大学物理15章习题

合集下载

大学物理上册(第五版)重点总结归纳及试题详解第十五章狭义相对论基础

大学物理上册(第五版)重点总结归纳及试题详解第十五章狭义相对论基础

⼤学物理上册(第五版)重点总结归纳及试题详解第⼗五章狭义相对论基础第⼗五章狭义相对论基础⼀、基本要求1. 理解爱因斯坦狭义相对论的两个基本假设。

2. 了解洛仑兹变换及其与伽利略变换的关系;掌握狭义相对论中同时的相对性,以及长度收缩和时间膨胀的概念,并能正确进⾏计算。

3. 了解相对论时空观与绝对时空观的根本区别。

4. 理解狭义相对论中质量和速度的关系,质量和动量、动能和能量的关系,并能分析计算⼀些简单问题。

⼆、基本内容1.⽜顿时空观⽜顿⼒学的时空观认为,物体运动虽然在时间和空间中进⾏,但时间的流逝和空间的性质与物体的运动彼此没有任何联系。

按⽜顿的说法是“绝对空间,就其本性⽽⾔,与外界任何事物⽆关,⽽永远是相同的和不动的。

”,“绝对的,真正的和数学的时间⾃⼰流逝着,并由于它的本性⽽均匀地与任何外界对象⽆关地流逝着。

”以上就构成了⽜顿的绝对时空观,即长度和时间的测量与参照系⽆关。

2.⼒学相对性原理所有惯性系中⼒学规律都相同,这就是⼒学相对性原理(也称伽利略相对性原理)。

⼒学相对性原理也可表述为:在⼀惯性系中不可能通过⼒学实验来确定该惯性系相对于其他惯性系的运动。

3. 狭义相对论的两条基本原理(1)爱因斯坦相对性原理:物理规律对所有惯性系都是⼀样的,不存在任何⼀个特殊的(例如“绝对静⽌”的)惯性系。

爱因斯坦相对论原理是伽利略相对性原理(或⼒学相对性原理)的推⼴,它使相对性原理不仅适⽤于⼒学现象,⽽且适⽤于所有物理现象。

(2)光速不变原理:在任何惯性系中,光在真空中的速度都相等。

光速不变原理是当时的重⼤发现,它直接否定了伽利略变换。

按伽利略变换,光速是与观察者和光源之间的相对运动有关的。

这⼀原理是⾮常重要的。

没有光速不变原理,则爱因斯坦相对性原理也就不成⽴了。

这两条基本原理表⽰了狭义相对论的时空观。

4. 洛仑兹变换()--='='='--='2222211c u xc u t t z z y y c u ut x x (K 系->'K 系)()-'+'='='=-'+'=2222211c u x c u t t z z y y c u t u x x (K 系->'K 系)令u c β=,γ=①当0→β,γ=1得ut x x -=',,',','t t z z y y ===洛仑兹变换就变成伽利略变换。

四川师范大学大学物理波动光学(13、14、15章)题解

四川师范大学大学物理波动光学(13、14、15章)题解

第十三章 光的干涉13–1 在双缝干涉实验中,两缝分别被折射率为n 1和n 2的透明薄膜遮盖,二者的厚度均为e ,波长为λ的平行单色光垂直照射到双缝上,在屏中央处,两束相干光的位相差 。

解:加入透明薄膜后,两束相干光的光程差为n 1e –n 2e ,则位相差为e n n e n e n )(2)(22121-=-=∆λλλλφ13–2 如图13-1所示,波长为λ的平行单色光垂直照射到两个劈尖上,两劈尖角分别为21θθ和,折射率分别为n 1和n 2,若二者分别形成的干涉条纹的明条纹间距相等,则21,θθ,n 1和n 2之间的关系是 。

解:劈尖薄膜干涉明条纹间距为θλθλn n L 2sin 2≈=( 很小) 两劈尖干涉明条纹间距相等221122θλθλn n =,所以 2211θθn n =或1221n n =θθ13–3 用一定波长的单色光进行双缝干涉实验时,欲使屏上的干涉条纹间距变大,可采用的方法是: ; 。

解:因为干涉条纹的间距与两缝间距成反比,与屏与双缝之间的距离成正比。

故填“使两缝间距变小;使屏与双缝之间的距离变大。

”13–4 用波长为λ的单色光垂直照射如图13-2示的劈尖膜(n 1>n 2>n 3),观察反射光干涉,从劈尖顶开始算起,第2条明条纹中心所对应的膜厚度e = 。

解:劈尖干涉(n 1>n 2>n 3)从n 1射向n 2时无半波损失,产生明条纹的条件为2n 2e = k ,k = 0,1,2,3…在e = 0时,两相干光相差为0,形成明纹。

第2条明条纹中心所对应的膜厚度为k = 1,即2n 2e = ,则22n e λ=。

13–5 若在迈克耳孙干涉仪的可动反射镜移动0.620mm 的过程中,观察到干涉条纹移动了2300条,则所用光波的波长为 。

解:设迈克耳孙干涉仪空气膜厚度变化为e ,对应于可动反射镜的移动,干涉条纹每移动一条,厚度变化2λ,现移动2300条,厚度变化mm 620.022300=⨯=λ∆e ,则 = 。

大物习题册答案及详解(山东理工大学大二上学期2020版)

