鲁教版初四数学上册期末试题

合集下载

【鲁教版】初一数学上期末试题(及答案)(1)

【鲁教版】初一数学上期末试题(及答案)(1)

一、选择题1.如图,点C 是线段AB 的中点,点D 是线段CB 上任意一点,则下列表示线段关系的式子不正确的是( )A .AB=2ACB .AC+CD+DB=ABC .CD=AD-12ABD .AD=12(CD+AB ) 2.如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是A .美B .丽C .云D .南3.如图,把APB ∠放置在量角器上,P 与量角器的中心重合,读得射线PA 、PB 分别经过刻度117和153,把APB ∠绕点P 逆时针方向旋转到A PB ''∠,下列结论: ①APA BPB ''∠=∠;②若射线PA '经过刻度27,则B PA '∠与A PB '∠互补;③若12APB APA ''∠=∠,则射线PA '经过刻度45. 其中正确的是( )A .①②B .①③C .②③D .①②③ 4.如图,C ,D 是线段AB 上的两点,E 是AC 的中点,F 是BD 的中点,若EF m =,CD n =,则AB =( )A .m n -B .m n +C .2m n -D .2m n + 5.某车间有22名工人每人每天可以生产1200个螺钉或2000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套 ,设有x 名工人生产螺钉,其他工人生产螺母,根据题意列出方程( )A .20001200(22)x x =-B .212002000(22)x x ⨯=-C .220001200(22)x x ⨯=-D .12002000(22)x x =-6.若│x -2│+(3y+2)2=0,则x+6y 的值是( )A .-1B .-2C .-3D .32 7.如果x =2是方程12x +a =﹣1的解,那么a 的值是( ) A .0 B .2 C .﹣2 D .﹣68.下列运用等式的性质对等式进行的变形中,错误的是( )A .()()2211a x b x +=+若,则a b =B .若a b =,则ac bc =C .若a b =,则22a b c c= D .若x y =,则33x y -=- 9.下列式子:222,32,,4,,,22ab x yz ab c a b xy y m x π+---,其中是多项式的有( ) A .2个 B .3个 C .4个 D .5个10.如图,阴影部分的面积为( )A .228ab a π-B .222ab a π-C .22ab a π-D .224ab a π- 11.下列说法正确的是( )A .近似数1.50和1.5是相同的B .3520精确到百位等于3600C .6.610精确到千分位D .2.708×104精确到千分位 12.下列各式计算正确的是( )A .826(82)6--⨯=--⨯B .434322()3434÷⨯=÷⨯C .20012002(1)(1)11-+-=-+D .-(-22)=-4二、填空题13.某公司员工分别在A 、B 、C 三个住宅区,A 区有30人,B 区有15人,C ,区有10人,三个区在一直线上,位置如图所示,公司的接送车打算在此间只设一个停靠点,为要使所有员工步行到停靠点的路程总和最少,那么停靠点的位置应在_____区.14.有高度相同的一段方木和一段圆木,体积之比是1:1.在高度不变的情况下,如果将方木加工成尽可能大的圆柱,将圆木加工成尽可能大的长方体,则得到的圆柱和长方体的体积之比为____.15.若关于x 的方程2mx+3m=-1与3x+6x=-3的解相同,则m 的值为_____.16.如图,折线AC -CB 是一条公路的示意图,8km AC =,甲骑摩托车从A 地沿这条公路到B 地,速度为40km/h ,乙骑自行车从C 地沿这条公路到B 地,速度为10km/h ,两人同时出发,结果甲比乙早到6分钟.则这条公路的长为________.17.某数学老师在课外活动中做了一个有趣的游戏:首先发给A 、B 、C 三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤: 第一步,A 同学拿出二张扑克牌给B 同学;第二步,C 同学拿出三张扑克牌给B 同学;第三步,A 同学手中此时有多少张扑克牌,B 同学就拿出多少张扑克牌给A 同学. 请你确定,最终B 同学手中剩余的扑克牌的张数为______.18.仅当b =______,c =______时,325x y 与23b c x y 是同类项。

鲁教版初四数学上学期期末检测题(一)

鲁教版初四数学上学期期末检测题(一)

鲁教版初四数学上学期期末检测题(一)一、选择题(本大题共12个小题,每小题3分,共36分。

)1、图中几何体的主视图是( )2.在Rt △ABC 中,∠C=90°,a =4,b =3,则cosA 的值是( ) A.45B .35C .43D .543、函数xx --=13y 中自变量x 的取值范围是( )A .x ≤3 B.x ≠1 C .x ≤3且x ≠1 D .x<3且x≠14.将如右图所示的R t ABC △绕直角边A C 旋转一周,所得几何体的主视图是( )5.已知:A 点坐标是(-2,2),B 点的坐标为(3,3),⊙A 半径为2,⊙B的半径为3,则⊙A 与⊙B 的位置关系是( )A. 外离B. 外切C. 相交D. 内切6、已知点A( -2 ,y 1 ) , ( -1 ,y 2 ) , ( 3 ,y 3 )都在二次函数y=2(x+1)2-3的图象上,则( )A. y 1<y 2<y 3B. y 3<y 2<y 1C. y 3 <y 1<y 2D. y 2<y 1<y 37.抛物线y=x 2一3x+2与y 轴交点的坐标是( ) A .(0,2) B .(1,O) C .(0,一3) D .(0,O)8.如图,有一圆心角为120 o、半径长为6cm 的扇形,若将OA 、OB 重合后围成一圆锥侧面,那么圆锥的高是( ) A .24cm B .35cm C .62cm D .32cm9.右边是二次函数c bx ax y ++=2的y 与x 的部分对应值:则下列判断中正确的是( )A .抛物线开口向上 B .抛物线与y 轴交于负半轴C .当x =4时,y >0D .方程02=++c bx ax 的正根在3与4之间 10.二次函数y = ax 2+ bx + c 的图象如图所示,那么关于此二次函数的下列四个结论:a <0;②c>0;③b 2-4ac>0;④ba <0中,正确的结论有( ).A .1个 B .2个 C .3个 D .4个11.如图,将一个Rt △ABC 形状的楔子从木桩的底端点P 沿水平方向打入木桩 底下,使木桩向上运动.已知楔子斜面的倾斜角为15°,若楔子沿水平方向前进 6cm (如箭头所示),则木桩上升了( )A .6sin15°cmB .6cos15°cmC .6tan15° cmD .6tan 15cm12、如图,有一圆形展厅,在其圆形边缘上的点A 处安装了一台监视器, 它的监控角度是65.为了监控整个展厅,最少需在圆形边缘上共安装...这样 的监视器( )台.A 、3; B 、4; C 、5; D 、6.正面 A B C D (第8题) BA B(第11题)BCA .B .C .D .(第10题)(第12题)二 、填空题(本大题共5个小题,共20分) 13、102tan 601)--︒++=14. 如图5,△ABC 是等腰直角三角形,∠ACB=90°,AC=2,⊙O 是以AC 为直径的圆,则图中阴影部分的面积是 。

