实验十一:通电螺线管的磁场特点
12.3通电螺线管的磁场

新知学习
二、通电螺线管周围的磁场
学生实验:探究通电螺线管外部磁场的方向
问题与猜想:
通电导线周围的磁场方向与通电电流的方向有关,通电螺线管周围的磁
场方向是否也与通电电流的方向有关?
电流方向
电流方向
新知学习
二、通电螺线管周围的磁场
学生实验:探究通电螺线管外部磁场的方向
设计实验: 1.用铜导线穿过一块硬板绕成螺线管(螺线管内可放入小磁针), 将小磁针放在硬板的不同位置,然后给螺线管通电,分别记录下 小磁针在各个位置静止时N极的指向。
1820年丹麦物理学家奥斯特 终于用实验证实通电导体的 周围存在着磁场,成为揭示 电与磁之间联系的第一人。
新知学习
一、电流的磁效应
实验
如图所示,闭合开关,当电流通过导线(导线需南北方向放置)时, 观察小磁针的偏转情况;断开开关,观察小磁针的偏转情况;将电 源的正、负极对调,闭合开关,当电流通过导线时,观察小磁针的
偏转情况。
新知学习
一、电流的磁效应
当导线通电时,可看到小磁针的指向发生了偏转,这说明导线中 的电流在周围的空间产生了磁场。断开开关后,小磁针回到原位。 改变电流的方向,小磁针的偏转方向也会改变,这说明电流产生 的磁场方向跟电流的方向有关。
通电
断电
改变电流方向
通电导线周围存在磁场,这一现象叫做电流的磁效应。
新知学习向
设计实验: 改变电流的方向,观察小磁针的偏转情况。
N
S
S
N
新知学习
二、通电螺线管周围的磁场
学生实验:探究通电螺线管外部磁场的方向
设计实验: 2.在硬板上均匀地撒上一些铁屑,给螺线管通电后,轻轻敲击硬板, 观察铁屑地排列情况
2018北京课改版物理九年12.2《通电螺管的磁场》ppt课件2

N
S
尝试应用:
1、根据已知条件标出下图中螺线 管N、S极.
NN
S
S
2、标出下图中通电螺线管中的电流方向.
S
N
N
N
S
N
+ 电源 -
N N
3.根据小磁针静止时的指向,在图中标明 螺线管中电流的方向和电源的正负极
ห้องสมุดไป่ตู้
N
S
S
N
+ 电源
-
当堂检测:
1、第一个发现电和磁之间
联系的科学家是(
)
A.奥斯特
B.法拉第
⑴ 伸开右手,
握住螺线管,
N
⑵四指弯曲方向跟螺线管中 I 电流方向一致
S
I
大拇指所指那端为通电螺线管N极.
当电流向下流, 右边是N极
当电流向上流, 左边是N极
N
I
S
I
通电螺线管的四种情况:
N
S
S
N
甲
乙
N
S
S
N
丙
丁
练习:
1.标出螺线管的N、S极. 2.标出螺线管中电流的方向.
S
N
N
S
3.根据图中所给的条件,画出螺线管的绕法.
二、通电螺线管的磁场
在板上均匀撒满铁屑, 通电后观 察铁屑的排列.
特点:
1)通电螺线管外部的磁场与条形磁体的磁场相似
特点:
2)通电螺线管磁场方向与螺线管中电流的方向有关
3)通电螺线管内部磁场:S→N极,外部:N→S极
三、安培定则——右手螺旋定则:
(安培定则)
通电螺线管磁场方向与螺线管 中电流方向关系的判断
C.库仑
关于磁体实验报告总结(3篇)