大物习题册答案及详解(山东理工大学大二上学期2020版)
考点:无限大均匀带电平面的电场强度公式:E=σ/ε0,电场强度等于两个带电平行电板所产生的电场强度的矢量 和。(课本120页 例6-7 推导公式)
4.如图所示,一点电荷q位于正立方体的A角上,则通过侧面abcd的电通量Φe=q/24ε0
考点: 高斯定理公式 (课本118页 6-18) 解法:1.建立一正方体高斯面(补7个如图正方体),使A点位于正中心
考点:电势是一个与引进电荷无关,完全由电场自身的性质和相对位置决定的物理量。电场中某点电势的大小与零 电势点的选取有关。
2.在边长为a的正方体中心处放置一电量为Q的点电荷,设无穷远处为电势零点,则在一个侧面的中心处的电势为
(B)
(A)Q/4πε0a
(B)Q/2πε0a
(C)Q/πε0a
(D)Q/2√2πε0a
q/(1/r-1/r0)/4πε0
考点:电势的计算
解法:U=∫
r0 r
E·dr
=∫
r0 qdr r 4πε0r
2
=q/(1/r-1/r0)/4πε0
(课本122页
6-29b)
பைடு நூலகம்
3.一质量为m、电量为q的小球,在电_场__力__作__用下,从电势为U的a点移动到电势为零的b点,若已知小球在b点的 速率为Vb,则小球在a点的速率Va=√Vb2-2qU/m
②均匀带电球面内的电势UP2=Q/4πε0R(课本123页例6-8结论得), ③UP=UP1+UP2.
6.在带电量为-Q的点电荷A的静电场中,将另一带电量为q的点电荷B从a点移到b点,a、b两点距离点电荷A的距 离分别为r1和r2,如图所示,则移动过程中电场力做的功为(C) (A)-Q(1/r1-1/r2)/4πε0 (B)qQ(1/r1-1/r2)/4πε0 (C)-qQ(1/r1-1/r2)/4πε0 (D)-qQ/4πε0(r2-r1) 考点:电场力的功 解法:Aeab=q(UA-UB)=q(-Q/4πε0r1— -Q/4πε0r2)=-qQ(1/r1-1/r2)/4πε0 (课本123页 6-31)

【含答案】大学物理学习指导第15章

【含答案】大学物理学习指导第15章
槡 ":#平均速率-&"7#方均根速率-#&"<#分子的平均动能+!
解!""#由气体状态方程U)<EA 得
<)EUA )"'!!%";++""!''"/#%%++"%''': )#!*:+"'#*>/%
"##氧分子的质量
@)J;>,18)7!''#!'+%"#'#% ):!%#+"'#7GH
由气体状态方程 得 "%#
槡 3 ) #!##<-)"!*"+%!"*+"%!:+"'/"'##+#!7=+"'#:+**;
)7!:*+"'=,/"
"*#
/)3
)7!:***+;"'=
)7!;:+"'/;>
":#
+E)
%#EA)
% #
+"!%;+"'/#%
+#<%):!7:+"'/#"U
第":章!气体动理论
%(%
四习题选解
+E ) "#@O# %
由$%式得到
第":章!气体动理论
( %'! (