鲁教版初四期末水平检测数学试卷

鲁教版初四期末水平检测数学试卷

鲁教版初四期末水平检测数学试卷一、选择题(本题共12个小题)每小题都给出标号为A 、B 、C 、D 的四个结论,其中有且只有一个是正确的.1.在Rt △ABC 中,∠C=90°,已知a 和A ,则下列关系式中正确的是A .A a c sin ⋅=B .A ac sin =C .B a c cos ⋅=D .Aac cos =2.在△ABC 中,∠C=90°,135sin =A ,则cosB 的值是 A .135B .1312C .125D .5123.使1tan 5-α有意义的锐角α的取值范围是A .α=45°B .α≠45°C .45°<α<90°D .0°<α<45°4.当0,0,0><>c b a 时,下列图象有可能是抛物线c bx ax y ++=2的是ABCD5.下列关于二次函数的说法错误的是A .抛物线1322++-=x x y 的对称轴是直线43=x ; B .函数3422-+=x x y 的图象的最低点在(-1,-5); C .二次函数2)2(2++=x y 的顶点坐标是(-2,2); D .点A (3,0)不在抛物线322--=x x y 上.6.如图,四个二次函数的图象中,分别对应的是①2ax y =;②2bx y =;③2cx y =;④2dx y =;则d c b a ,,,的大小关系为A .d c b a >>>B .c d b a >>>C .d c a b >>>D .c d a b >>>7.已知二次函数)0(2≠++=a c bx ax y 的图象如图所示,则下列结论:①b a 、同号;②当1=x 和3=x 时函数值相等;③函数的最小值是c b a ++24;④当2-=y 时,x 的值只能取0.其中正确的个数是A .1个B .2个C .3个D .4个8.如图中的①、②、③、④是一天中四个不同时刻同一根木杆在地面上的影子,将它们按时间先后顺序正确排列为A .①②③④B .④①③②C .④②③①D .④③①②9.四个直立在地面上的字母广告牌在不同情况下,在地面上的投影(阴影部分)效果如图. 则在字母“L ”、“K ”、“C ”的投影中,与字母“N ”属同一种投影的有A .“L ”、“K ”B .“C ” C .“K ”D .“L ”、“K ”、 “C ”10.如果用表示1个立方体,用表示两个立方体前后叠加,用表示三个立方体前后叠加,那么由7个立方体叠成的几何体(如左图),从正前方观察,可画出的平面图形是ABCD11.如图,在平面直角坐标系中,二次函数m x y +-=2的图象经过边长为2的正方形 ABOC 的三个顶点A 、B 、C ,则m 的值为A .2B .22C .1D .212.如图,直角三角形ABC 纸片的两直角边长分别为6,8,现将△ABC 折叠,使点A 与点B 重合,折痕为DE ,则tan ∠CBE 的值是A .724B .37C .247D .31二、填空题:13.已知二次函数k x y +-=2)1(3是的图象上有A (1,2y ),B (2,2y ),C (3,5y -)三个点,则321y y y 、、的值由小到大排列为__________.14.如图,A 、B 、C 是二次函数)0(2≠++=a c bx ax y 的图象上三点,根据图中给出的三点的位置,可得0___4,0__,0__2ac b c a -.15.用2m 长的木条,做一个有横档的矩形窗子(如图所示),为使透进的光线最多,那么这个窗子的面积应为_______2m .16.将抛物线5822+-=x x y 先向_____平移_____单位,再向_____平移_____个单位,即可得到抛物线1)3(22-+=x y .17.请你写出一个二次函数,要求符合下列条件:(1)函数的图象不经过第三象限;(2)函数的图象经过第一象限;(3)当2<x 时,y 随x 的增大而减小;(4)当2<x 时,0>y .这个二次函数可以是_________________.18.如图,每个小正方形的边长为l ,A 、B 、C 是小正方形的顶点,则sin ∠ABC 的值等于_____.三、解答题(解答题要写出必要的解答过程或推理步骤) 19.3845cos 260sin 3--︒-︒20.如图,某光源下有三根杆子,甲杆GH 的影子GM ,乙杆EF 的影子一部分照在地面上EA ,一部分照在斜坡AB 上AD .(1)请在图中画出形成影子的光线,确定光源所在的位置R ,并画出丙杆PQ 在地面上的影子.(2)在(1)的结论下,若过点F 的光线FD ⊥AB ,斜坡与地面夹角为60°,AD=1米,AE=2米,请求出乙杆EF 的高度.(结果保留根号)21.如图,某校教学楼AB 的后面有一建筑物CD ,当光线与地面的夹角是22º时,教学楼在建筑物的墙上留下高2m 的影子CE ;而当光线与地面的夹角是45º时,教学楼顶A 在地面上的影子F 与墙角C 有13m 的距离(B 、F 、C 在一条直线上). (1)求教学楼AB 的高度;(2)学校要在A 、E 之间挂一些彩旗,请你求出A 、E 之间的距离(结果保留整数).(参考数据:sin22º≈3 8,cos22º≈ 15 16,tan22º≈ 25)22.如图,在航线l 的两侧分别有观测点A 和B ,点A 到航线l 的距离为2海里,点B 位于点A 北偏东60°方向且与A 相距l0海里处.现有一艘轮船从位于点B 南偏西76°方向的C 处,正沿该航线自西向东航行,l0分钟后该轮船行至点A 的正北方向的D 处.(1)求观测点B 到航线l 的距离;(2)求该轮船航行的速度(结果精确到0.1海里/时).(参考数据:3≈1.73,sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)23.已知二次函数c bx ax y ++=2的图象经过(-1,0),(3,0),(1,2)三点,求这个二次函数的解析式和该抛物线上纵坐标为23的点的横坐标. 24.如图,一场足球比赛中,守门员站立在O 点,将对方射来的足球凌空反射回去,球从离地面l 米的A 处飞出,运行轨迹是一条抛物线.运动员甲在距O 点6米的B 处发现球在自己的正上方达到最高点M ,距离地面4米.(1)请你建立适当的直角坐标系,并求出此抛物线的表达式; (2)足球落地点C 距守门员多远?(取3≈1.7)25.在“母亲节”期间,某校部分团员参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利润捐给慈善机构.根据市场调查,这种许愿瓶一段时间内的销售量y (个)于销售单价x (元/个)之间的对应关系如图所示.(1)试判断y 与x 之间的函数关系,并求出函数关系式;(2)若许愿瓶的进价为6元/个,按照上述市场调查销售规律,求利润w (元)与销售单价x (元/个)之间的函数关系式;(3)若许愿瓶的进货成本不超过900元,要想获得最大利润,试求此时这种许愿瓶的销售单价,并求出最大利润.26.已知:抛物线t ax ax y ++=42与x 轴的一个交点为A (-1,0)(1)求抛物线与x 轴的另一个交点B 的坐标;(2)D 是抛物线与y 轴的交点,C 是抛物线上的一点,且以AB 为一底的梯形ABCD 的面积为9,求此抛物线的解析式.27.如图,在△ABC 中,∠C =90º,AC =6cm ,BC =8cm ,D 、E 分别是AC 、AB 的中点,连接DE .点P 从点D 出发,沿DE 方向匀速运动,速度为1cm/s ;同时,点Q 从点B 出发,沿BA 方向匀速运动,速度为2cm/s ,当点P 停止运动时,点Q 也停止运动.连接PQ ,设运动时间为t (0<t <4)s .解答下列问题: (1)当t 为何值时,PQ ⊥AB ?(2)当点Q 在B 、E 之间运动时,设五边形PQBCD 的面积为y cm 2,求y 与t 之间的函数关系式;(3)在(2)的情况下,是否存在某一时刻t ,使得PQ 分四边形BCDE 所成的两部分的面积之比为S △PQE ∶S 五边形PQBCD =1∶29?若存在,求出此时t 的值以及点E 到PQ 的距离h ;若不存在,请说明理由.24.如图, 四边形OABC 为直角梯形,A (4,0),B (3,4),C (0,4). 点M 从O 出发以每秒2个单位长度的速度向A 运动;点N 从B 同时出发,以每秒1个单位长度的速度向C 运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N 作NP 垂直x 轴于点P ,连结AC 交NP 于Q ,连结MQ . (1)点 (填M 或N )能到达终点;(2)求△AQM 的面积S 与运动时间t 的函数关系式,并写出自变量t 的取值范围,当t 为何值时,S 的值最大;(3)是否存在点M ,使得△AQM 为直角三角形?若存在,求出点M 的坐标,若不存在,说明理由.yxP QB C N M O A。

鲁教版初四期末数学试卷

鲁教版初四期末数学试卷

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √9B. √-16C. √25D. √02. 已知实数a、b满足a+b=5,ab=6,则a²+b²的值为()A. 25B. 26C. 27D. 293. 在△ABC中,若∠A=60°,∠B=45°,则△ABC是()A. 等腰三角形B. 直角三角形C. 等边三角形D. 梯形4. 已知函数f(x)=2x-1,则f(-3)的值为()A. -7B. -5C. 1D. 35. 下列命题中,正确的是()A. 若a>b,则a²>b²B. 若a²=b²,则a=bC. 若a²=b²,则a=±bD. 若a²>b²,则a>b6. 下列各式中,分式有()A. 2xB. x+1C. 3x-2D. x/(x+1)7. 已知等差数列{an}的前n项和为Sn,若S5=35,S10=100,则公差d的值为()A. 2B. 3C. 4D. 58. 在直角坐标系中,点P(-2,3)关于原点对称的点的坐标是()A. (2,3)B. (-2,-3)C. (2,-3)D. (-2,3)9. 若|a|=5,|b|=3,则|a+b|的值为()A. 8B. 10C. 2D. 010. 下列各数中,绝对值最大的是()A. -2B. -3C. 2D. 3二、填空题(每题5分,共20分)11. 已知x²-5x+6=0,则x的值为_________。

12. 若等差数列{an}的首项为2,公差为3,则第10项an=_________。

13. 在△ABC中,若∠A=45°,∠B=60°,则∠C的度数为_________。

14. 已知函数f(x)=3x+2,则f(-1)的值为_________。

15. 在直角坐标系中,点P(1,2)到原点O的距离为_________。

鲁教版初中数学九年级上册期中测试题

鲁教版初中数学九年级上册期中测试题

2013——2014学年度第一学期期中考试初四 数学试题(120分钟,150分)一、选择题:本题共12个小题,每个小题均给出A 、B 、C 、D 四个选项,只有一个是正确的,请将正确答案的标号填在选择题的答题表的相应位置.本题共48分). 1. 三角形在正方形网格纸中的位置如图1所示,则sin α的值是( )A.34 B.43 C.35 D.452、如图2,某飞机于空中A 处探测到地平面目标B ,此时从飞机上看目标B 的俯角α=30°,飞行高度AC=1200米,则飞机到目标B 的距离AB 为( )A 、1200mB 、2400mC 、4003mD 、12003m3、在正方形网格中,△ABC 的位置如图3所示,则cos ∠B 的值为( ) A.12B .22C .32D .334、在Rt △ABC 中,∠C=90°,若tanA=43,则sinA=( ) A、34 B 、43C 、35D 、535.若点(2,5),(4,5)是抛物线c bx ax y ++=2上的两个点,那么这条抛物线的对称轴是( )A .直线1=xB .直线2=xC .直线3=xD .直线4=x6.若抛物线c bx ax y ++=2的顶点在第一象限,与x 轴的两个交点分布在原点两侧,则点(a ,ac)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 7.若双曲线)0(≠=k xky 的两个分支在第二、四象限内,则抛物线222k x kx y +-= 的图象大致是图中的( ) α图1α图3 ABC(图2镇(处) 学校 考生姓名 考号 密封线 初四数学 第1页 共6页8.如图4是二次函数c bx ax y ++=2的图象,则一次函数bc ax y +=的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限9.函数y=ax 2+bx+c 的图象如图5所示,那么关于一元二次方程ax 2+bx+c-2=0的根的情况是( )A .有两个正实数根B .有两个异号实数根C .有两个负实数根D .没有实数根 10.给出下列四个函数:y=-2x ,y=2x-1,y=3x(x>0),y=-x 2+3(x>0),其中y 随x•的增大而减小的函数有( )A .3个B .2个C .1个D .0个11. 已知a<-1,点(a -1,y 1),(a ,y 2),(a+1,y 2)都在函数y=x 2的图象上,则( ) A .y 1<y 2<y 3 B .y 1<y 3<y 2 C .y 3<y 2<y 1 D .y 2<y 1<y 3 12.已知二次函数y=ax 2+bx+c (a ≠0)的图象如图6所示,给出以下结论:①a+b+c<0;②a -b+c<0;③b+2a<0;④abc>0,其中所有正确结论的序号是( )A .③④B .②③C .①④D .①②③2010——2011学年度第一学期期中考试初四 数学试题(120分钟,150分)_x_y_ O_x_y_ O _x_y_ O _ O _y _x _ D_ C_ B_ AOyx图4图5 图6图5 座号题 号 一二 三 总等级 1—12 13—1819 20 21 22 23 24 25 26 成 绩 评卷人一、选择题答题表(本题12个小题,每题4分,共48分):. 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案二、填空题,把正确答案填在横线上(本题6个小题,每题4分,共24分):13、正方形ABCD 的边长为1,如果将线段BD 绕着点B 旋转后,点D 落在BC 的延长线的 D ′处,那么tan ∠BAD ′= 。

