标函数在点取得最大值6.【考点】线性规划.13.已知非负实数满足,则关于的一元二次方程有实根的概率是()A.B.C.D.【答案】A【解析】关于的一元二次方程有实根,则,又为非负实数,所以,从而.由作出平面区域:由图知,表示非负实数满足的平面区域;表示其中的平面区域. 又,.所以所求概率为.【考点】平面区域、几何概型14.已知约束条件,若目标函数恰好在点处取得最大值,则的取值范围为()A.B.C.D.【答案】A【解析】作不等式组所表示的可行域如图所示,易知点为直线和直线的交点,由于直线仅在点处取得最大值,而为直线在轴上的截距,直线的斜率为,结合图象知,直线的斜率满足,即,解得,故选A.【考点】线性规划15.已知,若向区域上随机投一点P,则点P落入区域A的概率为()A.B.C.D.【答案】A.【解析】因为区域内的点所围的面积是18个单位.而集合A中的点所围成的面积.所以向区域上随机投一点P,则点P落入区域A的概率为.本题是通过集合的形式考察线性规划的知识点,涉及几何概型问题.关键是对集合的理解.【考点】1.集合的知识.2.线性规划问题.3.几何概型问题.16.若、满足约束条件,则目标函数的最大值是 .【答案】.【解析】作不等式组所表示的可行域如下图所示,联立,解得,即点,作直线,则为直线在轴上的截距,当直线经过可行域上的点时,直线在轴上的截距最大,此时取最大值,即.【考点】线性规划17.定义在R上的函数f(x)满足f(4)=1,为函数f(x)的导函数,已知的图像如图所示,若两个正数a,b满足f (2a+b)<1,则的取值范围是()A.B.C.D.【答案】A【解析】由函数的图像可知,时,.时,.所以函数在上单调递减,在上单调递增. 是两个正数,.又f(4)=1,.故.以为横轴,为纵轴,作出由不等式组表示的平面区域.则表示点到点的斜率.由下图可知,点在黄色区域内,则易知,,所以.故选A.【考点】线性规划、斜率公式、导函数与单调性18.在可行域内任取一点,其规则如流程图所示,则能输出数对()的概率是()A.B.C.D.【答案】B【解析】画出可行域,如图所示,正方形内部面积为2,圆内部面积为,由几何概型的面积公式=.【考点】1、二元一次不等式组表示的平面区域;2、圆的方程;3、几何概型.19.已知函数的两个极值点分别为,且,,点表示的平面区域为,若函数的图像上存在区域内的点,则实数的取值范围是()A.B.C.D.【答案】A【解析】的两根为,且,,故有,即,作出区域,如图阴影部分,可得,所以.【考点】1.函数的极值;2.线性规划.20.设满足若目标函数的最大值为14,则=()A.1B.2C.23D.【答案】B【解析】题中约束条件的可行域如下图所示,易知目标函数在图中A点取得最大值,所以,故选B.【考点】1.线性规划求参数的值.21.若函数图像上的任意一点的坐标满足条件,则称函数具有性质,那么下列函数中具有性质的是()A.B.C.D.【答案】C【解析】表示的区域为A选项是的切线,经过原点,经过B区域;B选项经过原点,经过B区域,也是其切线;C选项,在和之间,所以其只经过A区域;D选项,经过B区域.所以最终选C.【考点】1.数形结合思想应用;2.函数的切线方程求解.22.已知实数满足:则的取值范围是___________.【答案】.【解析】实数满足的平面区域如图阴影部分所示,令,即,则直线分别通过点时在轴上的截距最小和最大,即最小值为,最大值为1,则,所以,则.【考点】线性规划.23.抛物线在处的切线与两坐标轴围成三角形区域为(包含三角形内部与边界).若点是区域内的任意一点,则的取值范围是__________.【答案】【解析】由得,所以,,抛物线在处的切线方程为.令,则.画出可行域如图,所以当直线过点时,.过点时,.故答案为.【考点】导数的几何意义,直线方程,简单线性规划的应用.24.设满足约束条件,若目标函数的最大值为,则.【答案】2【解析】不等式组表示的平面区域如图,解方程组得,由,则要目标函数取得最大值10,必有直线过,则,解得.【考点】线性规划,目标函数的最值.25.设的两个极值点分别是若(-1,0),则2a+b的取值范围是()A.(1,7)B.(2,7)C.(1,5)D.(2,5)【答案】B.【解析】由可行域知故选B.【考点】1.函数极值与导数;2.一元二次方程根的分布问题.26.已知变量x,y满足则的值范围是( )A.B.C.D.【答案】A【解析】画出约束条件所表示的平面区域可知,该区域是由点所围成的三角形区域(包括边界),,记点,得,,所以的取值范围是.【考点】线性规划.27.设满足约束条件,若目标函数的最大值为8,则的最小值为_______。