大学物理学第15章作业题

大学物理学第15章作业题

15 -8 天狼星的温度大约是11 000 ℃.试由维恩位移定律计算其辐射峰值的波长. 解 由维恩位移定律可得天狼星单色辐出度的峰值所对应的波长nm 1057.27-⨯==Tbλm 该波长属紫外区域,所以天狼星呈紫色.15 -9 太阳可看作是半径为7.0 ×108 m 的球形黑体,试计算太阳的温度.设太阳射到地球表面上的辐射能量为1.4 ×103 W·m -2 ,地球与太阳间的距离为1.5 ×1011m.分析 以太阳为中心,地球与太阳之间的距离d 为半径作一球面,地球处在该球面的某一位置上.太阳在单位时间内对外辐射的总能量将均匀地通过该球面,因而可根据地球表面单位面积在单位时间内接受的太阳辐射能量E ,计算出太阳单位时间单位面积辐射的总能量()T M ,再由公式()4T σT M =,计算太阳温度.解 根据分析有()22π4π4REd T M = (1) ()4T σT M = (2)由式(1)、(2)可得K 58002/122=⎪⎪⎭⎫ ⎝⎛=σR E d T15 -10 钨的逸出功是4.52eV ,钡的逸出功是2.50eV ,分别计算钨和钡的截止频率.哪一种金属可以用作可见光范围内的光电管阴极材料?分析 由光电效应方程W m h +=2v 21v 可知,当入射光频率ν =ν0 (式中ν0=W/h )时,电子刚能逸出金属表面,其初动能02=v 21m .因此ν0 是能产生光电效应的入射光的最低频率(即截止频率),它与材料的种类有关.由于可见光频率处在0.395 ×1015 ~0.75 ×1015Hz 的狭小范围内,因此不是所有的材料都能作为可见光范围内的光电管材料的(指光电管中发射电子用的阴极材料).解 钨的截止频率 Hz 1009.115101⨯==hW v钡的截止频率 Hz 10603.015202⨯==hW v 对照可见光的频率范围可知,钡的截止频率02v 正好处于该范围内,而钨的截止频率01v 大于可见光的最大频率,因而钡可以用于可见光范围内的光电管材料.15 -11 钾的截止频率为4.62 ×1014Hz ,今以波长为435.8nm 的光照射,求钾放出的光电子的初速度.解 根据光电效应的爱因斯坦方程W m h +=2v 21v其中 W =hν0 , ν=c/λ 可得电子的初速度1-52/10s m 74.52⋅⨯=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-=v v λc m h由于逸出金属的电子的速度v <<c ,故式中m 取电子的静止质量.15 -12 在康普顿效应中,入射光子的波长为3.0 ×10-3nm ,反冲电子的速度为光速的60%,求散射光子的波长及散射角.分析 首先由康普顿效应中的能量守恒关系式2200mc λch c m λc h+=+,可求出散射光子的波长λ, 式中m 为反冲电子的运动质量,即m =m 0(1-v 2/c 2 )-1/2 .再根据康普顿散射公式()θλλλλc cos 1Δ0-=-=,求出散射角θ,式中λC 为康普顿波长(λC =2.43 ×10-12 m).解 根据分析有2200mc λch c m λc h+=+ (1) m =m 0(1-v 2/c 2 )-1/2 (2)()θλλλc cos 10-=- (3)由式(1)和式(2)可得散射光子的波长m 1035.4443000-⨯=-=cm λh λh λ将λ值代入式(3),得散射角6363444.0arccos 1arccos 0'==⎪⎪⎭⎫ ⎝⎛--=oc λλλθθ15 -14 波长为0.10 nm 的辐射,照射在碳上,从而产生康普顿效应.从实验中测量到散射辐射的方向与入射辐射的方向相垂直.求:(1) 散射辐射的波长;(2) 反冲电子的动能和运动方向.解 (1) 由散射公式得()nm 1024.0cos 1Δ0=-=-=θλλλλc(2) 反冲电子的动能等于光子失去的能量,因此有J 66.4110017-10v v ⨯=⎪⎪⎭⎫ ⎝⎛-=-=λλhc h h E k 根据动量守恒的矢量关系(如图所示),可确定反冲电子的方向8144arctan /arctan 00'=⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=o λλλh λh15 -16计算氢原子光谱中莱曼系的最短和最长波长,并指出是否为可见光. 分析 氢原子光谱规律为⎥⎥⎦⎤⎢⎢⎣⎡-=22111i f n n R λ 式中n f =1,2,3,…,n i =n f +1,n f +2,….若把氢原子的众多谱线按n f =1,2,3,…归纳为若干谱线系,其中n f =1 为莱曼系,n f =2 就是最早被发现的巴耳末系,所谓莱曼系的最长波长是指n i =2,所对应的光谱线的波长,最短波长是指n i →∞所对应的光谱线的波长,莱曼系的其他谱线均分布在上述波长范围内.式中R 的实验值常取1.097×107m -1 .此外本题也可由频率条件hν =E f -E i 计算. 解 莱曼系的谱线满足⎪⎪⎭⎫ ⎝⎛-=221111i n R λ,n i =2,3,4,… 令n i =2,得该谱系中最长的波长 λmax =121.5nm 令n i →∞,得该谱系中最短的波长 λmin =91.2nm对照可见光波长范围(400 ~760 nm),可知莱曼系中所有的谱线均不是可见光,它们处在紫外线部分.15 -18 如用能量为12.6eV 的电子轰击氢原子,将产生哪些谱线?分析 氢原子可以从对它轰击的高能粒子上吸收能量而使自己从较低能级(一般在不指明情况下均指基态)激发到较高的能级,但吸收的能量并不是任意的,而是必须等于氢原子两个能级间的能量差.据此,可算出被激发氢原子可跃迁到的最高能级为n i =3.但是,激发态都是不稳定的,其后,它又会自发跃迁回基态,如图所示,可以有3→1,3→2和2→1 三种可能的辐射. 解 根据分析有21211Δi ff n E n E E E E -=-= (1) ⎪⎪⎭⎫ ⎝⎛-=22111f i n n R λ (2) 将E 1 =-13.6eV ,n f =1 和ΔE =-12.6eV(这是受激氢原子可以吸收的最多能量)代入式(1),可得n i =3.69,取整n i =3(想一想为什么?),即此时氢原子处于n =3 的状态.由式(2)可得氢原子回到基态过程中的三种可能辐射(见分析)所对应的谱线波长分别为102.6nm 、657.9 nm 和121.6 nm.15 -20 已知α粒子的静质量为6.68×10-27 kg ,求速率为5 000 km·s -1的α粒子的德布罗意波长.分析 在本题及以后几题求解的过程中,如实物粒子运动速率远小于光速(即v <<c )或动能远小于静能(即E k <<E 0 ),均可利用非相对论方法处理,即认为0m m ≈和k E m p 022=.解 由于α粒子运动速率v <<c ,故有0m m = ,则其德布罗意波长为nm 1099.150-⨯===vm h p h λ15 -21 求动能为1.0eV 的电子的德布罗意波的波长.解 由于电子的静能MeV 512.0200==c m E ,而电子动能0E E k <<,故有()2/102k E m p =,则其德布罗意波长为()nm 23.122/10===k E m h p h λ15 -23 若电子和光子的波长均为0.20nm ,则它们的动量和动能各为多少?分析 光子的静止质量m 0 =0,静能E 0 =0,其动能、动量均可由德布罗意关系式E =hν,λhp =求得.而对电子来说,动能pc c m c m c p E E E k <-+=-=20420220.本题中因电子的()()MeV 512.0keV 22.60E pc <<,所以0E E k << ,因而可以不考虑相对论效应,电子的动能可用公式022m p E k =计算.解 由于光子与电子的波长相同,它们的动量均为1-24s m kg 1022.3⋅⋅⨯==-λhp 光子的动能 eV 22.6===pc E E k电子的动能 eV 8.37202==m p E k讨论 用电子束代替可见光做成的显微镜叫电子显微镜.由上述计算可知,对于波长相同的光子与电子来说,电子的动能小于光子的动能.很显然,在分辨率相同的情况下(分辨率∝1/λ),电子束对样品损害较小,这也是电子显微镜优于光学显微镜的一个方面.15 -27 一质量为40 g 的子弹以1.0 ×103 m·s -1 的速率飞行,求:(1)其德布罗意波的波长;(2) 若子弹位置的不确定量为0.10mm ,求其速率的不确定量. 