第1篇一、实验目的本次实验旨在探究磁体的基本性质,包括磁体的磁场分布、磁极的相互作用、磁场的方向以及磁体的磁性变化等。
通过实验,加深对磁学基础知识的理解,培养实验操作技能和科学思维。
二、实验器材1. 螺线管2. 塑料板3. 小磁针4. 铁屑5. 电池6. 开关7. 导线三、实验内容与步骤1. 探究通电螺线管的磁场分布(1)了解螺线管磁场演示仪的构造和线圈位置。
(2)闭合开关,将螺线管通电,用手轻敲击塑料板,观察铁屑的分布。
(3)分析铁屑分布情况,得出通电螺线管周围磁场分布特点。
2. 磁极相互作用实验(1)将两个磁铁的N极和S极分别靠近,观察相互作用现象。
(2)记录磁铁相互作用的结果,分析磁极间的相互作用规律。
3. 磁场方向实验(1)将小磁针放入通电螺线管内部,观察小磁针的指向。
(2)分析小磁针指向,得出通电螺线管内部磁场方向。
4. 磁性变化实验(1)改变电流方向,观察通电螺线管内部磁场方向的变化。
(2)分析电流方向与磁场方向的关系,得出电磁铁的磁极极性与电流方向的关系。
四、实验结果与分析1. 通电螺线管周围磁场分布实验结果显示,通电螺线管周围的铁屑会被磁化,形成一定的磁场分布。
根据铁屑受力转动后的分布情况,可以得出通电螺线管周围的磁场与条形磁体的磁场相似。
2. 磁极相互作用实验结果显示,同名磁极相互排斥,异名磁极相互吸引。
这符合磁极间相互作用的规律。
3. 磁场方向实验结果显示,通电螺线管内部的磁场方向与电流方向有关。
根据安培定则,用右手握住螺线管,弯曲的四指所指的方向是电流的方向,大拇指所指的那端是螺线管的N极。
4. 磁性变化实验结果显示,改变电流方向,通电螺线管内部磁场方向也发生改变。
这表明电磁铁的磁极极性与电流方向有关。
五、实验结论1. 通电螺线管周围的磁场与条形磁体的磁场相似。
2. 磁极间相互作用规律为同名磁极相互排斥,异名磁极相互吸引。
3. 通电螺线管内部的磁场方向与电流方向有关,符合安培定则。
初中物理实验报告范例38——探究通电螺线管的外部磁场

初中物理实验报告范例38
学生实验报告
科目物理实验名称: 探究通电螺线管的外部磁场
年(班)级: 二(1)填报告人: 李晓明实验日期: 2015.02.20同组实验人: 李晓明郝秀丽指导教师: 张老师
目标要求1.探究通电螺线管外部的磁场分布;?
2.探究通电螺线管外部磁场的方向跟哪些因素有关。
实验
原理
根据小磁针的北极指向和细铁屑的排列分布。
器材及药品
通电螺线管磁场演示器、菱形小磁针、细铁屑、干电池(盒)、开关、导线等。
方法步骤
1.断开开关,按图示电路正确连接好实验仪器。
2.在通电螺线管
的附近四周各放一个
菱形小磁针,并在螺
线管的周围均匀撒适
量铁屑。
3.闭合开关,观察
菱形小磁针的指向,
轻敲面板,观察铁屑
的排列情况,断开开
关。
4.交换电源正负极(改变螺线管中的电流方向),闭合开关,观察菱形小磁针的指向,轻敲面板,观察铁屑的排列情况,断开开关。
5.在条形磁体的
两端各放一个菱形小
磁针,观察菱形小磁
针的指向,并在条形
磁体的周围均匀撒铁
屑,轻敲面板后,观察铁屑的排列情况。
结果结论1.通电螺线管的外部磁场分布与条形磁铁相似。
2.通电螺线管外部磁场的方向与螺线管中的电流方向有关。
jiangsushengsiyangxianlikouzhongxueshenzhengzhongsheji。
专题 磁场(解析版)