高中数学线性规划各类习题精选100题

高中数学线性规划各类习题精选100题

高中数学线性规划各类习题精选7学校:___________姓名:___________班级:___________考号:___________一、单选题1.设x y ,满足约束条件04312x y x x y ≥⎧⎪≥⎨⎪+≤⎩,则2x y -的最小值是( )A .-4B .127C .0D .6 2.定义,m a x {,},a a ba b b a b≥⎧=⎨<⎩,设实数x ,y 满足约束条件22x y ⎧≤⎪⎨≤⎪⎩,则m a x {4,3z x y x y=+-的取值范围是( ) A .[7,10]- B .[8,10]- C .[6,8]- D .[7,8]-3.若x y ,满足约束条件221{21x y x y x y +≥≥-≤且向量()3,2a =, ()b x y =,,则•a b 的取值范围是( )A .5,44⎡⎤⎢⎥⎣⎦B .7,52⎡⎤⎢⎥⎣⎦C .7,42⎡⎤⎢⎥⎣⎦D .5,54⎡⎤⎢⎥⎣⎦4.实数x ,y 满足2x a y x x y ≥⎧⎪≥⎨⎪+≤⎩(1a <),且2z x y =+的最大值是最小值的4倍,则a的值是( ) A .211 B .14 C .12 D .1125.已知变量x ,y 满足约束条件,则 的最大值为( )A .B .C .1D .26.设,x y 满足约束条件220840x y x y x y -+≥⎧⎪--≤⎪⎨≥⎪⎪≥⎩,若目标函数11(0,0)z x y a b a b =+>>的最大值为2,则a b +的最小值为( )A .92B .14C .29D .47.设y x ,满足不等式组⎪⎩⎪⎨⎧≥--≤--≤-+02301206y x y x y x ,若y ax z +=的最大值为42+a ,最小值为1+a ,则实数a 的取值范围为( )A .]2,1[-B .]1,2[-C .]2,3[--D .]1,3[-8.已知x ,y 满足,则使目标函数z=y ﹣x 取得最小值﹣4的最优解为( )A .(2,﹣2)B .(﹣4,0)C .(4,0)D .(7,3)9.已知变量y x ,满足以下条件:,,11y xx y R x y y ≤⎧⎪∈+≤⎨⎪≥-⎩,z ax y =+,若z 的最大值为3,则实数a 的值为( )A .2或5B .-4或2C .2D .5 10.不等式表示的平面区域(用阴影表示)是( )A .B .C .D .11.已知 是不等式组的表示的平面区域内的一点, ,为坐标原点,则的最大值( )A .2B .3C .5D .612.已知实数x ,y 满足条件若目标函数的最小值为5,其最大值为( )A .10B .12C .14D .1513.已知(),P x y 为区域22400y x x a -≤⎧≤≤⎨⎩内的任意一点,当该区域的面积为2时,2z x y=+的最大值是( )A .5B .0C .2D .14.若A 为不等式组表示的平面区域,则当从连续变化到时,动直线扫过A 中的那部分区域的面积为( )A .34 B .1 C .74D .2 15.过平面区域内一点 作圆 的两条切线,切点分别为,记 ,则当 最小时 的值为( ) A .B .C .D .16.若变量满足约束条件且的最大值为,最小值为,则的值是( ) (A )(B )(C )(D )17.设变量x ,y 满足约束条件则目标函数z =3x -y 的最大值为( )A .-4B .0C .D .418.已知实数m , n 满足不等式组,则关于x 的方程()23260x m n x mn -++=的两根之和的最大值和最小值分别是( )A .7, 4-B .8, 8-C .4, 7-D .6, 6-19.实数x ,y 满足不等式组则的取值范围是( )A .B .C .D .20.已知变量满足: 的最大值为( )A .B .C .2D .421.若y x ,满足⎪⎩⎪⎨⎧≥≤+≤-010x y x y x 则y x z 2+=的最大值为( )A .0B .1C .23D .2 22.若实数,x y 满足不等式组⎪⎩⎪⎨⎧≥+-≤--≥-+,01,032,033my x y x y x 且x y +的最大值为9,则实数m =( )A .1B .-1C .2D .-2 23.若两个正数b a ,满足24a b +<,则222-+=a b z 的取值范围是( )A .{}|11z z -≤≤B .{}|11z z -≥≥或z C .{}|11z z -<< D .{}|11z z ->>或z24.(题文)已知实数满足,若目标函数的最大值为,最小值为,则实数的取值范围是( )A .B .C .D .25.如果实数x ,y 满足约束条件⎪⎩⎪⎨⎧≤++≥+≥+-010101y x y y x ,则y x -2的最大值为( )A .1B .2C .2-D .3-26.如果实数,满足约束条件,则的最大值为( )A .B .C .D .27.设 , 满足约束条件 ,若目标函数( )的最大值为 ,则的图象向右平移后的表达式为( )A .B .C .D .28.在平面直角坐标系中,不等式组20200x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩,表示的平面区域的面积是( )A..4 C..229.已知正数,x y 满足20350x y x y -≤⎧⎨-+≥⎩,则2z x y =--的最小值为( )A .2B .0C .-2D .-430.已知实数x 、y 满足,如果目标函数的最小值为-1,则实数m =( ). A .6B .5C .4D .331.设,x y 满足约束条件()0,230,,,230.x x y a y m x x y ≥⎧⎪+-≥=+⎨⎪+-≤⎩()1,2b =,且a ∥b ,则m 的最小值为( ) A 、1 B 、2 C 、12 D 、1332.已知实数,x y 满足约束条件00220y x y x y ≥⎧⎪-≥⎨⎪--≥⎩,则11y z x -=+的取值范围是( )A .11,3⎡⎤-⎢⎥⎣⎦B .11,23⎡⎤-⎢⎥⎣⎦C .1,2⎡⎫-+∞⎪⎢⎣⎭D .1,12⎡⎫-⎪⎢⎣⎭33.