解 (1) 子弹的德布罗意波长为vm h λ==1.66 ×10-35m (2) 由不确定关系式以及x v ΔΔm p x =可得子弹速率的不确定量为xm h m p x ΔΔΔ==v =1.66 ×10-28 m·s -1 讨论 由于h 值极小,其数量级为10-34 ,故不确定关系式只对微观粒子才有实际意义,对于宏观物体,其行为可以精确地预言.15 -30 已知一维运动粒子的波函数为()⎩⎨⎧<≥=-0,00,x x Axe x ψx λ 式中λ>0,试求:(1) 归一化常数A 和归一化波函数;(2) 该粒子位置坐标的概率分布函数(又称概率密度);(3) 在何处找到粒子的概率最大.分析 描述微观粒子运动状态的波函数()x ψ,并不像经典波那样代表什么实在的物理量,而是刻画粒子在空间的概率分布,我们用()2x ψ表示粒子在空间某一点附近单位体积元内出现的概率,又称粒子位置坐标的概率分布函数,由于粒子在空间所有点出现的概率之和恒为1,即()⎰=VV x ψ1d 2(本题为()⎰∞∞-=1d 2x x ψ) ,称为归一化条件.由此可确定波函数中的待定常数A 和被归一化后的波函数,然后针对概率分布函数()2x ψ,采用高等数学中常用的求极值的方法,可求出粒子在空间出现的概率最大或最小的位置. 解 (1) 由归一化条件()⎰∞∞-=1d 2x x ψ,有⎰⎰⎰⎰∞-∞-∞-∞===+03220222022214d d d 0λA x ex A x ex A x xλxλ2/32λA = (注:利用积分公式3022d by e y by =-∞⎰)经归一化后的波函数为()⎩⎨⎧<≥=-0,00,2x x xe λλx ψx λ (2) 粒子的概率分布函数为()⎩⎨⎧<≥=-0,00,2x x xe λλx ψx λ 式中λ>0,试求:(1) 归一化常数A 和归一化波函数;(2) 该粒子位置坐标的概率分布函数(又称概率密度);(3) 在何处找到粒子的概率最大.分析 描述微观粒子运动状态的波函数()x ψ,并不像经典波那样代表什么实在的物理量,而是刻画粒子在空间的概率分布,我们用()2x ψ表示粒子在空间某一点附近单位体积元内出现的概率,又称粒子位置坐标的概率分布函数,由于粒子在空间所有点出现的概率之和恒为1,即()⎰=VV x ψ1d 2(本题为()1d 2=⎰∞∞-x x ψ) ,称为归一化条件.由此可确定波函数中的待定常数A 和被归一化后的波函数,然后针对概率分布函数()2x ψ,采用高等数学中常用的求极值的方法,可求出粒子在空间出现的概率最大或最小的位置. 解 (1) 由归一化条件()1d 2=⎰∞∞-x x ψ,有14d d d 0322202220202===+-∞-∞∞-⎰⎰⎰λA x ex A x ex A x xλxλ2/32λA =(注:利用积分公式322d b y e y by =-∞⎰) 经归一化后的波函数为()⎩⎨⎧<≥=-0,00,2x x xe λλx ψx λ(2) 粒子的概率分布函数为()⎩⎨⎧<≥=-0,00,42232x x e x λx ψx λ(3)令()()0d d 2=xx ψ,有()0224223=---x λx λxe λxe λ,得x =0,λx 1=和x →∞时,函数()2x ψ有极值.由二阶导数()()0d d 12==λx xx ψ可知,在λx 1=处,()2x ψ 有最大值,即粒子在该处出现的概率最大.15 -31 设有一电子在宽为0.20nm 的一维无限深的方势阱中.(1) 计算电子在最低能级的能量;(2) 当电子处于第一激发态(n =2)时,在势阱中何处出现的概率最小,其值为多少?解 (1) 一维无限深势阱中粒子的可能能量mah n E n 822= ,式中a 为势阱宽度,当量子数n =1 时,粒子处于基态,能量最低.因此,电子在最低能级的能量为mah E 821==1.51 ×10-18J =9.43eV(2) 粒子在无限深方势阱中的波函数为()x an a x ψπsin 2=, n =1,2,… 当它处于第一激发态(n =2)时,波函数为()x aa x ψπ2sin 2=, 0≤x ≤a 相应的概率密度函数为()x aa x ψπ2sin 222=, 0≤x ≤a 令()()0d d 2=xx ψ,得0π2cos π2sin π82=ax a x a 在0≤x ≤a 的范围内讨论可得,当a a a x 43,2,4,0=和 a 时,函数()2x ψ取得极值.由()()0d d 2>xx ψ可知,函数在x =0,x =a /2 和x =a (即x =0,0.10 nm ,0.20 nm)处概率最小,其值均为零.15 -33 一电子被限制在宽度为1.0×10-10 m 的一维无限深势阱中运动.(1) 欲使电子从基态跃迁到第一激发态,需给它多少能量? (2) 在基态时,电子处于x 1 =0.090×10-10 m 与x 2 =0.110×10-10 m 之间的概率近似为多少?(3) 在第一激发态时,电子处于x 1′=0 与x 2′=0.25×10-10 m 之间的概率为多少?分析 设一维粒子的波函数为()x ψ,则()2x ψ表示粒子在一维空间内的概率密度,()x x ψd 2则表示粒子在x x x d ~+间隔内出现的概率,而()⎰21d 2x x x x ψ则表示粒子在21~x x 区间内出现的概率.如21~x x 区间的间隔Δx 较小,上述积分可近似用()x x ψΔ2代替,其中()2x ψ取1x 和2x 之间中点位置c 处的概率密度作为上述区间内的平均概率密度.这是一种常用的近似计算的方法.解 (1) 电子从基态(n =1)跃迁到第一激发态(n =2)所需能量为eV 11288Δ2221222212=-=-=ma h n ma h n E E E(2) 当电子处于基态(n =1) 时,电子在势阱中的概率密度为()x aa x ψπsin 22=,所求区间宽度21Δx x x -=,区间的中心位置221x x x c +=,则电子在所求区间的概率近似为 ()()()3122122121108.32πsin 2Δd 21-⨯=-⎥⎦⎤⎢⎣⎡+⋅=≈=⎰x x x x a a x x ψx x ψp x x (3) 同理,电子在第一激发态(n =2)的概率密度为()x aa x ψ2πsin 22=,则电子在所求区间的概率近似为()25.022πsin 2212122='-'⎥⎦⎤⎢⎣⎡'+'⋅=x x x x a a p15 -34 在描述原子内电子状态的量子数n ,l ,m l 中,(1) 当n =5 时,l 的可能值是多少? (2) 当l =5 时,m l 的可能值为多少? (3) 当l =4 时,n 的最小可能值是多少? (4) 当n =3 时,电子可能状态数为多少?分析 微观粒子状态的描述可用能量、角动量、角动量的空间取向、自旋角动量和自旋角动量的空间取向所对应的量子数来表示,即用一组量子数(n ,l ,m l ,s ,ms )表示一种确定状态.由于电子自旋量子数s 恒为1/2,故区别电子状态时只需用4 个量子数即n 、l 、m l 和m s ,其中n 可取大于零的任何整数值,而 l 、m l 和m s 的取值则受到一定的限制,如n 取定后,l 只能为0,l ,…,(n -1),共可取n 个值;l 取定后,m l 只能为0, ±1,…, ±l ,共可取2l +1 个值;而m s 只可取±12 两个值.上述 4 个量子数中只要有一个不同,则表示的状态就不同,因此,对于能量确定(即n 一定)的电子来说,其可能的状态数为2n 2 个. 解 (1) n =5 时,l 的可能值为5 个,它们是l =0,1,2,3,4 (2) l =5时,m l 的可能值为11个,它们是m l =0,±1,±2,±3,±4,±5 (3) l =4 时,因为l 的最大可能值为(n -1),所以n 的最小可能值为5 (4) n =3 时,电子的可能状态数为2n 2 =1815 -35 氢原子中的电子处于n =4、l =3 的状态.问:(1) 该电子角动量L 的值为多少? (2) 这角动量L 在z 轴的分量有哪些可能的值? (3) 角动量L 与z 轴的夹角的可能值为多少?解 (1) n =4、l =3 时,电子角动量()π212π21hh l l L =+= (2) 轨道角动量在z 轴上的分量π2hm L lz =,对于n =4、l =3的电子来说3,2,1,0±±±=l m ,则L z 的可能取值为π23,π22,π2,0hh h ±±±.(3) 角动量L 与z 轴的夹角()1arccos arccos +==l l m L L θθlz ,如图所示,当m l 分别取3,2,1,0,-1,-2,-3 时,相应夹角θ 分别为oooooo150,125,107,73,55,30。