【鲁教版】初一数学上期末试题(带答案)(1)

【鲁教版】初一数学上期末试题(带答案)(1)

一、选择题1.随机调查某小区10户家庭一周内使用环保方便袋的数量.得到数据如下(单位:只):6,5,7,8,7,9,10,5,6,7,利用所得的数据估计该小区1500户家庭一周内需要环保方便袋约为( ) A .1500B .10500C .14000D .150002.以下问题不适合全面调查方式的是( ) A .调查某班学生课前预习时间 B .调查全国初中生课外阅读情况 C .调查某校篮球队员的身高D .调查某中学教师的身体健康状况3.一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33.设这个数是x ,根据题意列方程是( ) A .21133327x x x x +++= B .21133327x x x ++= C .21133327x x x x ++=+ D .21133327x x x x ++=- 4.按下面的程序计算:若输入100x =,输出结果是501,若输入25x =,输出结果是631,若开始输入的x 值为正整数,最后输出的结果为556,则开始输入的x 值可能有( ) A .1种 B .2种C .3种D .4种5.下列调查:①了解某批种子的发芽率 ②了解某班学生对“社会主义核心价值观”的知晓率 ③了解某地区地下水水质 ④了解七年级(1)班学生参加“开放性科学实践活动”完成次数适合采取全面调查的是( ) A .①③B .②④C .①②D .③④6.下列方程变形正确的是( ) A .由235x +=,得253x =+ B .由2132x x--=,得()2213x x --= C .由48x =-,得2x = D .由23x -=,得32x =+7.已知线段AB =6cm ,在直线AB 上取一点C ,使BC =2cm ,则线段AB 的中点M 与AC的中点N 的距离为( ) A .1cm B .3cmC .2cm 或3cmD .1cm 或3cm8.把一副三角板按如图所示方式拼在一起,并作ABE ∠的平分线BM ,则CBM ∠的度数是( )A .120°B .60°C .30°D .15°9.把根绳子对折成一条线段AB ,在线段AB 取一点P ,使13AP PB =,从P 处把绳子剪断,若剪断后的三段绳子中最长的一段为24cm ,则绳子的原长为( ) A .32cm B .64cm C .32cm 或64cm D .64cm 或128cm 10.列式表示“x 的3倍与y 的平方的和”正确的是( )A .223+x yB .23()x y +C .23x y +D .2(3)x y +11.一个正方体的平面展开图如图所示,将它折成正方体后,“保”字对面的字是( )A .低B .碳C .环D .色12.实际测量一座山的高度时,可在若干个观测点中测量每两个相邻的可视观测点的相对高度,然后用这些相对高度计算出山的高度.下表是某次测量数据的部分记录(用A C -表示观测点A 相对观测点C 的高度),根据这次测量的数据,可得观测点A 相对观测点B 的高度是( )A C -C D -E D -F E -G F -B G -100米80米60-米50米70-米20米A .240-米B .240米C .390米D .210米二、填空题13.种菜能手王大叔种植了一批新品种黄瓜,为了了解这种黄瓜的生长情况,他随机抽查了50株黄瓜藤上长出的黄瓜根数,绘制了如图的统计图,则这组数据中黄瓜根数的中位数是__________.14.为了调查某校中学生对3月12日“植树节”是否了解,从该校全体学生1000名中,随机抽查了40名学生,结果显示有1名学生不了解,由此,估计该校全体学生中对“植树节”不了解的约有________名学生.15.如图,有一根木棒MN 放置在数轴上,它的两端M 、N 分别落在点A 、B 处.将木棒在数轴上水平移动,当MN 的中点移动到点B 时,点N 所对应的数为175.,当MN 的右三等分点移动到点A 时,点M 所对应的数为4.5,则木棒MN 的长度为_______.16.已知360a x -+=是关于x 的一元一次方程,则a =_______.17.如图,已知数轴上点A 表示的数为8,B 是数轴上一点,且14AB =,动点P 从点A 出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t (0)t >秒:(1)写出数轴上点B 表示的数为______,点P 表示的数为______ (用含t 的代数式表示);(2)动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时追上点Q ?(3)若M 为AP 的中点,N 为PB 的中点,点P 在运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN 的长. 18.观察下列等式: 第1个等式:1111(1)1323a ==-⨯;第2个等式:21111()35235a ==-⨯; 第3个等式:31111()57257a ==-⨯;第4个等式:41111()79279a ==-⨯; …… ……用含n 的式子表示第n 个等式:n a =_____. 19.已知()2210a b -++=,则()2003a b +=______.20.如图,有两个相同的长方体纸盒,它们的长、宽、高分别是12cm , 6cm , 2cm ,现要用这两个纸盒搭成一 个大长方体,搭成的大长方体的表面积最小为___________cm 2三、解答题21.为宣传普及新冠肺炎防控知识,引导学生做好防控,某校举行了主题为“防控新冠,从我做起”的线上知识竞赛活动,测试内容为 20道判断题,每道题5分,满分 100分.为了解八、九年级学生此次竞赛成绩的情况,分别随机在八、九年级各抽取了20名参赛学生的成绩,已知抽取得到的八年级的数据如下(单位:分):80,95,75,75,90,75,80,65, 80.85.75,65,70,65,85,70,95,80,75.80.为了便于分析数据,统计员对八年级数据进行了整理,得到表1 表1:等级 分数(单位:分) 学生数 D 60<x≤70 5 C 70<x≤80 a B 80<x≤90 b A 90<x≤1002表2: 年级平均分 中位数 优秀率八年级 78分 c 分m %九年级 76分82.5分 50%22.解方程: (1)348x x -+=-; (2)231128x x --+-+=. 23.如图,已知60cm AB =,点C 为线段AB 的中点,点D 是线段AB 上的点,且AD 与DB 的长度之比2:1. (1)求BD 的长. (2)求CD 的长.24.已知:21A by ay =--,223101B y ay y =+--,且多项式2A B -的值与字母y 的取值无关,求()()2222222132a b aba b ab⎡⎤+--++⎣⎦的值.25.计算:2202013(1)(2)4(1)2-÷-⨯---+-.26.下图是由几个相同的小正方体搭成的几何体, (1)搭成这个几何体需要 个小正方体; (2)画出这个几何体的主视图和左视图;(3)在保持主视图和左视图不变的情况下,最多可以拿掉n 个小正方体,则n= ,请在备用图中画出拿掉n 个小正方体后新的几何体的俯视图.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】先求出10户家庭一周内使用环保方便袋的数量总和,然后求得样本平均数,最后乘以总数1500即可解答.【详解】解:∵某小区10户家庭一周内使用环保方便袋的数量,数据如下(单位:只):6,5,7,8,7,9,10,5,6,7,∴平均每户使用方便袋的数量为:1(6+5+7+8+7+9+10+5+6+7)=7(只),10∴该小区1500户家庭一周内共需要环保方便袋约:7×1500=10500(只).故选:B.【点睛】本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.2.B解析:B【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A.调查某班学生每周课前预习的时间适合全面调查;B. 调查全国初中生课外阅读情况适合抽样调查,不适合全面调查;C.调查某校篮球队员的身高适合全面调查;D. 调查某中学教师的身体健康状况适合全面调查;故选:B.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.A解析:A 【分析】可设这个数是x ,根据等量关系:这个数的三分之二+这个数的一半+这个数的七分之一+这个数=33,依此列出方程求解即可. 【详解】解:设这个数是x ,依题意有21133327x x x x +++=, 故选:A 【点睛】此题主要考查了由实际问题抽象出一元一次方程,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.4.B解析:B 【分析】分三种情况讨论,当输入x 经过一次运算即可得到输出的结果为556,当输入x 经过两次运算即可得到输出的结果为556, 当输入x 经过三次运算即可得到输出的结果为556, 再列方程,解方程即可得到答案. 【详解】解:当输入x 经过一次运算即可得到输出的结果为556,51556x ∴+=5555,x ∴=111.x ∴=当输入x 经过两次运算即可得到输出的结果为556,()5511556,x ∴++= 51111,x ∴+=22.x ∴=当输入x 经过三次运算即可得到输出的结果为556,()555111556,x ∴+++=⎡⎤⎣⎦()5511111,x ∴++= 5122,x ∴+=215x ∴=(不合题意,舍去) 综上:开始输入的x 值可能是22或111. 故选:.B【点睛】本题考查的是程序框图的含义,一元一次方程的解法,分类思想的应用,掌握以上知识是解题的关键.5.B解析:B 【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断. 【详解】①了解某批种子的发芽率适合采取抽样 调查;②了解某班学生对“社会主义核心价值观”的知晓率适合采取全面调查; ③了解某地区地下水水质适合采取抽样调查;④了解七年级(1)班学生参加“开放性科学实践活动”完成次数适合采取全面调查; 故选:B . 【点睛】本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.D解析:D 【分析】根据解一元一次方程的每一步的注意事项对各选项分析判断后利用排除法. 【详解】解:A 、从235x +=可得到2x =5﹣3,故本选项错误; B 、去分母时﹣1没有乘以分母的最小公倍数,故本选项错误; C 、从48x =-得2x =-,故本选项错误; D 、从23x -=得32x =+,正确. 故选:D . 【点睛】本题主要考查了解一元一次方程,需要注意,移项要变号,去分母时,没有分母的项也要乘以分母的最小公倍数,去括号时,括号外面的数与括号里面的每一项都要相乘.7.A解析:A 【分析】分情况讨论,点C 在线段AB 上,或点C 在直线AB 上,根据线段中点的性质求出线段长. 【详解】解:①如图,点C 在线段AB 上,∵6AB cm =,2BC cm =, ∴624AC AB BC cm =-=-=, ∵M 是AB 的中点, ∴132AM AB cm ==, ∵N 是AC 的中点, ∴122AN AC cm ==, ∴321MN AM AN cm =-=-=; ②如图,点C 在直线AB 上,∵6AB cm =,2BC cm =, ∴628AC AB BC cm =+=+=, ∵M 是AB 的中点, ∴132AM AB cm ==, ∵N 是AC 的中点, ∴142AN AC cm ==, ∴431MN AN AM cm =-=-=. 故选:A . 【点睛】本题考查与线段中点有关的计算,解题的关键是掌握线段中点的性质.8.C解析:C 【分析】根据角平分线的定义和角的和差计算即可. 