设变量,x y 满足约束条件211y x x y y ≤⎧⎪+≤⎨⎪≥-⎩,则2x y +的最大值为( )A .95 B .25- C .0 D .5334.若实数x ,y 满足不等式024010x y x y x y +≥⎧⎪+-≤⎨⎪--≤⎩,且x y +的最大值为( )A .1B .2C .3D .435.已知实数满足:,,则的取值范围是A .B .C .D .36.若实数x ,y 满足不等式024010x y x y x my +≥⎧⎪+-≤⎨⎪--≤⎩,且x y +的最大值为3,则实数m =( )A .-1B .12C .1D .2 37.若点),(y x P 满足线性约束条件⎪⎩⎪⎨⎧≥≥+-≤-002303y y x y x ,点)3,3(A ,O 为坐标原点,则⋅的最大值为( )A .0B .3C .-6D .638.设变量,x y 满足约束条件⎪⎩⎪⎨⎧≤--≥-≥+3213y x y x y x ,则目标函数23z x y =+的最小值为( )A .6B .7C .8D .9 39.如果直线12:220,:840l x y l x y -+=--=与x 轴正半轴,y 轴正半轴围成的四边形封闭区域(含边界)中的点,使函数()0,0z abx y a b =+>>的最大值为8, 求a b +的最小值( )A 、4B 、3C 、2D 、040.设变量,x y 满足约束条件:3123x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,则目标函数1ax y z x ++=的取值范围是[3,5],则a =( )A .4B .3C .2D .141.已知不等式组210210x y x x y -+≥⎧⎪≤⎨⎪+-≥⎩表示的平面区域为D ,若函数|1|y x m =-+的图象上存在区域D 上的点,则实数m 的取值范围是( ) A .1[0,]2 B .1[2,]2- C .3[1,]2- D .[2,1]- 42.已知点集}0222|),{(22≤---+=y x y x y x M ,}022|),{(22≥+--=y x y x y x N ,则N M 所构成平面区域的面积为( )A .πB .π2C .π3D .π443.若实数x ,y 满足不等式组024010x y x y x my +≥⎧⎪+-≤⎨⎪--≤⎩,且x+y 的最大值为3,则实数m=( )A .-1B .12C .1D .2 44.若实数x ,y 满足不等式组,且x+y 的最大值为( )A .1B .2C .3D .445.设x ,y 满足约束条件⎪⎩⎪⎨⎧≥≥≥+-≤--0,002063y x y x y x ,若目标函数)0,0(>>+=b a by ax z 的值是最大值为12,则ba 32+的最小值为( ) A .38 B .625 C .311 D .446.设O 是坐标原点,点A (-1,1),若点M (,x y )为平面区域⎪⎩⎪⎨⎧≤≤≥+212y x y x 上的一个动点,则OA OM ⋅的取值范围为 ( )A .[]0,1-B .[]1,0C .[]2,0D .[]2,1-47.已知变量y x ,满足约束条件⎪⎩⎪⎨⎧≤-≥+≤112y x y x y ,则y x z +=3的最大值为( )A .12B .11C .3D .-1 48.在直角坐标系内,满足不等式的点的集合(用阴影表示)正确的是( )A .B .C .D .49.设x ,y 满足10x y y x y +≤⎧⎪≤⎨⎪≥⎩,则4z x y =+的最大值是( )A .3B .4C .5D .650. 若,x y 满足约束条件5315153x y y x x y +⎧⎪+⎨⎪-⎩≤≤≤,则35x y +的取值范围是( )A .[13,15]-B .[13,17]-C .[11,15]-D .[11,17]-51.设的最大值为( )A .80B .C .25D .52.已知0a >,不等式组00(2)x y y a x ≥⎧⎪≤⎨⎪≥-⎩表示的平面区域的面积为1,则a 的值为( )A .14 B .12C .1D .2 53.不等式2350x y --≥表示的平面区域是( )A .B .C .D .54.设x ,y 满足约束条件 ,若目标函数(0,0)z ax by a b =+>>的最大值为12,则的最小值为 ( ). A .4 B . C . D .55.已知实数,x y 满足1000x y x y x +-≤⎧⎪-≤⎨⎪≥⎩,则2x y -的最大值为(A )12-(B )0 (C )1 (D )1256.若实数y x ,满足不等式组⎪⎩⎪⎨⎧≥-+≤-≤-020102y x y x ,则目标函数y x t 2-=的最大值为( )A . 1-B .0C .1D .257.若实数x ,y 满足4024020+-⎧⎪--⎨⎪-+⎩x y x y x y ………,则目标函数23=+z x y 的最大值为( )A .11B .24C .36D .49⎪⎩⎪⎨⎧≥≥≥+-≤--0,002063y x y x y x 23a b +3831162558.已知 , 满足约束条件则目标函数 的最大值为( )A .1B .3C .D .59.已知实数,x y 满足不等式组2010220x y x y -≤⎧⎪-≤⎨⎪+-≥⎩,,,则z x y =+的取值范围为( )A .[]1,2-B .[]13,C .[]1,3-D .[]2,460.设变量x ,y 满足约束条件00220x x y x y ≥⎧⎪-≥⎨⎪--≤⎩则z =3x -2y 的最大值为A .4B .2C .0D .661.已知实数x 、y 满足约束条件1,1,2 2.x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩则目标函数25y z x +-=的最大值为A .3B .4C .3-D .-1262.不在不等式623<+y x 所表示的平面区域内的点是( ) A .)0,0( B .)1,1( C .)2,0( D .)0,2(二、填空题63.