专题磁场一、安培定则、左手定则、右手定则的应用(左力右电)。
二、几种常见的磁感线分布:直线电流的磁场通电螺线管的磁场环形电流的磁场特点无磁极、非匀强,且距导线越远处磁场越弱与条形磁铁的磁场相似,管内为匀强磁场且磁场最强,管外为非匀强磁场环形电流的两侧是N极和S极,且离圆环中心越远,磁场越弱安培定则立体图横截面图1.特高压直流输电是国家重点工程,部分输电线路简化图如图所示。
高压输电线上使用“abcd正方形间隔棒“支撑导线L1、L2、L3、L4,其目的是固定各导线间距,防止导线互相碰撞,图中导线L1、L2、L3、L4水平且恰好处在正四棱柱的四条棱上,并与“abcd正方形间隔棒”所在平面垂直,abcd的几何中心为O点,O点到四根导线的距离相等并远小于导线的长度,忽略地磁场影响,当四根导线通有等大、同向的电流时,下列说法正确的是()A.O点的磁感应强度沿ac连线方向B.O点的磁感应强度沿bd连线方向C.L1所受安培力沿正方形的对角线ac方向D.L1所受安培力沿正方形的对角线bd方向【解答】解:AB.四条导线的电流相等,且O点到四条导线距离相等,根据右手定则和对称,L1在O点的磁感应强度与L3在O点的磁感应强度等大反向,L2在O点的磁感应强度与L4在O点的磁感应强度等大反向,根据磁感应强度叠加原理,四条导线在O点的磁感应强度等于零,故AB错误;CD.其余三条导线对L1都是吸引力,结合对称性可知,L1所受安培力的方向沿正方形的对角线ac方向,故C正确,D错误。
故选:C。
2.两根通电细长直导线紧靠着同样长的塑料圆柱体,图甲是圆柱体和导线1的截面,导线2固定不动(图中未画出)。
导线1绕圆柱体在平面内第一与第二象限从θ=0缓慢移动到π,测量圆柱体中心O处磁感应强度,获得沿x方向的磁感应强度B x随θ的图像(如图乙)和沿y方向的磁感应强度B y随θ的图像(如图丙)。
下列说法正确的是()A.导线1电流方向垂直纸面向里B.导线2在第三象限角平分线位置C.随着θ的增大,中心O处的磁感应强度先变大后变小D.当θ=0.25π时,中心O处的磁感应强度方向沿第四象限角平分线向外【解答】解:B、当导线1转动0.5π时,根据安培定则(或右手螺旋定则)可知,导线1此时只产生了x轴方向的磁场,又因为此时O点只有沿x轴正方向的磁场,可知导线2在竖直方向上没有分量,所以导线2不可能位于第三象限的角平分线上,只能是在y轴上,故B错误;A、根据丙图可知,导线1在初始状态在O点产生的磁场沿y轴负方向。
通电螺线管的磁场.

通电螺线管的磁场
【目的和要求】
了解通电直导线和通电螺线管的磁场及磁力线的分布,并由此引出安培定则。
【仪器和器材】
螺线管,小磁针(J2406型),单刀开关(J2352型),蓄电池,滑动变阻器(J2354-2型),铁屑(铁粉)适量,粗导线,硬纸板。
【实验方法】
1.按下图所示,将铁屑撒在螺线管穿过的硬纸板上,就可以观察到通电后螺线管周围的磁力线跟条形磁铁的磁力线相似,并且在螺线管内部也有磁力线分布,这些磁力线都是些环状的闭合曲线。
2.按下图那样,把小磁针放在通电螺线管外部和内部各点上,注意观察小磁针北极指向,就可以找出螺线管的北极和南极。
引导学生由螺线管中电流的方向和磁场的方何,找出安培定则如下图。
大学物理实验报告 螺线管磁场的测量