【详解】解:∵一副三角板所对应的角度是60°,45°,30°,90°, ∴∠ABE =∠ABC +∠CBE =30°+90°=120°, ∵BM 平分∠ABE , ∴∠ABM =12∠ABE =12×120°=60°, ∴∠CBM =∠ABM−∠ABC =60°−30°=30°, 故答案为:30°. 【点睛】本题考查了角平分线的定义和角的计算.解题的关键是掌握角平分线的定义,明确一副三角板所对应的角度是60°,45°,30°,90°.9.C解析:C 【分析】由于题目中的对折没有明确对折点,所以要分A 为对折点与B 为对折点两种情况讨论,讨论中抓住最长线段即可解决问题. 【详解】 解:如图∵13AP PB =, ∴2AP=23PB <PB ①若绳子是关于A 点对折, ∵2AP <PB∴剪断后的三段绳子中最长的一段为PB=30cm , ∴绳子全长=2PB+2AP=24×2+23×24=64cm ; ②若绳子是关于B 点对折, ∵AP <2PB∴剪断后的三段绳子中最长的一段为2PB=24cm ∴PB=12 cm ∴AP=12×143=cm ∴绳子全长=2PB+2AP=12×2+4×2=32 cm ; 故选:C . 【点睛】本题考查的是线段的对折与长度比较,解题中渗透了分类讨论的思想,体现思维的严密性,在今后解决类似的问题时,要防止漏解.10.C解析:C 【分析】认真阅读,列式分三步:第一步计算x 的3倍,第二步计算y 的平方,第三步计算前两步的和即可. 【详解】∵x 的3倍为3x ,y 的平方为2y , ∴x 的3倍与y 的平方的和为:23x y +,故选C . 【点睛】本题考查了代数式的布列,准确理解题意,找准分布计算与整体计算是解题的关键.11.B解析:B 【分析】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答. 【详解】解:∵正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形, ∴在此正方体上与“保”字相对的面上的汉字是“碳”. 故选:B . 【点睛】本题考查了正方体的展开图形,熟练掌握是解题的关键.12.B解析:B 【分析】根据表格信息,利用有理数的加法运算法则进行计算. 【详解】解:由表可知:100A C -=(米),80C D (米),60D E(米),50E F(米),70F G(米),20G B -=-(米),∴()()()()()()()()1008060507020240A C C D D E E F F G GB A B -+-+-+-+-+-=-=+++-++-=(米). 故选:B . 【点睛】本题考查有理数加法的应用,解题的关键是掌握有理数的加法运算法则.二、填空题13.【分析】根据直方图和中位数的定义即可得到答案【详解】解:∵他随机抽查了50株黄瓜藤上长出的黄瓜根数∴中位数落在第25株和第26株上分别为10根10根;∴中位数为10;故答案为:10【点睛】本题考查了 解析:10【分析】根据直方图和中位数的定义,即可得到答案. 【详解】解:∵他随机抽查了50株黄瓜藤上长出的黄瓜根数, ∴中位数落在第25株和第26株上,分别为10根、10根; ∴中位数为10; 故答案为:10. 【点睛】本题考查了中位数及条形统计图的知识,解答本题的关键是理解中位数的定义,能看懂统计图.14.【分析】先通过样本计算对植树节不了解的所占比例然后估计整体中对植树节不了解的人数【详解】解:随机抽查了40名学生中不了解人数占的百分比为×100=25则估计该校全体学生中对植树节不了解的学生人数为1解析:25【分析】先通过样本计算对“植树节”不了解的所占比例,然后估计整体中对“植树节”不了解的人数.【详解】解:随机抽查了40名学生中“不了解”人数占的百分比为140×100%=2.5%,则估计该校全体学生中对“植树节”不了解的学生人数为1000×2.5%=25人.故答案是:25.【点睛】 本题考查了用样本的数据特征来估计总体的数据特征,利用样本中的数据对整体进行估算是统计学中最常用的估算方法.15.【分析】如图为的中点为的三等分点设再利用线段的和差关系表示结合题意可得对应的数为对应的数为再求解从而可列方程求解于是可得的长【详解】解:如图为的中点为的三等分点设由题意得:对应的数为对应的数为故答案 解析:6.【分析】如图,G 为AB 的中点,,F P 为AB 的三等分点,设3,MN AB x == 再利用线段的和差关系表示11AM BN ,,结合题意可得1M 对应的数为4.5,1N 对应的数为17.5, 再求解11M N , 从而可列方程求解x ,于是可得MN 的长.【详解】解:如图,G 为AB 的中点,,F P 为AB 的三等分点,设3,MN AB x ==由题意得:1 1.5,AG BG BN x === ,AF FP PB x === 12,AM x =1123 1.5 6.5,M N x x x x ∴=++=1M 对应的数为4.5,1N 对应的数为17.5,1117.5 4.513M N ∴=-=,6.513,x ∴=2,x ∴=3 6.MN x ∴==故答案为:6.【点睛】本题考查的是线段的中点,线段的三等分点的含义,数轴上两点之间的距离,数轴上动点问题,一元一次方程的应用,掌握以上知识是解题的关键.16.4【分析】含有一个未知数并且未知数的次数是1的方程是一元一次方程根据定义列得a-3=1计算即可【详解】由题意得a-3=1解得a=4故答案为:4【点睛】此题考查一元一次方程的定义熟记定义是解题的关键解析:4【分析】含有一个未知数,并且未知数的次数是1的方程是一元一次方程,根据定义列得a-3=1,计算即可.【详解】由题意得a-3=1,解得a=4,故答案为:4.【点睛】此题考查一元一次方程的定义,熟记定义是解题的关键.17.(1)-6;(2)点运动7秒时追上点;(3)线段的长度不发生变化其值为7【分析】(1)根据点表示的数和AB 的长度即可求解;(2)根据题意列出方程求解即可;(3)分类讨论即可:①当点在点两点之间运动时解析:(1)-6,84t -;(2)点P 运动7秒时追上点Q ;(3)线段MN 的长度不发生变化,其值为7【分析】(1)根据点A 表示的数和AB 的长度即可求解;(2)根据题意列出方程4214t t =+,求解即可;(3)分类讨论即可:①当点P 在点A 、B 两点之间运动时,②当点P 运动到点B 的左侧时,根据中点的定义即可求解.【详解】(1)解:∵数轴上点A 表示的数为8,且14AB =,∴点B 表示的数为6-,点P 表示的数为84t -,故答案为:-6,84t -;(2)设点P 、Q 同时出发,点P 运动时间t 秒追上Q ,依题意得,4214t t =+,解得7t =,∴点P 运动7秒时追上点Q ;(3)线段MN 的长度没有发生变化都等于7;理由如下:①当点P 在点A 、B 两点之间运动时:MN MP NP =+1122AP BP =+1()2AP BP =+12AB =1142=⨯7=, ②当点P 运动到点B 的左侧时:MN MP NP =-1122AP BP =-1()2AP BP =-12AB =7=, ∴线段MN 的长度不发生变化,其值为7.【点睛】本题考查数轴上的动点问题,掌握中点的定义、一元一次方程的应用是解题的关键. 18.【分析】观察可知找第一个等号后面的式子规律是关键:分子不变1;分母是两个连续奇数的乘积它们与式子序号之间的关系为序号的2倍减1和序号的2倍加1的关系即可求解【详解】第n 个式子为:故答案为:【点睛】此解析:111()22121n n --+ 【分析】观察可知,找第一个等号后面的式子规律是关键:分子不变1;分母是两个连续奇数的乘积,它们与式子序号之间的关系为序号的2倍减1和序号的2倍加1的关系即可求解【详解】第n 个式子为:()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭, 故答案为:11122121n n ⎛⎫- ⎪-+⎝⎭. 【点睛】此题考查寻找数字的规律及运用规律计算,寻找规律大致可分为2个步骤:不变的和变化的;变化的部分与序号的关系; 19.1【分析】首先利用非负数的性质得出a =2b =﹣1进一步代入按照混合运算的运算顺序计算得出答案即可【详解】解:∵|a ﹣2|+(b+1)2=0∴a ﹣2=0b+1=0解得a =2b =﹣1∴(a+b )2003解析:1【分析】首先利用非负数的性质得出a =2,b =﹣1,进一步代入按照混合运算的运算顺序计算得出答案即可.【详解】解:∵|a ﹣2|+(b +1)2=0,∴a ﹣2=0,b +1=0,解得a =2,b =﹣1,∴(a +b )2003=12003=1故答案:1【点睛】此题考查代数式求值,非负数的性质,有理数的乘方,根据非负数的性质求得字母的数值是解决问题的前提.20.288三、解答题21.无22.(1)3x =;(2)177x =【分析】(1)先移项,再合并同类项,然后化系数为1解方程即可;(2)先方程两边同乘以8去分母,再去括号,然后根据(1)中方法解方程即可.【详解】解:(1)移项,得384x x --=--合并同类项,得412x -=-系数化为1,将3x =所以,原方程的解为x=3;(2)去分母,得()84231x x -+-=-+去括号,得84831x x -+-=-+移项,得43188x x +=++合并同类项,得717x =系数化为1,得177x = 所以,原方程的解为177x =. 【点睛】本题考查解一元一次方程,熟练掌握一元一次方程的解法步骤是解答的关键,注意不要漏乘.23.(1)20cm ;(2)10cm【分析】(1)根据AD 与DB 的长度之比2:1列式求解即可;(2)根据中点的定义求出BC ,再由CD=BC-BD ,可得出答案.【详解】解:(1)∵60cm AB =,AD 与DB 的长度之比2:1, ∴16020cm 3BD =⨯= (2)∵60cm AB =,点C 为线段AB 的中点, ∴130cm 2BC AB ==, ∴CD BC BD =- 3020=-10cm =【点睛】本题考查了两点间的距离,解答本题的关键是掌握线段中点的定义,注意数形结合思想的运用.24.-2【分析】先表示出2A B -,根据已知条件得到a ,b 的值,在进行化简求值即可;【详解】解:()()2222123101A B by ay y ay y -=---+-- 2222223101by ay y ay y ----++=()()2221051b y a y =-+--因为多项式2A B -的值与字母y 无关,所以220b -=,1050a -=,解得1,2b a ==,()()2222222132a ab a b ab ⎡⎤+--++⎣⎦2222222232a b ab a b ab =+-+--2ab =-221=-⨯2=-;【点睛】本题主要考查了整式化简求值,准确计算是解题的关键.25.33【分析】有理数的混合运算,注意先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】解:2202013(1)(2)4(1)2-÷-⨯---+- =1(2)4192-÷⨯--+ =192(2)4-⨯⨯--+=3641-+=33.【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.26.(1)10;(2)见解析;(3)1【解析】试题分析:(1)观察可知共有三层,最下面一层有6个,中间一层有3个,最上一层有1个,加起来即可得总个数;(2)观察即可得,主视图可得到从左往右3列的正方形的个数依次为3,1,2;左视图得到从左往右3列的正方形的个数依次为3,2,1,据此可画出图形;(3)如图,要想保证主视图和左视图不变的情况下,只能拿掉图中标涂红色的两个小正方体中的一个.试题(1)观察可知共有三层,最下面一层有6个,中间一层有3个,最上一层有1个, 6+3+1=10,故答案为:10;(2)如图所示;(3)如图,要想保持主视图和左视图不变,只能拿掉图中涂红色的两块中的一块,故n=1,新几何体的俯视图如下.。