设不等式组2000x y x y +-≤⎧⎪≥⎨⎪≥⎩表示的平面区域为D ,在区域D 内随机取一点P ,则点P 落在圆221x y +=内的概率为 .64.已知,x y 满足14210x x y x y ≥⎧⎪+≤⎨⎪--≤⎩,则2z x y =+的最大值为 .65.已知方程220x ax b ++=(,)a R b R ∈∈,其一根在区间(0,1)内,另一根在区间(1,2)内,则31b a --的取值范围为 . 66.设x ,y 满足, ,若 ,则m 的最大值为 .67.设x ,y 满足约束条件则z =x +4y 的最大值为________.68.直线01-22=-+a y ax 与不等式组2040220x y x y x y -+-≤⎧⎪+-≤⎨⎪-+≤⎩表示的区域没有..公共点,则a 的取值范围是 .69.已知变量x ,y 满足⎪⎩⎪⎨⎧≥≤-+≤+-104034x y x y x , xy y x 22+的取值范围为 .70.设变量x ,y 满足则x +2y的最大值为 71.已知变量x 、y 满足约束条件 则的取值范围是 .72.已知实数对(x ,y )满足210x y x y ≤⎧⎪≥⎨⎪-≥⎩,则2x y +的最小值是 .73.设变量y x ,满足约束条件⎪⎩⎪⎨⎧≤≥+≤-,2,2,1y y x y x 则目标函数22y x z +=的取值范围是 .74.已知实数y x ,则 22222)(y x y y x +++的取值范围为 . 75.若实数满足则的取值范围是 .76.已知0m >,实数,x y 满足⎪⎩⎪⎨⎧≤+≥≥,,0,0m y x y x 若2z x y =+的最大值为2,则实数m =______.77.设2z x y =-+,实数,x y 满足2,{1, 2.x x y x y k ≤-≥-+≥若z 的最大值是0,则实数k =_______, z 的最小值是_______.78.给出平面区域如图所示,其中若使目标函数仅在点处取得最大值,则的取值范围是________.79.设实数x ,y 满足约束条件202x y y x -≥⎧⎪⎨≥-⎪⎩,则2z x y =+的最大值为 . 80.设,x y 满足约束条件1{10 1x y x x y +≤+≥-≤,则目标函数2y z x =-的取值范围为___________. 81.设实数,x y 满足,102,1,x y y x x ≤⎧⎪≤-⎨⎪≥⎩向量2,x y m =-()a ,1,1=-()b .若// a b ,则实数m 的最大值为 .82.已知实数x ,y 满足220,220,130,x y x y x y --≥⎧⎪-+≤⎨⎪+-≤⎩则z xy =的最大值为 .83.已知变量,x y 满足240{2 20x y x x y -+≥≤+-≥,则32x y x +++的取值范围是 . 84.设x ,y 满足约束条件1210,0≤+⎧⎪≥-⎨⎪≥≥⎩y x y x x y ,若目标函数()0,0z abx y a b =+>>的最大值为35, 则a b +的最小值为 .85.若x y ,满足约束条件1020,220,x y x y x y -+≥⎧⎪-≤⎨⎪+-≤⎩,,则2z x y =+的最大值为____________.86.若,x y 满足约束条件:1020,220,x y x y x y -+≥⎧⎪-≤⎨⎪+-≤⎩,,则3x y +的最大值为___ ____.87.已知x 、y 满足,则 的最大值是___________ .88.已知变量,x y 满足约束条件13,1,x y y x y +≥⎧⎪≤⎨⎪-≤⎩,若z kx y =+的最大值为5,且k 为负整数,则k =____________.89.已知不等式表示的平面区域为 ,若直线 与平面区域 有公共点,则 的范围是_________90.已知实数y x ,满足⎪⎩⎪⎨⎧≤≥+≥+-1002x y x y x 则y x z +=2的最小值为__________.91.若点(2,1)和(4,3)在直线230x y a -+= 的两侧,则a 的取值范围是____________.92.设变量x ,y 满足约束条件3{ 1 1x y x y y +≤-≥-≥,则2z x y =-的最小值为93.设变量y x ,满足约束条件22024010x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,则y x z 23+-=的最大值为 .94.已知实数 满足,则的取值范围是__________.95.已知变量x ,y 满足约束条件22,24,41,x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩则目标函数33z x y =-+的最大值是 .96.已知实数x ,y 满足约束条件则 的最大值等于______.97.设1,m >在约束条件1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数5z x y =+的最大值为4,则m 的值为 ,目标函数y x z -=2的最小值为________.三、解答题98.画出不等式组⎪⎩⎪⎨⎧≤≥+≥+-3005x y x y x 表示的平面区域99.(本小题12分)已知⎪⎩⎪⎨⎧≤--≥-+≥+-0520402y x y x y x , 求(Ⅰ)12++=x y z 的取值范围; (Ⅱ)251022+-+=y y x z 的最小值.100.(本小题12分)已知y x ,满足不等式组⎪⎩⎪⎨⎧≤--≥-+≥+-0520402y x y x y x ,求(1)y x z 2+=的最大值;(2)251022+-+=y y x z 的最小值.参考答案1.A【解析】试题分析:作出x y ,满足约束条件下的平面区域,如图所示,由图当目标函数2z x y =-经过点(0,4)A 时取得最小值,且min 044z =-=-,故选A .考点:简单的线性规划问题.2.A .