大学物理下 第十五章光的偏振 1

大学物理下  第十五章光的偏振 1

I max I min
1 I 0 + I' =2 = 2 1 I0 2
(1)检验光束的 ) 偏振性 (2)可以改变光 ) 束的偏振化方向
I0 =2 I'
3,布儒斯特定律 , 光反射与折射时的偏振
n1 n2
玻璃
i i
γ
部分偏振光 反射光 部分偏振光 , 垂直于入射面的振动大于平 行于入射面的振动 . 部分偏振光 偏振光, 折射光 部分偏振光, 平行于入射面的振动大于垂 直于入射面的振动 .
对于一般的光学玻璃 , 反射光的强度约占 入射光强度的7.5% , 大部分光将透过玻璃 大部分光将透过玻璃. 入射光强度的
利用玻璃片堆产生线 利用玻璃片堆产生线偏振光 玻璃片堆产生
i0
例3(P269 15-5) 讨论下列光线的反射和折射(起偏角i 讨论下列光线的反射和折射(起偏角 0 )
i0
i0
i0
102 A 102 102
光轴
78
78 78
B 光轴
用惠更斯原理解释光的双折射现象 1)O 光在晶体内任意点所引起的波阵面是球面.即 ) 在晶体内任意点所引起的波阵面是球面. 具有各向同性的传播速率. 具有各向同性的传播速率. 2)e 光在晶体内任意点所引起的波阵面是绕光轴的 ) 旋转椭球面.沿光轴方向与O光具有相同的速率. 旋转椭球面.沿光轴方向与 光具有相同的速率.
方解石晶体
i
n
玻璃
γ
恒量
动光 学 光学 波动
CaCO3
sin i =n= sin γ
寻常光线( 寻常光线(o光)(ordinary rays) 服从折射定律的光线
n1 sin i = n 2 sin γ n 2 ≠ 常量

张三慧《大学物理学:力学、电磁学》(第3版)(B版)(课后习题 电磁感应)【圣才出品】

张三慧《大学物理学:力学、电磁学》(第3版)(B版)(课后习题 电磁感应)【圣才出品】

第15章 电磁感应15.1 在通有电流I =5 A 的长直导线近旁有一导线段ab ,长l =20 Cm ,离长直导线距离d =10 cm (图15-1)。

当它沿平行于长直导线的方向以速度v =10 m /s 平移时,导线段中的感生电动势多大?a,b哪端的电势高?图15-1解:(如图15-1所示)由于所以a 端电势高。

15.2 平均半径为12 cm 的4×103匝线圈,在强度为0.5G 的地磁场中每秒钟旋转30周,线圈中可产生最大感生电动势为多大?如何旋转和转到何时,才有这样大的电动势?解:线圈绕垂直于磁场的直径旋转,当线圈平面法线与磁场垂直时感生电动势出现此最大值。

15.3 如图15-2所示,长直导线中通有电流l=5.0 A,另一矩形线圈共1×103匝,宽a=10 cm,长L=20 cm,以v=2 m/s的速度向右平动,求当d=10 cm时线圈中的感生电动势。

图15-2解:如图15-2所示,线圈向右平移时,上下两边不产生动生电动势。

因此,整个线圈内的感生电动势为15.4 习题15.3中若线圈不动,而长导线中通有交变电流,线圈内的感生电动势将为多大?解:通过线圈的磁链为15.5 在半径为R的圆柱形体积内,充满磁感应强度为B的均匀磁场。