【鲁教版】高中数学必修一期末试题附答案(1)

【鲁教版】高中数学必修一期末试题附答案(1)

一、选择题1.已知汽车从踩刹车到停车所滑行的距离()m s 与速度()km/h v 之间有如下关系式:2s k M v =⋅⋅,其中k 是比例系数,且0,k M >是汽车及其载重质量之和.若某辆卡车不装货物(司机体重忽略不计)以36km/h 的速度行驶时,从刹车到停车需要走20m .当这辆卡车装载等于车重的货物行驶时,为保证安全,要在发现前面20m 处有障碍物时能在离障碍物5m 及以外处停车,则最高速度是(设司机发现障碍物到踩刹车经过1s )( ) A .36km/hB .30km/hC .24km/hD .18km/h2.已知函数()21,04,0x x f x x x ⎧+≤=⎨>⎩,若函数()y f x a =-有3个不同的零点1x ,2x ,3x (123x x x <<),则123ax x x ++的取值范围是( ) A .()2,0-B .[]2,0-C .[]2,0-D .(]2,0-3.已知定义在R .上的偶函数f (x ), 对任意x ∈R ,都有f (2-x ) =f (x +2),且当[2,0]x ∈-时()21x f x -=-.若在a > 1时,关于x 的方程()()log 20a f x x -+=恰有三个不同的实数根,则实数a 的取值范围是( ) A .(1,2)B .(232,2)C .23(,2)-∞(2, +∞) D .(2,+∞)4.定义:若函数()y f x =的图像上有不同的两点,A B ,且,A B 两点关于原点对称,则称点对(),A B 是函数()y f x =的一对“镜像”,点对(),A B 与(),B A 看作同一对“镜像点对”,已知函数()23,02,0x x f x x x x ⎧-<⎪=⎨-≥⎪⎩,则该函数的“镜像点对”有( )对.A .1B .2C .3D .45.函数y =)A .(41)--,B .(41)-,C .(11)-,D .(11]-, 6.已知()lg(10)lg(10)f x x x =++-,则()f x 是( ) A .偶函数,且在(0,10)是增函数 B .奇函数,且在(0,10)是增函数 C .偶函数,且在(0,10)是减函数 D .奇函数,且在(0,10)是减函数7.函数sin y x x =的图象可能是( )A .B .C .D .8.若函数()28,12,1ax x x f x a x x⎧-+≤⎪⎪=⎨⎪>⎪⎩为R 上的减函数,则实数a 的取值范围是( )A .()4,+∞B .[)4,+∞C .[]4,6D .()0,∞+9.设函数()y f x =在(),-∞+∞上有定义,对于给定的正数K ,定义函数(),()()()k f x f x K f x K f x K≤⎧=⎨>⎩,, 取函数()||()1x f x a a -=>,当1K a =时,函数()k f x 在下列区间上单调递减的是( )A .(),0-∞B .(),a -+∞C .(),1-∞-D .()1,+∞10.设集合{}20,201x M x N x x x x ⎧⎫=≤=-<⎨⎬-⎩⎭,则M N ⋂为( )A .{}01x x ≤< B .{}01x x <<C .{}02x x ≤<D .{}02x x <<11.已知函数2()1f x x=-M ,()ln(1)g x x =+的定义域为N ,则()R MC N =( )A .{|1}<x xB .{|1}x x ≥C .φD .{|11}x x -≤<12.集合{}{}A x||x-a|<1,x R ,|15,.A B B x x x R =∈=<<∈⋂=∅若,则实数a 的取值 范围是( ) A .{}a |0a 6≤≤ B .{}|24a a a ≤≥或C .{}|06a a a ≤≥或D .{}|24a a ≤≤二、填空题13.已知函数()333xxf x -=+-,若函数()()()log 2a g x f x x =-+ (0a >且1a ≠)在区间[]1,1-上有4个不同的零点,则实数a 的取值范围是__________.14.已知()f x 是以2e 为周期的R 上的奇函数,当()0,x e ∈,()ln f x x =,若在区间[],2e e -,关于x 的方程()1f x kx =+恰好有4个不同的解,则k 的取值集合是__________.15.已知函数2()log x f x =,实数,a b 满足0a b <<,且()()f a f b =,若()f x 在2,a b ⎡⎤⎣⎦上的最大值为2,则1b a+=________. 16.设函数()f x 满足()22221xf xax a =-+-,且()f x 在21222,2a aa --+⎡⎤⎣⎦上的值域为[]1,0-,则实数a 的取值范围为______.17.已知函数()31f x ax bx =-+,若()25f =,则()2f -=______. 18.设()f x 是定义在R 上的偶函数,且()f x 在[)0,+∞上是减函数,若()()21f m f m ->,则实数m 的取值范围是__________19.已知集合{}1,2,5,7,13,15,16,19A =,设,i j x x A ∈,若方程(0)i j x x k k -=>至少有三组不同的解,则实数k 的所有可能取值是________20.已知集合M ={x ∈N |1≤x ≤15},集合A 1,A 2,A 3满足①每个集合都恰有5个元素; ②A 1∪A 2∪A 3=M .集合A i 中元素的最大值与最小值之和称为集合A i 的特征数,记为X i (i =1,2,3),则X 1+X 2+X 3的最大值与最小值的和为_____.三、解答题21.已知函数()()22()1,20f x ax x g x x bx x =-+=+->,()()()5101x h x f x x x -=-<-. (1)()()1,3,0x f x ∀∈>恒成立,求实数a 的取值范围;(2)当1a =时,若函数()g x 的图象上存在,A B 两个不同的点与()h x 图象上的'',A B 两点关于y 轴对称,求实数b 的取值范围.22.已知函数4()log (41)x f x kx =++与44()log (2)3x g x a a =⋅-,其中()f x 是偶函数. (Ⅰ)求实数k 的值; (Ⅱ)求函数()g x 的定义域;(Ⅲ)若函数()()()F x f x g x =-只有一个零点,求实数a 的取值范围. 23.计算下列各式的值: (1)3224031168()281π-⎛⎫⎛⎫-+- ⎪⎪⎝⎭⎝⎭;(2)()2log 1483log 3log 3log 22+⨯+.24.求函数()log 23=-2-3y x x 的定义域、值域和单调区间. 25.已知函数()()(),f x x x a a R g x x =-∈= (1)若0a =,试写出函数()f x 的单调区间;(2)记()()()F x g x f x =⋅,若()F x 为偶函数,求实数a 的值;(3)当1a >时,记()()()Gx f x g x =+,试求函数()G x 在区间[]1,2上的最大值.26.设集合{}{}2|223|650A x a x a x R B x x x =-+∈=-+≤≤,,≤. (1)若A B B =,求实数a 的取值范围;(2)若UAB =∅,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据v =36km/h 时,20m s =,求出5324k M ⋅=,求出司机发现障碍物到踩刹车经过1s ,汽车行驶的距离,再由不等式25202518vk Mv --⋅可解得结果. 【详解】因为2s k M v =⋅⋅,且当v =36km/h 时,20m s =, 所以22036k M =⋅⋅,∴5324k M ⋅=, 司机发现障碍物到踩刹车经过1s ,汽车行驶的距离为10005(m)360018vv ⋅=, 由25202518v k Mv --⋅,得25520518162v v --, 即294860v v +-≤,解得2718v -≤≤. ∴则最高速度是18km/h . 故选:D. 【点睛】关键点点睛:理解题意,找出题目中的不等关系是解题关键.2.D解析:D 【分析】作出函数()f x 的图象,由函数()f x 的图象与直线y a =的交点得123,,x x x 的范围与关系,从而可求得123ax x x ++的取值范围. 【详解】函数()y f x a =-的零点就是函数()y f x =的图象与直线y a =的交点的横坐标,作出函数()y f x =的图象,作出直线y a =,如图,由图可知122x x +=-,由241x =得12x =(12x =-舍去),∴3102x <≤,234x a =,∴23123334224(2,0]x ax x x x x ++=-+=-+∈-. 故选:D .【点睛】本题考查函数的零点,解题关键是掌握转化与化归思想,函数零点转化为函数图象与直线的交点,由数形结合思想确定零点的性质,得出结论.3.B解析:B 【分析】由函数的奇偶性和周期性作()f x 的图象,将方程的根的问题转化为两函数图象交点的问题,从而得log (22)3log (62)3a a+<⎧⎨+>⎩,进而可求出实数a 的取值范围.【详解】依题意函数()f x 的图象关于y 轴及直线2x =对称,所以()f x 的周期为4, 作出[]2,0x ∈-时()f x 的图象,由()f x 的奇偶性和周期性作出()f x 的图象, 关于x 的方程()log (2)0a f x x -+=恰有三个不同的实数根, 可转化为函数()f x 与log (2)a y x =+的图象有三个不同的交点,由数形结合可知log(22)3log(62)3aa+<⎧⎨+>⎩,解得2322a<<,故选:B.【点睛】本题考查了数形结合的思想,考查了函数的奇偶性和周期性,考查了函数的零点与方程的根,考查了对数不等式的求解,属于中档题.画出函数的图象是本题的关键.4.C解析:C【分析】由新定义可知探究y轴左侧部分图像关于原点中心对称的图像与y轴右侧部分图像的交点个数即得结果.【详解】由题意可知,函数()y f x=的图像上有不同的两点,A B,且,A B两点关于原点对称,则称点对(),A B是函数()y f x=的一对“镜像”,因为()23,02,0x xf xx x x⎧-<⎪=⎨-≥⎪⎩,由y轴左侧部分()3,0xy x=-<图像关于原点中心对称的图像3xy--=-,即3xy-=,()0x>,作函数3xy-=,()0x>和()22,0y x x x=-≥的图象如下:由图像可知两图象有三个公共点,即该函数有3对“镜像点对”.故选:C.【点睛】本题解题关键是理解新定义,寻找对称点对,探究y轴左侧部分图像关于原点中心对称的图像与y 轴右侧部分图像的交点个数,通过数形结合,即突破难点.5.C解析:C 【解析】要使函数有意义,需使210{340x x x +>--+>,即1{41x x >--<<,所以1 1.x -<< 故选C6.C解析:C 【分析】先判断函数的定义域关于原点对称,再由奇偶性的定义判断奇偶性,根据复合函数的单调判断其单调性,从而可得结论. 【详解】由100100x x +>⎧⎨->⎩,得(10,10)x ∈-, 故函数()f x 的定义域为()10,10-,关于原点对称,又()()lg 10lg(10)()f x x x f x -=-++=,故函数()f x 为偶函数, 而()()2lg(10)lg(10)lg 100f x x x x=++-=-,因为函数2100y x =-在()0,10上单调递减,lg y x =在()0,∞+上单调递增, 故函数()f x 在()0,10上单调递减,故选C. 