【解析】试题分析:若4320x y x y x y +≥-⇒+≥:4z x y =+,如下图所示,画出不等式组所表示的可行域,∴当2x y ==时,m a x 10z =,当2x =-,1y =时,m i n 7z =-;若432x y x y x y+<-⇒+<: 3z x y =-,画出不等式所表示的可行域,∴当2x =,2y =-时,max 8z =,当2x =-,1y =时,min 7z =-,综上,z 的取值范围是[7,10]-,故选A .考点:线性规划的运用.3.D【解析】试题分析:∵向量()3,2a =, ()b x y =,,∴·32a b x y =+,设z=3x+2y , 作出不等式组对于的平面区域如图:由z=3x+2y ,则322z y x =-+,平移直线322z y x =-+,由图象可知当直线322z y x =-+, 经过点B 时,直线322z y x =-+的截距最大,此时z 最大,由{ 21x yx y =-=,解得1{ 1x y ==,即B (1,1),此时zmax=3×1+2×1=5, 经过点A 时,直线322z y x =-+的截距最小,此时z 最小, 由{ 221x y x y =+=,解得14{ 14x y ==,即A 11,44⎛⎫ ⎪⎝⎭,此时zmin=3×14+2×14=54,则54≤z≤5 考点:简单线性规划4.B【解析】试题分析:在直角坐标系中作出可行域如下图所示,当目标函数y x z +=2经过可行域中的点)1,1(B 时有最大值3,当目标函数y x z +=2经过可行域中的点),(a a A 时有最小值a 3,由a 343⨯=得41=a ,故选B .考点:线性规划.5.C【解析】试题分析:画出可行域如下图所示,由图可知,目标函数在点 取得最大值为 .考点:线性规划.6.A【解析】试题分析:作出可行域如图, ()2201,4840x y A x y -+=⎧⇒⎨--=⎩,当目标函数11(0,0)z x y a b a b=+>>过点()1,4A 时纵截距最大,此时z 最大.即()142,0,0a b a b+=>>.()1141419552222a b a b a b a b b a ⎛⎫⎛⎫⎛⎫∴+=++=++≥= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当且仅当4b a a b =,即322a b ==时取''''=.故选A . 考点:1线性规划;2基本不等式.7.B【解析】试题分析:由z ax y =+得,y ax z =-+,直线y ax z =-+是斜率为,a y -轴上的截距为z 的直线,作出不等式组对应的平面区域如图:则()()1,1,2,4,A B z ax y =+的最大值为24a +,最小值为1a +∴直线z ax y =+过点B 时,取得最大值为24a +,经过点A 时取得最小值为1a +,若0a =,则y z =此时满足条件,若0a >则目标函数斜率0k a =-<,要使目标函数在A 处取得最小值,在B 处取得最大值,则目标函数的斜率满足1BC a k -≥=-,即01a <≤,若0a <,则目标函数斜率0k a =->要使目标函数在A 处取得最小值,在B 处取得最大值,则目标函数的斜率满足2AC a k -≤=,即20a -≤<,综上21a -≤≤;故选B .考点:简单的线性规划8.C【解析】试题分析:由题意作出其平面区域将z=y-x 化为y=x+z ,z 相当于直线y=x+z 的纵截距,则由平面区域可知,使目标函数z=y-x 取得最小值-4的最优解为(4,0);考点:简单线性规划问题9.B【解析】试题解析:当直线y ax z +=平移到点()1,1--B 时有最大值,此时应满足431-=⇒=--a a ;当直线y ax z +=平移到点()1,2-B 时有最大值,此时应满足2312=⇒=-a a .考点:线性规划的应用.10.B【解析】试题分析:可用特殊值法.代入点可知满足不等式,故点所在区域即为所求.考点:二元一次不等式表示平面区域.11.D【解析】试题分析:由题意可知,,令目标函数 ,作出不等式组表示的平面区域,如图所示,由图知,当目标函数 经过点 时取得最大值,最大值为 ,故选D .考点:简单的线性规划问题.12.A【解析】试题分析:依题意知,不等式表示的平面区域如图所示的三角型ABC 及其内部且A (2,2)、C (2,4-c ).目标函数可看作是直线在y 轴上的截距,显然当直线过点C 时,截距最小及z 最小,所以解得,此时B (3,1),且直线过点B 时截距最大,即z 最大,最大值为.故选A .考点:线性规划求最值.【方法点睛】线性规划求最值和值域问题的步骤:(1)先作出不等式组表示的平面区域;(2)将线性目标函数看作是动直线在y 轴上的截距;(3)结合图形看出截距的可能范围即目标函数z 的值域;(4)总结结果.另外,常考非线性目标函数的最值和值域问题,仍然是考查几何意义,利用数形结合求解.例如目标函数为可看作是可行域内的点(x ,y )与点(0,0)两点间的距离的平方;可看作是可行域内的点(x ,y )与原点(0,0)连线的斜率等等. 13.A 【解析】试题分析:由约束条件作出可行域,求出使可行域面积为2的a 值,化目标函数为直线方程的斜截式,数形结合可得最优解,求出最优解的坐标,代入目标函数得答案.2240{0y x x a-≤≤≤作出可行域如图, 由图可得22A a a B a a -(,),(,),1421122OAB S a a a B ∆=⨯⨯=∴=∴,,(,),目标函数可化为122z y x =-+,∴当122zy x =-+,过A 点时,z 最大,z=1+2×2=5,故选A .考点:简单的线性规划14.C【解析】试题分析:如图,不等式组表示的平面区域是△AOB,动直线x+y=a(即y=-x+a)在y轴上的截距从-2变化到1.知△ADC是斜边为3的等腰直角三角形,△EOC是直角边为1等腰直角三角形,所以区域的面积13173112224 ADC EOCS S S∆∆=-=⨯⨯-⨯⨯=考点:二元一次不等式(组)与平面区域视频15.C【解析】试题分析:因为,所以在中,,因为,而函数在上是减函数,所以当最小时最大,因为为增函数则此时最大。