有一长为L的金属棒放在磁场中,如图15-3所示。

设磁场在增强,并且已知,求棒中的感生电动势,并指出哪端电势高。

图15-3解:方法一如图15-3所示,考虑△Oba。

以S表示其面积,则通过S的磁通量。

当磁通变化时,感应电场的电场线为圆心在O的同心圆。

由法拉第电磁感应定律可得由此得由于,所以,因而b端电势高方法二直接对感应电场积分。

在棒上dl处的感应电场的大小为,方向如图15-3所示由于,所以b 端电势高。

15.6 在50周年国庆盛典上我FBC-1“飞豹”新型超音速歼击轰炸机在天安门上空沿水平方向自东向西呼啸而过。

该机翼展12.705m 。

设北京地磁场的竖直分量为0.42×10-4T ,该机又以最大M 数1.70(M 数即“马赫数”,表示飞机航速相当于声速的倍数)飞行,求该机两翼尖间的电势差。

大学物理下毛峰版光的衍射习题及答案

大学物理下毛峰版光的衍射习题及答案

第15章 光的衍射 习题解答1.为什么声波的衍射比光波的衍射更加显着解:因为声波的波长远远大于光的波长,所以声波衍射比光波显着;2.衍射的本质是什么衍射和干涉有什么联系和区别解:波的衍射现象是波在传播过程中经过障碍物边缘或孔隙时所发生的展衍现象.其实质是由被障碍物或孔隙的边缘限制的波阵面上各点发出的无数子波相互叠加而产生.而干涉则是由同频率、同方向及位相差恒定的两列波的叠加形成.3.什么叫半波带单缝衍射中怎样划分半波带对应于单缝衍射第三级明条纹和第四级暗条纹,单缝处波阵面各可分成几个半波带解:半波带由单缝A 、B 首尾两点向ϕ方向发出的衍射线的光程差用2λ来划分.对应于第三级明条纹和第四级暗条纹,单缝处波阵面可分成7个和8个半波带. ∵由272)132(2)12(sin λλλϕ⨯=+⨯=+=k a4.在单缝衍射中,为什么衍射角ϕ愈大级数愈大的那些明条纹的亮度愈小 解:因为衍射角ϕ愈大则ϕsin a 值愈大,分成的半波带数愈多,每个半波带透过的光通量就愈小,而明条纹的亮度是由一个半波带的光能量决定的,所以亮度减小.5.若把单缝衍射实验装置全部浸入水中,衍射图样将发生怎样的变化如果此时用公式),2,1(2)12(sin =+±=k k a λϕ来测定光的波长,问测出的波长是光在空气中的还是在水中的波长解:当全部装置浸入水中时,由于水中波长变短,对应='='λϕk a sin n k λ,而空气中为λϕk a =sin ,∴ϕϕ'=sin sin n ,即ϕϕ'=n ,水中同级衍射角变小,条纹变密.如用)12(sin +±=k a ϕ2λ),2,1(⋅⋅⋅=k 来测光的波长,则应是光在水中的波长.因ϕsin a 只代表光在水中的波程差.6.单缝衍射暗纹条件与双缝干涉明纹的条件在形式上类似,两者是否矛盾怎样说明解:不矛盾.单缝衍射暗纹条件为k k a 2sin ==λϕ2λ,是用半波带法分析子波叠加问题.相邻两半波带上对应点向ϕ方向发出的光波在屏上会聚点一一相消,而半波带为偶数,故形成暗纹;而双缝干涉明纹条件为λθk d =sin ,描述的是两路相干波叠加问题,其波程差为波长的整数倍,相干加强为明纹.7.光栅衍射与单缝衍射有何区别为何光栅衍射的明纹特别明亮而暗区很宽解:光栅衍射是多缝干涉和单缝衍射的总效果.其明条纹主要取决于多缝干涉.光强与缝数2N 成正比,所以明纹很亮;又因为在相邻明纹间有)1(-N 个暗纹,而一般很大,故实际上在两相邻明纹间形成一片黑暗背景.8. 试指出当衍射光栅的光栅常数为下述三种情况时,哪些级次的衍射明纹缺级12a b a +=;23a b a +=;34a b a +=解:由光栅明纹条件和单缝衍射暗纹条件同时满足时,出现缺级.即可知,当k ab a k '+=时明纹缺级. 1a b a 2=+时,⋅⋅⋅=,6,4,2k 偶数级缺级;2a b a 3=+时,⋅⋅⋅=,9,6,3k 级次缺级;3a b a 4=+,⋅⋅⋅=,12,8,4k 级次缺级.9.若以白光垂直入射光栅,不同波长的光将会有不同的衍射角;1零级明纹能否分开不同波长的光2在可见光中哪种颜色的光衍射角最大3不同波长的光分开程度与什么因素有关解:1零级明纹不会分开不同波长的光.因为各种波长的光在零级明纹处均各自相干加强.2可见光中红光的衍射角最大,因为由λϕk b a =+sin )(,对同一k 值,衍射角λϕ∞.3对于同一级明纹,波长相差越大条纹分开程度越大;10.为什么天文望远镜物镜的孔径做得很大射电天文望远镜和光学望远镜,哪种分辨率更高 解:光学仪器的最小分辨角为0 1.22D λθ=,它的倒数为分辨率,当D 越大或者λ越小,分辨率就越大,所以用的天文望远镜物镜的孔径很大,提高了分辨率;由于微波的波长比可见光的波长要小,故射电天文望远镜的分辨率更高;11.单缝宽0.40mm,透镜焦距为1m,用600λ=nm 的单色平行光垂直照射单缝;求:1屏上中央明纹的角宽度和线宽度;2单缝上、下端光线到屏上的相位差恰为4π的P 点距离中央明纹中心的距离;3屏上第一级明纹的线宽度;解:1第1级暗条纹中心对应的衍射角1ϕ为故中央明纹的角宽度为而中央明纹的线宽度为2相位差为4π,则对应的光程差为2λ,即故屏上P 点应形成第二级暗纹,它到中央明纹中心的距离为3屏上第一级明纹的线宽度为中央明纹线宽度的1/2,解之得12.在单缝夫琅禾费衍射实验中,用波长1650nm λ=的单色平行光垂直入射单缝,已知透镜焦距2.00f m =,测得第二级暗纹距中央明纹中心33.2010m -⨯;现用波长为2λ的单色平行光做实验,测得第三级暗纹距中央明纹中心34.5010m -⨯.求缝宽a 和波长2λ; 解:1当用1650nm λ=入射时,第二级暗纹对应的衍射角设为1ϕ由暗纹公式得: 11sin 2a ϕλ=而第二级暗纹距中中央明纹中心距离则 9413122650102.008.13103.210a f m m x λ---⨯⨯==⨯=⨯⨯ 2当用2λ入射时,第三级暗纹对应的衍射角设为2ϕ由暗纹公式得: 22sin 3a ϕλ=而第三级暗纹距中央明纹中心距离则 34722 4.5108.1310 6.091060933 2.00x a m m nm f λ---⨯⨯⨯===⨯=⨯ 13.