【点睛】本题主要考查函数的奇偶性与单调性,属于中档题. 判断函数的奇偶性首先要看函数的定义域是否关于原点对称,如果不对称,既不是奇函数又不是偶函数,如果对称常见方法有:(1)直接法, ()()f x f x -=±(正为偶函数,负为减函数);(2)和差法,()()0f x f x -±=(和为零奇函数,差为零偶函数);(3)作商法,()()1f x f x -=±(1 为偶函数,1- 为奇函数) .7.A解析:A 【分析】先判断函数奇偶性,排除CD ,再结合函数在()0,π的正负选出正确答案 【详解】设()sin y f x x x ==,求得()sin f x x x -=,故函数为偶函数,排除CD ,由三角函数图像特征可知在()0,π时sin 0x >,故在()0,π时()0f x >,故A 正确 故选:A【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.8.C解析:C 【分析】由题意可知二次函数282a y x x =-+在区间(],1-∞上为减函数,函数ay x =在区间()1,+∞上为减函数,且有92aa -≥,可得出关于实数a 的不等式组,由此可解得实数a 的取值范围. 【详解】由于函数()28,12,1ax x x f x a x x⎧-+≤⎪⎪=⎨⎪>⎪⎩为R 上的减函数,则二次函数282ay x x =-+在区间(],1-∞上为减函数,该二次函数的图象开口向上,对称轴为直线4ax =,所以,14a ≥;函数ay x =在区间()1,+∞上为减函数,则0a >,且有92a a -≥. 所以,14092a a a a ⎧≥⎪⎪>⎨⎪⎪-≥⎩,解得46a ≤≤.因此,实数a 的取值范围是[]4,6. 故选:C. 【点睛】本题考查利用分段函数的单调性求参数的取值范围,要注意分析每支函数的单调性以及分界点处函数值的大小关系,考查计算能力,属于中等题.9.D解析:D 【分析】作出函数()y f x =与1ya=的图象,数形结合可得()k f x ,即可得解. 【详解】 令||1()x f x aa-==,解得1x =±, 在同一直角坐标系中作出()y f x =与1y a=的图象,如图,所以,11()11,1x k x a x f x x aa x --⎧≤-⎪⎪=-<<⎨⎪⎪≥⎩,,所以函数()k f x 的单调减区间为()1,+∞. 故选:D. 【点睛】本题考查了函数图象的应用及函数单调性的求解,考查了运算求解能力与数形结合思想,属于中档题.10.B解析:B 【分析】根据分式不等式和一元二次不等式的解法,求得集合{01},{|02}M x x N x x =≤<=<<,再结合集合交集的运算,即可求解.【详解】由题意,集合{}20{01},20{|02}1x M xx x N x x x x x x ⎧⎫=≤=≤<=-<=<<⎨⎬-⎩⎭,所以{}01M N x x ⋂=<<. 故选:B . 【点睛】本题主要考查了集合的交集的概念及运算,其中解答中结合分式不等式和一元二次不等式的解法,准确求解集合,A B 是解答的关键,着重考查了计算能力.11.A解析:A 【解析】 【分析】根据函数定义域的求法求得,M N ,再求得()R M C N .【详解】由210x ->解得11x -<<,由10x +>解得1x >-.所以{}|1R C N x x =≤-,故()R MC N ={|1}<x x ,故选A.【点睛】本小题主要考查函数定义域的求法,考查集合补集和并集的运算,属于基础题.12.C解析:C 【解析】|x-a|<1,∴a-1<x<a+1,∵A∩B=∅. ∴a-1≥5或a+1≤1,即a≤0或a≥6.故选C.二、填空题13.【分析】将函数(且)在区间上有4个不同的零点转化为函数与函数的图象在区间上有4个不同的交点再根据函数的奇偶性和单调性作出函数的图象与函数的图象利用图象【详解】所以为偶函数设则因为所以即因为所以所以所 解析:27a ≥【分析】将函数()()()log 2a g x f x x =-+ (0a >且1a ≠)在区间[]1,1-上有4个不同的零点转化为函数|()|y f x =与函数log (2)a y x =+的图象在区间[]1,1-上有4个不同的交点,再根据函数()f x 的奇偶性和单调性作出函数|()|f x 的图象与函数log (2)a y x =+的图象,利用图象 【详解】()333()x x f x f x --=+-=,所以()f x 为偶函数,设120x x ≤<,则112212()()333333x x x xf x f x ---=+---+12121(33)(1)3x x x x +=--,因为12,x x <所以1233x x <,即12330x x -<,因为120x x ≤<,所以120x x +>,所以1231x x +>,所以121103x x +->,所以12())0(f x f x -<,即12()()f x f x <,所以()f x 在[0,)+∞上递增,因为()f x 为偶函数,所以()f x 在(,0)-∞上递减, 所以当0x =时,()f x 取得最小值(0)1f =-,因为函数()()()log 2a g x f x x =-+ (0a >且1a ≠)在区间[]1,1-上有4个不同的零点,所以函数|()|y f x =与函数log (2)a y x =+的图象在区间[]1,1-上有4个不同的交点, 作出两个函数的图象如图:由图可知,log (02)(0)log (12)(1)1a a f f a ⎧+<⎪+≤⎨⎪>⎩,即log 211log 331a a a <⎧⎪⎪≤⎨⎪>⎪⎩,解得27a ≥.故答案为:27a ≥. 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解14.【分析】先根据函数奇偶性作出一个周期上图象再根据周期得区间上图象最后结合图象确定与动直线恰有4个交点的情况再求出对应数值【详解】因为是以为周期的上的奇函数所以当所以当作出区间上图象如图则直线过或时恰 解析:11,2e e ⎧⎫--⎨⎬⎩⎭【分析】先根据函数奇偶性作出一个周期上图象,再根据周期得区间[],2e e -上图象,最后结合图象确定与动直线1y kx =+恰有4个交点的情况,再求出对应数值. 【详解】因为()f x 是以2e 为周期的R 上的奇函数,所以(0)0,()()()()()0f f e f e f e f e f e ==-=-∴=-=,当()0,x e ∈,()ln f x x =,所以当(),0x e ∈-,()()ln(-)f x f x x =--=-,作出区间[],2e e -上图象如图,则直线1y kx =+过(,0)A e 或(2,0)B e 时恰有4个交点,此时11,2k k e e=-=-故答案为:11,2e e ⎧⎫--⎨⎬⎩⎭【点睛】本题考查函数奇偶性、周期性以及根据图象研究函数零点,考查数形结合思想以及综合分析求解能力,属中档题.15.4【分析】先画出函数图像并判断再根据范围和函数单调性判断时取最大值最后计算得到答案【详解】如图所示:根据函数的图象得所以结合函数图象易知当时在上取得最大值所以又所以再结合可得所以故答案为:4【点睛】解析:4 【分析】先画出函数图像并判断01a b <<<,再根据范围和函数单调性判断2x a =时取最大值,最后计算得到答案. 【详解】如图所示:根据函数2()log x f x =的图象得01a b <<<,所以201a a <<<.结合函数图象,易知当2=x a 时()f x 在2,a b ⎡⎤⎣⎦上取得最大值,所以()222log2f aa ==又01a <<,所以12a =, 再结合()()f a f b =,可得2b =,所以2241b a+=+=. 故答案为:4关键点睛:解题关键在于,作出对数函数2()log x f x =的图象,得到01a b <<<,进而求解,属于中档题16.【分析】利用换元法可得然后采用等价转换的方法可得在的值域为最后根据二次函数的性质可得结果【详解】由令所以则令由在上的值域为等价为在的值域为的对称轴为且所以可得或所以故答案为:【点睛】本题主要考查函数解析:332,22⎡⎤⎡-+⋃⎢⎥⎢⎣⎦⎣⎦【分析】利用换元法,可得()2221g x x ax a =-+-,然后采用等价转换的方法,可得()g x 在21,22a a a ⎡⎤--+⎣⎦的值域为[]1,0-,最后根据二次函数的性质,可得结果.【详解】 由()22221xf xax a =-+-令22,log xt x t ==,所以()()2222log 2log 1f t t a t a =-+- 则令()2221g x x ax a =-+-由()f x 在21222,2a a a --+⎡⎤⎣⎦上的值域为[]1,0-等价为()g x 在21,22a a a ⎡⎤--+⎣⎦的值域为[]1,0-()g x 的对称轴为x a =,且()()1,10g a g a =--= 所以()()22122222a a a a a a -+-+≤≤-+1a ≤≤或2a ≤≤所以332,22a ⎡⎤⎡∈⋃⎢⎥⎢⎣⎦⎣⎦故答案为:332,22⎡⎤⎡-⋃⎢⎥⎢⎣⎦⎣⎦【点睛】本题主要考查函数值域的应用,难点在于使用等价转换思想,使问题化繁为简,属中档题.17.【分析】根据题意令从而得到得到为奇函数整理得到将代入求得的值【详解】设则即为奇函数故即即【点睛】方法点睛:该题考查的是有关函数值的求解问题解题方法如下:(1)构造奇函数;(2)利用奇函数的性质得到进【分析】根据题意,令()()31g x f x ax bx =-=-,从而得到()()3g x ax bx g x -=-+=-,得到()g x 为奇函数,整理得到()()2121f f --=--⎡⎤⎣⎦,将()25f =代入求得()2f -的值.【详解】设()()31g x f x ax bx =-=-,则()()3g x ax bx g x -=-+=-,即()g x 为奇函数,故()()22g g -=-,即()()2121f f --=--⎡⎤⎣⎦, 即()()222523f f -=-+=-+=-. 【点睛】方法点睛:该题考查的是有关函数值的求解问题,解题方法如下: (1)构造奇函数()()31g x f x ax bx =-=-;(2)利用奇函数的性质得到()()22g g -=-,进而求得()()222f f -=-+,得到结果.18.【分析】根据函数奇偶性和单调性之间的关系将不等式进行转化即可得到结论【详解】解:是定义在上的偶函数且在上是减函数不等式等价为即所以即即解得即故答案为:【点睛】本题主要考查不等式的求解根据函数奇偶性和解析:1,13⎛⎫ ⎪⎝⎭【分析】根据函数奇偶性和单调性之间的关系,将不等式进行转化即可得到结论. 【详解】 解:()f x 是定义在R 上的偶函数,且()f x 在[)0,+∞上是减函数,∴不等式()()21f m f m ->,等价为()()21f m f m ->,即21m m -<,所以()2221m m -<,即()22210m m --<,即()()3110m m --<,解得113m << 即1,13m ⎛⎫∈ ⎪⎝⎭故答案为:1,13⎛⎫ ⎪⎝⎭【点睛】本题主要考查不等式的求解,根据函数奇偶性和单调性之间的关系,将不等式进行等价转化是解决本题的关键,属于中档题.19.