高三数学线性规划试题答案及解析

高三数学线性规划试题答案及解析

高三数学线性规划试题答案及解析1.已知最小值是5,则z的最大值是()A.10B.12C.14D.15【答案】A【解析】首先作出不等式组所表示的平面区域,如图中黄色区域,则直线-2x+y+c=0必过点B(2,-1),从而c=5,进而就可作出不等式组所表示的平面区域,如图部的蓝色区域:故知只有当直线经过点C(3,1)时,z取最大值为:,故选A.【考点】线性规划.2.在直角坐标系中,已知点,点在三边围成的区域(含边界)上,且.(1)若,求;(2)用表示,并求的最大值.【答案】(1);(2),1.【解析】(1)由,且,即可求出点的坐标,继而求出的值;(2)因为,所以,即,两式相减得:令,点在三边围成的区域(含边界)上,当直线过点时,取得最大值1,故的最大值为1.试题解析:(1),又(2)即两式相减得:令,由图可知,当直线过点时,取得最大值1,故的最大值为1.【考点】平面向量的线性运算;线性规划.3.若变量、满足约束条件,且的最大值和最小值分别为和,则()A.B.C.D.【答案】C【解析】作出不等式组所表示的可行域如下图中的阴影部分所表示,直线交直线于点,交直线于点,作直线,则为直线在轴上的截距,当直线经过可行域上的点时,直线在轴上的截距最大,此时取最大值,即;当直线经过可行域上的点时,此时直线在轴上的截距最小,此时取最小值,即.因此,,故选C.【考点】本题考查线性规划中线性目标函数的最值,属于中等题.4.已知x,y满足条件,则目标函数的最大值为 .【答案】【解析】画出可行域,如下图所示,将目标函数变形为,当取到最大值时,直线的纵截距最大,故将直线向上平移到过点C时,目标函数取到最大值,,得,故.【考点】线性规划.5.当实数,满足时,恒成立,则实数的取值范围是________.【答案】【解析】作出不等式组所表示的区域,由得,由图可知,,且在点取得最小值在取得最大值,故,,故取值范围为.【考点】线性规划.6.若,则目标函数的取值范围是()A.B.C.D.【答案】A【解析】作出不等式组所表示的可行域如下图所示,,令,则,为原点与点之间连线的斜率,直线与直线交于点,直线与直线交于点,显然,直线的倾斜角最大,且为锐角,此时取最大值,即,直线的倾斜角最小,且为锐角,此时,取最小值,即,因此,所以,即目标函数的取值范围是,故选A.【考点】1.线性规划;2.斜率7.(2013•天津)设变量x,y满足约束条件,则目标函数z=y﹣2x的最小值为()A.﹣7B.﹣4C.1D.2【答案】A【解析】设变量x、y满足约束条件,在坐标系中画出可行域三角形,平移直线y﹣2x=0经过点A(5,3)时,y﹣2x最小,最小值为:﹣7,则目标函数z=y﹣2x的最小值为﹣7.故选A.8.满足约束条件的目标函数的最大值为_______.【答案】【解析】由x,y满足如图可得可行域.目标函数过点A时在y轴上的截距最大,最小值为.【考点】1.线性规划的知识.2.线性的最值问题.9.已知点M(x,y)是平面区域内的动点,则的最大值是( )A.10B.C.D.13【答案】D【解析】解:点M(x,y)所在的平面区域如下图中的阴影部分,设点的坐标为由图可知当最大时,点M应在线段上;而的最大值是13.故应选D.【考点】1、二元一次不等式(组)所表示的平面区域;2、两点间的距离公式.10.已知实数、满足不等式组,且恒成立,则的取值范围是()A.B.C.D.【答案】B【解析】如下图所示,作出不等式组所表示的可行域如下图所示,直线交轴于点,交轴于点,作直线,结合图象可知,当直线经过可行域上的点或点时,取最大值,因此有且有,即,即有,,所以,故选B.【考点】线性规划11.设是定义在上的增函数,且对于任意的都有恒成立.如果实数满足不等式,那么的取值范围是【答案】(9,49)【解析】是定义在上的增函数,且对于任意的都有恒成立.所以可得函数为奇函数.由可得,..满足m,n如图所示.令.所以的取值范围表示以原点O为圆心,半径平方的范围,即过点A,B两点分别为最小值,最大值,即9和49.【考点】1.线性规划的问题.2.函数的单调性.3.函数的奇偶性.4.恒成立的问题.12.已知函数(且)的图象恒过定点,则不等式组所表示的平面区域的面积是.【答案】2【解析】令=0,解得=2,代入得,故恒过的定点为(2,-1),∴m=2,n=-1,∴不等式组为,作出不等式组表示的平面区域如右图阴影部分所示,解得C(1,4),易得A(,0),B(0,2),不等式表示的面积为=2.【考点】1.指数函数图像;2.一元二次不等式组表示的平面区域.13.设变量满足约束条件,则目标函数的最大值为 .【答案】10【解析】作出可行域如图,令,则,作出目标直线,经过平移,当经过点时,取得最大值,联立得,代入得,∴【考点】线性规划。

高中数学线性规划练习题及讲解

高中数学线性规划练习题及讲解

高中数学线性规划练习题及讲解线性规划是高中数学中的一个重要概念,它涉及到资源的最优分配问题。

以下是一些线性规划的练习题,以及对这些题目的简要讲解。

### 练习题1:资源分配问题某工厂生产两种产品A和B,每生产一件产品A需要3小时的机器时间和2小时的人工时间,每生产一件产品B需要2小时的机器时间和4小时的人工时间。

工厂每天有机器时间100小时和人工时间80小时。

如果产品A的利润是每件50元,产品B的利润是每件80元,工厂应该如何安排生产以获得最大利润?### 解题思路:1. 首先,确定目标函数,即利润最大化。

设生产产品A的数量为x,产品B的数量为y。

2. 目标函数为:\( P = 50x + 80y \)。

3. 根据资源限制,列出约束条件:- 机器时间:\( 3x + 2y \leq 100 \)- 人工时间:\( 2x + 4y \leq 80 \)- 非负条件:\( x \geq 0, y \geq 0 \)4. 画出可行域,找到可行域的顶点。

5. 计算每个顶点的目标函数值,选择最大的一个。

### 练习题2:成本最小化问题一家公司需要生产两种产品,产品1和产品2。

产品1的原材料成本是每单位10元,产品2的原材料成本是每单位15元。

公司每月有原材料预算3000元。

如果公司希望生产的产品总价值达到最大,应该如何分配生产?### 解题思路:1. 设产品1生产x单位,产品2生产y单位。

2. 目标函数为产品总价值最大化,但题目要求成本最小化,所以实际上是求成本最小化条件下的产品组合。

3. 约束条件为原材料成本:\( 10x + 15y \leq 3000 \)4. 非负条件:\( x \geq 0, y \geq 0 \)5. 画出可行域,找到顶点。