实验报告螺线管磁场的测量霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应。
1879年美国霍普金斯大学研究生霍尔在研究金属导电机理时发现了这种电磁现象,故称霍尔效应。
后来曾有人利用霍尔效应制成测量磁场的磁传感器,但因金属的霍尔效应太弱而未能得到实际应用。
随着半导体材料和制造工艺的发展,人们又利用半导体材料制成霍尔元件,由于它的霍尔效应显著而得到实用和发展,现在广泛用于非电量的测量、电动控制、电磁测量和计算装置方面。
在电流体中的霍尔效应也是目前在研究中的“磁流体发电”的理论基础。
近年来,霍尔效应实验不断有新发现。
1980年原西德物理学家冯·克利青研究二维电子气系统的输运特性,在低温和强磁场下发现了量子霍尔效应,这是凝聚态物理领域最重要的发现之一。
目前对量子霍尔效应正在进行深入研究,并取得了重要应用,例如用于确定电阻的自然基准,可以极为精确地测量光谱精细结构常数等。
在磁场、磁路等磁现象的研究和应用中,霍尔效应及其元件是不可缺少的,利用它观测磁场直观、干扰小、灵敏度高、效果明显。
本实验采取电放大法,应用霍尔效应对螺线管磁场进行测量。
关键词:霍尔效应;霍尔元件;电磁场;磁场一、实验目的1.了解螺线管磁场产生原理。
2.学习霍尔元件用于测量磁场的基本知识。
3.学习用“对称测量法”消除副效应的影响,测量霍尔片的UH -IS(霍尔电压与工作电流关系)曲线和UH -IM,B-IM(螺线管磁场分布)曲线。
二、实验原理霍尔效应从本质上讲,是运动的带电粒子在磁场中受洛伦兹力的作用而引起的偏转。
当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。
如图所示,磁场B位于Z轴的正向,与之垂直的半导体薄片上沿X轴正向通以电流IS(称为工作电流),假设载流子为电子(N型半导体材料),它沿着与电流IS相反的X轴负向运动。
由于洛伦兹力fL作用,电子即向图中虚线箭头所指的位于Y轴负方向的B侧偏转,并使B侧形成电子积累,而相对的A侧形成正电荷积累。
螺线管内的磁场的测量-实验报告

University of Science and Technology of China96 Jinzhai Road, Hefei Anhui 230026,The People ’s Republic of China螺线管内的磁场的测量实验报告李方勇 PB05210284 05010 第29组2号(周五下午)2006.10.26实验题目 螺线管内的磁场的测量实验实验目的1、测量通电螺线管线圈内的磁感应强度,讨论通电螺线管线圈内部I 、L 、x 和B 之间关系;2、计算出真空中的磁导率。
实验仪器① 螺线管线圈;②大电流电源;③磁场强度计;④探针(霍耳元件);⑤导线和有机玻璃支架等。
实验原理按照Biot-Savart 定律可以推出在螺线管内任意一点P 的磁感应强度B 为:⎰--=-+=2/2/2102/32220)cos (cos 2])([2L L nI l x R IndlR B ββμμ 式中 221)2/(2/cos L x R L x +++=β 222)2/(2/cos L x R L x -+-=β螺线管的长为L ,x 为螺线管中点到P 点的距离。
I 为通过螺线管的电流。
n 为螺线管单位长度的匝数。
图3-1通电螺线管磁场分布实验内容1、 按下图装好仪器设备,将螺线管接到电流源上,将霍耳元件(探针)接到磁强计上,并将探针头放在螺线管的中央 a 点处。
选择磁强计的测量范围为20mT ,利用磁强计的”Compensation”钮调零。
图3-2. 实验设备接线图2、 实验测量:(螺线管总圈数N=30 )(1)测量螺线管内电流I 变化时a 点的磁感应强度B 。
将螺线管的b 点放在16cm 处,c 点放在24cm 处,此时线圈长L 为8cm 。
调节电流源从0开始每次增加2A ,记录B ,但要注意每次测量时都要将电流源打到0点,将磁强计重新调零。
(2)以a 点为中点,改变b 、c 点的距离,使线圈长L 分别为8、10、15、20、25、30、35、40cm ,分别纪录B ,注意每次测量时都要将电流源打到0点,将磁强计重新调零。