【分析】先将的可能结果列出然后根据相同结果出现的次数确定出的取值集合【详解】将表示为可得如下结果:其中为都出现了次所以若方程至少有三组不同的解则的取值集合为故答案为:【点睛】关键点点睛:解答本题的关 解析:{}3,6,14【分析】先将i j x x -的可能结果列出,然后根据i j x x -相同结果出现的次数确定出k 的取值集合. 【详解】将i j x x k -=表示为(),,i j x x k ,可得如下结果:()()()()()()()19,1,18,16,1,15,15,1,14,13,1,12,7,1,6,5,1,4,2,1,1, ()()()()()()19,2,17,16,2,14,15,2,13,13,2,11,7,2,5,5,2,3,()()()()()()19,5,14,16,5,11,15,5,10,13,5,8,7,5,2,19,7,12, ()()()()()()16,7,9,15,7,8,13,7,6,19,13,6,16,13,3,15,13,2, ()()()19,15,4,16,15,1,19,16,3,其中k 为3,6,14都出现了3次,所以若方程(0)i j x x k k -=>至少有三组不同的解, 则k 的取值集合为{}3,6,14, 故答案为:{}3,6,14 【点睛】关键点点睛:解答本题的关键是理解方程(0)i j x x k k -=>至少有三组不同的解的含义,即i j x x -的差值出现的次数不小于三次,由此可进行问题的求解.20.96【分析】对分三种情况讨论求出X1+X2+X3取最小值39X1+X2+X3取最大57即得解【详解】由题意集合M ={x ∈N*|1≤x≤15}={123456789101112131415}当A1={解析:96 【分析】对123,,A A A 分三种情况讨论,求出X 1+X 2+X 3取最小值39,X 1+X 2+X 3取最大57,即得解. 【详解】由题意集合M ={x ∈N*|1≤x ≤15}={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15},当A 1={1,4,5,6,7},A 2={3,12,13,14,15},A 3={2,8,9,10,11}时, X 1+X 2+X 3取最小值:X 1+X 2+X 3=8+18+13=39,当A 1={1,4,5,6,15},A 2={2,7,8,9,14},A 3={3,10,11,12,13}时, X 1+X 2+X 3=16+16+16=48,当A 1={1,2,3,4,15},A 2={5,6,7,8,14},A 3={9,10,11,12,13}时, X 1+X 2+X 3取最大值:X 1+X 2+X 3=16+19+22=57, ∴X 1+X 2+X 3的最大值与最小值的和为:39+57=96.【点睛】本题主要考查集合新定义的理解和应用,意在考查学生对这些知识的理解掌握水平.三、解答题21.(1)14a >;(2)51b <<. 【分析】(1)讨论0a =、0a >、0a <满足恒成立情况下a 的取值范围,取并集; (2)由题意知()g x 关于y 轴对称的函数为()k x 必与()h x 在0x <上有两个不同的交点,利用二次函数的性质求b 的取值范围. 【详解】(1)当0a =时,()1f x x =-,在()1,3x ∈上有()(2,0)f x ∈-,故不符题意; 若0a ≠有()f x 对称轴为12x a=,14a ∆=-,要使()()1,3,0x f x ∀∈>恒成立, 当0a >时,102a >且(1)0f a => ,即∆<0或112a≤或132(3)0a f ⎧≥⎪⎨⎪≥⎩,解得14a >; 当0a <时,102a <,即仅需(3)0f ≥即可,无解; 综上,有14a >; (2)0x <时,()g x 关于y 轴对称的函数为2()2k x x bx =--,由题意知()h x 与()k x 有两个不同的交点.由1a =时,()25111x h x x x x -=-+--,令()()k x h x =,整理得2(1)(1)20b x b x --+-=,∴令2()(1)(1)2t x b x b x =--+-,即()t x 在0x <上有两个不同的零点,而(0)20t =-<,∴()()()2101{0211810b b x b b b -<+=<-∆=++->,解得51b <<,【点睛】思路点睛:()g x 存在两点关于y 轴对称点在()h x 上,将其转化为函数交点问题. 确定()g x 关于y 轴对称的函数解析式()k x . 有()h x 、()k x 有两个不同交点.结合二次函数的性质求参数的范围. 22.(Ⅰ)12k =-;(Ⅱ)分类讨论,答案见解析;(Ⅲ){}()31,-⋃+∞. 【分析】(Ⅰ)由偶函数的性质,运算即可得解; (Ⅱ)转化条件为4203xa a ⋅->,按照0a >、0a <分类,即可得解; (Ⅲ)由对数的运算性质转化条件得方程()()22421223xxxa a +=-⋅有且只有一个实根,换元后,结合一元二次方程根的分布即可得解. 【详解】(Ⅰ)∵()f x 是偶函数,∴()()f x f x =-,∴44log (41)log (41)x xkx kx -++=+-,∴441log 241x x kx -+=-+,∴44(41)log 241x x xx kx +==-+, 即(21)0k x +=对一切x ∈R 恒成立,∴12k =-; (Ⅱ)要使函数()g x 有意义,需4203xa a ⋅->, 当0a >时,423x>,解得24log 3x >, 当0a <时,423x <,解得24log 3x <, 综上可知,当0a >时,()g x 的定义域为24log ,3⎛⎫+∞ ⎪⎝⎭; 当0a <时,()g x 的定义域为24,log 3⎛⎫-∞ ⎪⎝⎭; (Ⅲ)∵()()()F x f x g x =-4414log (41)log 223xx x a a ⎛⎫=+--⋅- ⎪⎝⎭只有一个零点, ∴方程4414log (41)log 223xx x a a ⎛⎫+=+⋅- ⎪⎝⎭有且只有一个实根, 即方程2444444log (41)log 4log 2log 2233xx xx x a a a ⎡⎤⎛⎫⎛⎫+=+⋅-=⋅- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦有且只有一个实根, 亦即方程()()22421223xxxa a +=-⋅有且只有一个实根, 令2x t =(0t >),则方程24(1)103aa t t ---=有且只有一个正根,①当1a =时,34t =-,不合题意; ②当1a ≠时,因为0不是方程的根,所以方程的两根异号或有两相等正根,由0∆=可得244(1)03a a ⎛⎫+-= ⎪⎝⎭,解得34a =或3- 若34a =,则2t =-不合题意,舍去; 若3a =-,则12t =满足条件; 若方程有两根异号,则244(1)03101a a a ⎧⎛⎫∆=+->⎪ ⎪⎪⎝⎭⎨-⎪<⎪-⎩,∴1a >, 综上所述,实数a 的取值范围是{}()31,-⋃+∞. 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解. 23.(1)1927-;(2)116. 【分析】(1)利用指数的运算法则化简求解; (2)利用对数的运算法则化简求解. 【详解】 (1)()3224031168281π-⎛⎫⎛⎫-+- ⎪⎪⎝⎭⎝⎭()324343224()13⎡⎤⎡⎤=-+-⎢⎥⎣⎦⎣⎦8194412727=-+-=-. (2)()2log 1483log 3log 3log 22++22311log 3log 3log 2123⎛⎫=++ ⎪⎝⎭235511log 3log 211666⎛⎫=+=+= ⎪⎝⎭.【点睛】方法点睛:指数对数的运算化简,一般先观察指数对数的形式,再利用合适的运算法则化简求解.24.定义域为(,1)(3,)-∞-+∞,函数值域为R ,减区间是(,1)-∞-,增区间是(3,)+∞.【分析】结合对数函数性质求解. 【详解】由2230x x -->得1x <-或3x >,∴定义域为(,1)(3,)-∞-+∞.由2230x x -->得y R ∈,函数值域为R ,223y x x =--在(,1)-∞-上递减,在(3,)+∞上递增,∴()log 23=-2-3y x x 的减区间是(,1)-∞-,增区间是(3,)+∞. 【点睛】本题考查对数型复合函数的性质,掌握对数函数的性质是解题关键.25.(1)()f x 的单调增区间为(),-∞+∞,无单调递减区间;(2)0a =;(3)()()2max1,13422,3a a G x a a ⎧+⎪<≤=⎨⎪->⎩. 【分析】(1)0a =时,求出()f x 的解析式,可得函数的单调区间; (2)由函数是偶函数,利用特值列出方程解出实数a 的值;(3)化简函数()G x ,按1a >,12a <≤,23a <≤和3a >四种情况,分别判断对称轴和区间端点的关系,判断出单调性得出最值. 【详解】(1)0a =时,()22,0,0x x f x x x x x ⎧≥==⎨-<⎩,则()f x 在R 上单调递增,即函数()f x 的单调增区间为(),-∞+∞,无单调递减区间; (2)()()()2F x g x f x x x a =⋅=-,()F x 为偶函数,()()11F F ∴-=,即11a a --=-,平方解得0a =检验0a =时,()f x x x =,符合题意,故0a =;(3)()()()()()221,1,x a x x a G x f x g x x x a x x a x x a ⎧--≥⎪=+=-+=⎨-++<⎪⎩若1a >,当x a ≥时,对称轴为102a x -=<恒成立; 当x a <时,对称轴为12a x a +=<恒成立; 若12a <≤,当x a ≥时,1012a -<≤;当x a <时,13122a +≤≤; 又[]1,2x ∈,此时()()()2max 111,224a G x G G a a G a +⎧+⎫+⎛⎫⎛⎫===⎨⎬ ⎪ ⎪⎝⎭⎝⎭⎩⎭ 若23a <≤,当x a ≥时,11122a -<≤;当x a <时,31222a +<≤; 又[]1,2x ∈,此时()()2max1124a a G x G ++⎛⎫==⎪⎝⎭若3a >,当x a ≥时,112a ->;当x a <时,122a +>; 又[]1,2x ∈,此时()()max 222G x G a ==- 综上,()()2max 1,13422,3a a G x a a ⎧+⎪<≤=⎨⎪->⎩【点睛】关键点点睛:本题考查分段函数的单调性,奇偶性和最值,考查二次函数的性质,解决本题的关键点是分情况讨论二次函数的对称轴与区间端点的关系,从而确定出函数的单调性和最值,考查学生分类讨论思想和计算能力,属于中档题. 26.(1)13a ≤≤(2)5a <- 【分析】(1)先解不等式得集合B,再根据条件得集合包含关系,列出不等式,解得结果; (2)先求UB ,再根据集合A 是否为空集分类讨论,最后结合数轴列不等式解得结果.【详解】(1){}2|650[1,5]B x x x =-+=≤2113235a A B B B A a a -≤⎧⋂=∴⊆∴∴≤≤⎨+≥⎩;(2)(,1)(5,)UB =-∞+∞当A =∅时,满足UA B =∅,此时2235a a a ->+∴<-;当A ≠∅时,要UAB =∅,则22321235a a a a a -≤+⎧⎪-≥∴∈∅⎨⎪+≤⎩综上:5a <-【点睛】本题考查根据交集结果求参数取值范围,考查分类讨论思想方法以及基本分析求解能力,属中档题.。