6. 根据实际情况,可能需要考虑产品1和产品2的市场价格,以确定最大价值。

### 练习题3:运输问题一个农场有三种作物A、B和C,需要运输到三个市场X、Y和Z。

(完整)高中数学含参数的线性规划题目及答案.doc

(完整)高中数学含参数的线性规划题目及答案.doc

线性含参经典小题x 1,2x y 的最小值为 1,则 a1.已知 a 0 , x, y 满足约束条件,x y 3, 若 z ()ya x 3 .A.1B.1C.1D.242x 2 y 3 0,2.已知变量 x, y 满足约束条件, x 3y3 0, 若目标函数 z yax 仅在点 3,0 处取得最y 10.大值,则实数 a 的取值范围为( ) A. (3 ,5)B.( 1 ,)C.(-1,2)D.( 1 ,23 1 )x y 1,ax 2 y 仅在点(1,0)处取得最小值,则 a 的取值范围是( )3.若 x, y 满足 x y1, 且 z2xy 2.A. (-1,2)B.(-2,4)C.(-4,0)D.( -4,2)若直线 y 2x 上存在 x, y 满足约束条件 x y 3 0,)x 2 y 3 0, 则实数 m 的最大值为(4.x m.A.-1B.1C.3 D.22x y 05.若不等式组 2x y 2 表示的平面区域是一个三角形,则 a 的取值范围是( )y 0x y a4B. 0 a 14 4 A. aC.1 aD. 0 a 1或 a333x 2 0,2 y 的最大值为 2,则实数 a若实数x, y 满足不等式组,y 1 0, 目标函数 t x 6.x 2y a 0.的值是( ) A.-2B.0C.1D.2y x设 m 1,在约束条件 ymx 下,目标函数 z x my 的最大值小于 2,则 m 的取值 7.x y 1范围为()A. 1,1 2B. 12,C.(1,3)D. 3,8.已知 x, y 满足约束条件x y 1 0,当目标函数 zax by(a 0, b0) 在该约束条件下2x y 3 0,取到最小值 2 5 时, a 2 b 2 的最小值为( )A 、5B 、4C 、 5D 、2x y2 09. x, y 满足约束条件 x 2 y 2 0 ,若 z y ax 取得最大值的最优解不唯一, 则实数 a 的2x y 2 0值为A, 1或 1B. 2或1C.2 或 1D. 2或 122x 2 y 40,10、当实数 x , y 满足 x y 1 0, 时, 1 ax y 4 恒成立,则实数 a 的取值范围是x 1.________.11.已知 a>0,x,y 满足约束条件 错误 !未找到引用源。

高中数学线性规划练习题(含详细解答)

高中数学线性规划练习题(含详细解答)

x0 7.若 x, y 满足约束条件: x 2 y 3 ;则 x y 的取值范围为 _____ . 2 x y 3
8.约束条件
2 x y 4 ,则目标函数 z=3x-y 的取值范围是 4 x y 1 3 ,6] 2
B.[
A. [
第 5 页 共 11 页
X 2Y 12 2 X Y 12 由已知, 得 Z=300X+400Y, 且 , 画可行域如图所示, X 0 Y 0 3 z 目标函数 Z=300X+400Y 可变形为 Y= x 4 400
这是随 Z 变化的一族平行直线,解方程组
2 2
C
6
D
4 4
( )
12.若实数 x、y 满足 A.(0,1)
x y 1 0 y , 则 的取值范围是 x x0
B. 0,1 C.(1,+ )
D. 1,
c ln b ≥ a c ln c ,则 b, c 满足: 5c 3a ≤ b ≤ 4c a , 13. 已知正数 a ,
A.20 B.35 C.45 D.55
x y 1 0 3.若 x, y 满足约束条件 x y 3 0 ,则 z 3x y 的最小值为 x 3y 3 0
4. 设函数 f ( x )

ln x, x 0 , D 是由 x 轴和曲线 y f ( x ) 及该曲线在点 (1, 0) 处的切线所围成的封 2 x 1, x 0
x y 50, 1.2 x 0.9 y 54, 线性约束条件为 x 0, y 0.
x y 50, 4 x 3 y 180, 即 x 0, y 0.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

)3,5(A
)1,1(B )5
22
,
1(C o
x
y
线性规划
一、选择题(本大题共10小题,每小题5分,共50分) 1.不在 3x + 2y < 6 表示的平面区域内的一个点是 ( )
A .(0,0)
B .(1,1)
C .(0,2)
D .(2,0)
2.已知点(3 , 1)和点(-4 , 6)在直线 3x –2y + m = 0 的两侧,则
( )
A .m <-7或m >24
B .-7<m <24
C .m =-7或m =24
D .-7≤m ≤ 24
3.若⎩⎨
⎧≥+≤≤2
,22
y x y x ,则目标函数 z = x + 2 y 的取值范围是
( ) A .[2 ,6]
B . [2,5]
C . [3,6]
D . [3,5] 4.不等式⎩

⎧≤≤≥++-300
))(5(x y x y x 表示的平面区域是一个
( )
A .三角形
B .直角三角形
C .梯形
D .矩形 5.在△ABC 中,三顶点坐标为A (2 ,4),B (-1,2),C (1 ,0 ), 点P (x ,y )在△ABC 内部及边界运动,
则 z= x – y 的最大值和最小值分别是 ( ) A .3,1
B .-1,- 3
C .1,-3
D .3,-1
6.在直角坐标系中,满足不等式 x 2
-y 2≥0 的点(x ,y )的集合(用阴影部分来表示)的是 ( )
A B C D 7.不等式3<+y x 表示的平面区域内的整点个数为
( )
A . 13个
B . 10个
C . 14个
D . 17个
8.不等式3|2|<++
m y x 表示的平面区域包含点)0,0(和点),1,1(-则m 的取值范围是
( )
A .32<<-m
B .60<<m
C .63<<-m
D .30<<m
9.已知平面区域如右图所示,)0(>+=m y mx z 在平面区域内取得最大值的最优解有无数多个,则m 的值为( )
A .20
7 B .207- C .21 D .不存在
10.如图所示,表示阴影部分的二元一次不等式组是
( )
A .23260
0y x y x ≥-⎧
⎪-+>⎨⎪<⎩
B .232600y x y x >-⎧⎪-+≥⎨⎪≤⎩
C .232600y x y x >-⎧⎪-+>⎨⎪≤⎩
D .232600y x y x >-⎧⎪-+<⎨⎪<⎩ 二、填空题(本题共4小题,每小题6分,共24分)
11.已知x ,y 满足约束条件 3
5≤≥+≥+-x y x y x ,则y x z -=4的最小值为______________.
12.某电脑用户计划用不超过500元的资金购买单价分别为60元,70元的单片软件和盒装磁盘,根据需要软件至少买3
件,磁盘至少买2盒,则不同的选购方式共有______________种.
13.已知约束条件2828,x y x y x N y N +++≤⎧⎪+≤⎨⎪∈∈⎩
,目标函数z=3x+y ,某学生求得x =38, y=38时,z max =323, 这显然不合要求,正
确答案应为x = ; y= ; z max = . 14.已知x ,y 满足⎪⎩