一单色平行光垂直照射一单缝,若其第三级明纹位置正好与600nm 的单色平行光的第二级明纹位置重合,求此单色光的波长;解:单缝衍射的明纹公式为当600=λnm 时,2=kx λλ=时,3=k重合时ϕ角相同,所以有得 6.42860075=⨯=x λnm 14.用橙黄色的平行光垂直照射一缝宽为0.60mm 的单缝,缝后凸透镜的焦距为40.0cm,观察屏幕上形成的衍射条纹;若屏上离中央明纹中心1.40mm 处的P 点为一明纹;求:1入射光的波长;2P 点处条纹的级数;3从P 点看,对该光波而言,狭缝处的波阵面可分成几个半波带解:1由于P 点是明纹,故有2)12(sin λϕ+=k a ,⋅⋅⋅=3,2,1k由ϕϕsin tan 105.34004.13≈=⨯==-f x 故3105.3126.0212sin 2-⨯⨯+⨯=+=k k a ϕλ 当 3=k ,得600=λnm2 3=k P 点是第3级明纹;3由2)12(sin λϕ+=k a 可知, 当3=k 时,单缝处的波面可分成712=+k 个半波带;15.以白光垂直照射光栅常数d=×10-6m 的透射光栅,在衍射角为30°处会出现什么波长的可见光可见光的波长范围为400~700nm解:由光栅方程:λθk d ±=sin , 3,2,1,0=k讨论:当1=k 时,nm k d 17002==λ 当2=k时,nm k d 8502==λ 当3=k时,nm k d 5672==λ 当4=k时,nm k d 4252==λ 当5=k 时,nm kd 3402==λ 所以,在衍射角为30°处会出现波长为567nm 和425nm 的可见光16.用波长1400nm λ=和2760nm λ=的两种平行光,垂直入射在光栅常数为52.010m -⨯的光栅上,若紧接光栅后用焦距为f =2.0m 的透镜把光会聚在屏幕上;求屏幕上两种平行光第二级主极大之间的距离;解:光栅方程:sin d k ϕλ=±, 3,2,1,0=k屏幕上第k 级主极大的位置为屏幕上两种光第二级主极大之间的距离为17.波长600λ=nm 的单色平行光垂直入射到一光栅上,第二、三级明纹分别出现在20.0sin =ϕ与30.0sin =ϕ处,第四级缺级;求:1光栅常数d ;2光栅上狭缝的最小宽度a ;3在9090ϕ-<<范围内,实际呈现的全部级数;解:1由λϕk b a =+sin )(式对应于20.0sin 1=ϕ与30.0sin 2=ϕ处满足:得 6100.6-⨯=+=b a d m2因第四级缺级,故此须同时满足解得 k k b a a '⨯='+=-6105.14取1='k ,得光栅狭缝的最小宽度为6105.1-⨯m3由λϕk b a =+sin )( 当2πϕ=,对应max k k =∴ 1010600100.696max =⨯⨯=+=--λb a k 因4±,8±缺级,所以在︒︒<<-9090ϕ范围内实际呈现的全部级数为9,7,6,5,3,2,1,0±±±±±±±=k 共15条明纹10±=k 在︒±=90k 处看不到.18.一束平行光含有两种不同波长成份1λ和2λ;此光束垂直照射到一个衍射光栅上,测得波长1λ的第二级主极大与波长2λ的第三级主极大位置相同,它们的衍射角均满足sin 0.3ϕ=;已知nm 6301=λ;1求光栅常数d ;2求波长2λ;3对波长1λ而言,最多能看到第几级明纹解:由光栅方程 λθk d ±=sin , 3,2,1,0=k1光栅常数为m d 61102.4sin 2-⨯==θλ 22132sin λλθ==d 37.6sin 11=≤=λλθd d k最多能看到第6级明纹19.波长范围为400760nm 的白光垂直照射入射某光栅,已知该光栅每厘米刻有5000条透光缝,在位于透镜焦平面的显示屏上,测得光栅衍射第一级光谱的宽度约为56.5mm,求透镜的焦距;解:由题设可知光栅常数为由光栅方程可得波长为400nm 和760nm 的第一级谱线的衍射角分别为第一级光谱的宽度为则有 0.18x f ∆==0.31m 20.在圆孔夫琅禾费衍射中,设圆孔半径为0.10mm,透镜焦距为50cm,所用单色光波长为500nm,求在透镜焦平面处屏幕上呈现的爱里斑半径;解:由爱里斑的半角宽度爱里斑半径53.1105.30500tan 24=⨯⨯=≈=-θθf f d mm 21.已知天空中两颗星相对于一望远镜的角距离为64.8410rad -⨯,它们都发出波长为550nm 的光,试问望远镜的口径至少要多大,才能分辨出这两颗星解:由最小分辨角公式22.已知入射的X 射线束含有从~范围内的各种波长的X 射线,晶体的晶格常数为,当X 射线以45°角入射到晶体时,问晶体对哪些波长的X 射线能产生强反射解:由布喇格公式 λϕk d =sin 2 得kd ϕλsin 2=时满足干涉相长 当1=k 时, nm 389.045sin 75.22=⨯⨯=︒λ2=k 时,nm 194.0245sin 75.22=⨯⨯=︒λ 3=k 时,nm 13.0389.3==λ 4=k 时, nm 097.0489.3==λ 故只有nm 13.03=λ和nm 097.04=λ的X 射线能产生强反射.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[解] 把无限长薄壁半圆筒分割成无数细条,每一细条可看作一无限长直 导线,取一微元dl
则 则在O点所产生的磁场为 又因, 所以, , 半圆筒对O点产生的磁场为:
, 所以只有方向分量,即,沿的负方向。
15-6矩形截面的螺绕环,尺寸如图所示,均匀密绕共N匝,通以电流I, 试证明通过螺绕环截面的磁通量为 [证明] 建立如图所示坐标,在螺绕环横截面上任取一微元 以与螺绕环同心的圆周为环路,其半径为r,,
15章习题答案
15-3求各图中点P处磁感应强度的大小和方向。
[解] (a) 因为长直导线对空间任一点产生的磁感应强度为:
对于导线1:,,因此
对于导线2:,因此
方向垂直纸面向外。
(b) 因为长直导线对空间任一点产生的磁感应强度为:
对于导线1:,,因此,方向垂直纸面向内。
对于导线2:,,因此,方向垂直纸面向内。
圈,通有电流I,方向如图所示。求中心O处的磁感应强度。
[解] 由题意知,均匀密绕平面线圈等效于通以
I
NI圆
盘,设单位长度线圈匝数为n
建立如图坐标,取一半径为x厚度为dx的
圆环,其等效电流为:
方向垂直纸面向外.
15-5电流均匀地流过一无限长薄壁半圆筒,设电流I=5.0A,圆筒半径 R=
如图所示。求轴线上一点的磁感应强度。
由此二式解得 , 在载流平面上沿电流方向取长为h、宽为dl的条形面积,面积 dS=hdl,面积上电流dI=jdl,此电流受到的磁力大小为 载流平面单位面积所受磁力大小为
方向为垂直于平面向左。 15-16电流为的等边三角形载流线圈与无限长直线电流共面,如图所 示。求:
(1)载流线圈所受到的总的磁场力;
所以 15-7长直导线与半径为R的均匀导体圆环相切于点a,另一直导线沿半径 方向与圆环接于点b,如图所示。现有稳恒电流I从端a流入而从端b流 出。
(1)求圆环中心点O的B。
(2)B沿闭合路径L的环流等于什么?
[解] (1) 其中: , 故与大小相等,方向相反,所以 因而,方向垂直纸面向外.
(2)由安培环路定理,有: 15-9磁场中某点处的磁感应强度,一电子以速度通过该点。求作用在该 电子上的磁场力。 [解] 由洛仑兹力公式,有 15-10在一个圆柱磁铁N极正上方,水平放置一半径为R的导线圆环,如 图所示,其中通有顺时针方向(俯视)的电流I。在导线处的磁场B的方向 都与竖直方向成角。求导线环受的磁场力。
[解] 作图示的安培环路有 因为导体电流在横截面上均匀分布,所以 即 所以 15-12一圆线圈的半径为R,载有电流I,置于均匀磁场中,如图所示。 在不考虑载流线圈本身激发的磁场的情况下,求线圈导线上的张力(已 知线圈法线方向与B的方向相同)。
[解] 取半个圆环为研究对象,受力如图所示,由平衡条件,有:,半圆所受到 的磁力F等效于长为2R的载流直导线,在磁场中受力:
半圆形导线在P点产生的磁场方向也是垂直纸面向内,大小为半径相
同、电流相同的圆形导线在圆心处产生的磁感应强度的一半,即
,方向垂直纸面向内。
所以,
(c) P点到三角形生的磁感应强度的方向都是垂直纸面向内,
大小都是
故P点总的磁感应强度大小为
方向垂直纸面向内。
15-4在半径为R和r的两圆周之间,有一总匝数为N的均匀密绕平面线
(2)载流线圈所受到的磁力矩(通过点c并垂直于纸面方向的直线为 轴)。 [解] ab边到长直导线的距离为d,电流在ab边上的磁场为
方向垂直纸面向内。此磁场对ab边的作用力为 方向向左。 在ac边上任取一,设到的距离为,则在处产生的磁场为, 受到的磁 力,又因为 所以, 所以,方向如图所示。 同理,可求得,方向如图所示。
则线圈受到的合力为: ,
方向沿x轴负向。
(2)因为 的方向垂直直面向外 所以 又因为,所以,所以 15-17半径为a、线电荷密度为(常量)的半圆,以角速度绕轴匀速旋转, 如图所示。求: (1)在点O产生的磁感应强度B; (2)旋转的带电半圆的磁矩。 [解] (1)把半圆分成无数个小弧每段带电量 旋转后形成电流元 由圆环得
(3)若a>>b,则有: , 与带电粒子情况相同 与点电荷的磁矩相同 15-20有一个无限长直圆筒形导体,导体和空腔半径分别为和,它们的 轴线相互平行,两轴线间的距离为a(>a+>2),如图所示。电流I沿轴向流 动,在横截面上均匀分布。求两轴线上任一点的磁感应强度。 [解] 根据叠加原理,此系统可看作由半径为,其上电流密度为的实心导 体,与半径为的,电流密度为-j的实心导体所构成的。
[解] r≤R时: 即
r≥R时: 即 当假想平面的内边界离轴x时 令 (舍) 对求二阶导数 <0 因此时,有最大值。
15-15将一均匀分布着面电流的无限大载流平面放入均匀磁场中,已知 平面两侧的磁感应强度分别为和(如图所示)。求载流平面上单位面积所 受磁力的大小和方向。 [解] 由图可知,>,说明载流平面的磁场的方向与所放入的均匀磁场的 方向在平面右侧是一致的,在平面左侧是相反的,进而说明平面上电流 方向是垂直于纸面向内。设面电流密度为j。则
设j沿z轴正方向,根据安培环路定理,半径为电流均匀分布的导 体,在O点产生的磁场为0,而半径为电流均匀分布的导体,在O点产生 的磁场为
由环路定理: 所以,,方向垂直纸面向外
[解] 圆环上每个电流元受力为 将分解为z分量和径向分量:
, 所以 对于圆环 圆环所受合力为 ,方向沿z轴正向。 15-11如图所示,空心圆柱无限长导体内外半径分别为a和 b,导体内通 有电流I,且电流在横截面上均匀分布,介质的影响可以忽略不计。求 证导体内部(a<r<b)各点的磁感应强度由下式给出
方向向上 (2)因为, ,方向向上。 15-18有一均匀带电细直棒AB,长为b,线电荷密度为。此棒绕垂直于纸 面的轴O以匀角速度转动,转动过程中端A与轴 O的距离a保持不变,如 图所示。求: (1)点O的磁感应强度; (2)转动棒的磁矩; (3)若a>>b,再求和。 [解] (1)均匀带电直棒AB绕O轴旋转,其结果等效于载流圆盘。在均匀 直棒上取一微元,等效电流为: 它在O点的磁感应强度 (,方向垂直直面向里) (2)
15-13厚为2d的无限大导体平板,其内有均匀电流平行于表面流动,电 流密度为j,求空间磁感应强度的分布。 [解] 建立如图所示的坐标系,对板内,取安培环路abcd 则 所以
对板外,取安培环路,则有:
即 所以 15-14一根半径为R的长直导体圆柱载有电流I,作一宽为 R长为l的假想 平面S,如图所示。若假想平面S可在导体直径和轴所确定的平面内离开 轴移动至远处,试求当通过面S的磁通量最大时平面S的位置(设直导线 内电流分布是均匀的)。
相关文档
最新文档