⎨⎧≥-+≥≥≤-+0320,10
52y x y x y x ,则x y 的最大值为___________,最小值为____________.
三、解答题(本大题共6题,共76分)
15.由12+≤≤≤x y x y 及围成的几何图形的面积是多少?(12分)
16.已知),2,0(∈a 当a 为何值时,直线422:422:2221+=+-=-a y a x l a y ax l 与及坐标轴围成的平面区域的面积最小?
17.有两种农作物(大米和小麦),可用轮船和飞机两种方式运输,每天每艘轮船和每架飞机运输效果如下:在一天内
如何安排才能合理完成运输2000吨小麦和1500吨大米的任务?(12分)
18.设422+-=x y z ,式中变量y x ,满足条件⎪⎩⎪⎨⎧≥-≤≤≤≤12201
0x y y x ,求z 的最小值和最大值.
(12分)
19.某家俱公司生产甲、乙两种型号的组合柜,每种
柜的制造白坯时间、油漆时间及有关数据如下:
问该公司如何安排甲、乙二种柜的日产量可获最大利润,并且最大利润是多少?(14分)
20.某运输公司接受了向抗洪抢险地区每天至少送180t 支援物资的任务.该公司有8辆载重为6t 的A 型卡车与4辆载
重为10t 的B 型卡车,有10名驾驶员;每辆卡车每天往返的次数为A 型卡车4次,B 型卡车3次;每辆卡车每天往返的成本费A 型车为320元,B 型车为504元.请你们为该公司安排一下应该如何调配车辆,才能使公司所花的成本费最低?若只调配A 型或B 型卡车,所花的成本费分别是多少?(14分)
01=`
参考答案
一.选择题(本大题共10小题,每小题5分,共50分)
二.填空题(本大题共4小题,每小题6分,共24分)
11. 5.12- 12.7 13.3,2,11 14. 2,0 三、解答题(本大题共6题,共76分)
15.(12分)[解析]:如下图由12+≤≤≤x y x y 及围成的几何图形就是其阴影部分,且3122
1
2421=⋅⋅-⋅⋅=S .
16.(),2,2(A )2,0(),0,4
2,a C a
B y x --(轴分别为交 ),2,2()2(22:222A l x a y l 恒过∴--
=-)42,0(),0,2,22
a
C a
D y x ++(轴分别为交, 02,04
220>-<-
∴<<a a
a ,由题意知21l l 与及坐标轴围成的平面区域为ACOD , ,415)21(42)4(21)42)(2(2122222+-=+-=⋅+-++=
-=∴∆∆a a a a a a
a S S S ECA EOD ACOD 4
15
)(21min ==
∴ACOD S a 时,当. 17.(12分)[解析]:设轮船为x 艘、飞机为y 架,则可得⎪⎩

⎨⎧∈≥≥+≥+8,,0,302540
36N y x y x y x y x ,目标函数z=x +y ,作出可行域,利用
图解法可得点A (3
20,0)可使目标函数z=x +y 最小,但它不是整点,调整为B (7,0).
答:在一天内可派轮船7艘,不派飞机能完成运输任务. 18.(12分)
[解析]: 作出满足不等式⎪⎩
⎪⎨
⎧≥-≤≤≤≤12201
0x y y x 作直线,22:1t x y l =-
.840222)2,0(max =+⨯-⨯=z A l 时,经过当 .441212)1,1(min =+⨯-⨯=z B l 时,经过当
19.(14分)
[解析]:设x ,y 分别为甲、乙二种柜的日产量,可将此题归纳为求如下线性目标函数Z=20x +24y 的最大值.其中
线性约束条件为 0
,06448120
126≥≥≤+≤+y x y x y x ,由图及下表
Z max =272 答:该公司安排甲、乙二种柜的日产量分别为4台和8台可获最大利润272元. 20(14分)
司所花的成本为z 元,则
⎪⎪⎪⎩

⎪⎪⎨
⎧∈≥⋅+⋅≤+∈≤≤∈≤≤N y x y x y x N y y N x x ,1803104610,40,80目标函数z=320x +504y , 作出可行域(如上图),作L :320x +504y=0, 可行域内的点E 点(7.5,0)可使Z 最小,但不是整数点,最近的整点是(8,0)即只调配A 型卡车,所花最低成本费z=320×8=2560(元); 若只调配B 型卡车,则y 无允许值,即无法调配车辆.
(x ,y ) Z=20x+24y (0,10) 240 (0,0) 0 (8,0) 160
(4,8) 272
A 型车
B 型车 物资限制 载重(t ) 6 10 共180 车辆数 8 4 出车次数 4 3 每车每天运输成本(元)
320
504
x +y=10
4 3 2
1 4 5 6 7 8
4x +5y=30。

相关文档
最新文档