鲁教版小学四年级数学上册期末应用题专项试题(全套)

鲁教版小学四年级数学上册期末应用题专项试题(全套)

鲁教版小学四年级数学上册期末应用题专项试题(全套)1.42与21的和除以他们的差,商是多少?答案:(42+21)/(42-21)=63/21=32.包装432瓶墨水,每4瓶装一盒,每12盒装一箱,一共可以装多少箱?答案:432÷4=108,108÷12=9,一共可以装9箱。

3.汽车以每小时70千米的速度行驶了5小时距中点还有18千米,路线全长多少千米?答案:70×5=350,350+18=368,路线全长为368千米。

4.果园里有梨树478棵,桃树的棵数是梨树的12倍,果园里有桃树多少棵?答案:桃树的棵数为478×12=5736棵。

5.会议厅有37排座位,中间每排23个座,两边每排12个座。

现有1500名学生开会,座位够吗?答案:中间每排23个座,两边每排12个座,一排座位为23+12+12=47个座位。

37排座位共有1739个座位,座位够用。

6.___带2500元钱去买篮球,买了19个后,还剩1170元,每个篮球的价格是多少?答案:2500-1170=1330,1330÷19≈70,每个篮球的价格为70元。

7.___带2900元钱买化肥。

买了15袋化肥,剩下2000元。

每袋化肥的价钱是多少?答案:2900-2000=900,每袋化肥的价钱为900÷15=60元。

8.食品厂运出9车面粉,每车装99袋,每袋面粉重30千克,一共运出面粉多少千克?答案:9×99×30×1000=xxxxxxxx,一共运出xxxxxxxx千克面粉。

9.___从县城出发去木兰乡送化肥。

去的速度是50千米∕小时,用了3小时。

返回时用了2小时。

从县城到木兰乡有多远?原路返回时平均每小时行多少千米?答案:去程距离=速度×时间=50×3=150千米,返回距离=速度×时间=50×2=100千米,县城到木兰乡的距离为150+100=250千米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初 四 数 学 试 题
一、选择题 1.把抛物线y=
21 (x-1)2
向上平移2个单位,再向左平移2个单位得( ) A 、 y=21 (x+ 1)2 B 、 y=21 (x-3)2 +2 C 、y=21 (x+ 1)2 -2 D 、y=2
1 (x+ 1)2
+2
2.设⊙O 的半径为3,点O 到直线l 的距离为d ,若l 与⊙O 只有一个公共点,则d 应满足( )。

A 、 3=d
B 、 3≤d
C 、 3<d
D 、3>d
3. 某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于60°,否则就有危险,那么梯子的长至少为 ( ).
A .8米 B
.米 C
. D
.米
4. 在正方形网格中,ABC △的位置如图所示,则cos B ∠的值为( ) A

B .1
2
C
. D

5、下列命题是真命题的是( )
A .垂直于圆的半径的直线是圆的切线
B .经过半径外端的直线是圆的切线
C .直线上一点到圆心的距离等于圆的半径的直线是圆的切线
D .到圆心的距离等于圆的半径的直线是圆的切线
5.抛物线12
2+--=m mx x y 的图象过原点,则m 为( )A .0
B .1
C .-1
D .±1
6、已知二次函数2
(0)y ax bx c a =++≠的图象如图所示,给出以下结论: ① 0a b c ++<;② 0a b c -+<;③20b a +<;④0abc >.
其中所有正确结论的序号是( )A. ③④ B. ②③ C. ①④ D. ①②
7. 若一次函数y=ax+b 的图象经过第二、三、四象限,则二次函数y=ax 2
+bx 的图象只可能是( )
8.已知点A ( )
、B 、C (3
,2
y -)在函数2
1212-
=x y 的图象上,则321,
,y y y 的大小关系是
( )2132
313
213
21y
y y D
y y y C
y y y B
y y y A
>>>>>><<
9. 二次函数c bx ax y ++=2
的图象如图所示,且方程k c bx ax =++2
有两
个不相等的实数根,则k 的取值范围是( )A .k<2B .k ≤2 C .k<3 D .1<k<3
二、填空题
10. 在直径为100cm 的圆柱形油槽内装入一些油后,截面如图所
示,若油面宽AB=80cm ,则油的最大深度为 。

11. 把二次函数y=2x 2
+4x-1配方成顶点式为
1,1y ),2(2y -O
x
y
-1
1
12.如图,扇形纸扇完全打开后,外侧两竹条AB 、AC 的夹角为120O
,AB 的长为60cm ,不贴纸部分AD 的长是AB 的
3
1
,则贴纸部分的面积为 。

13. 、如图,已知Rt △ABC 中,斜边BC 上的高AD=4,cosB=5
4
,则AC=____________。

14.如图,抛物线bx ax y +=2
1
和直线m kx y +=2相交于点(-2,0)和(1,3),则当12y y <,时,x 的取值范围是________.
15在正方形铁皮上剪下一个扇形和一个半径为1cm 的圆形,使之恰好围成图2所示的一个圆锥,则圆锥的高为
16. 抛物线
c bx ax y ++=2上部分点的横坐标x 和纵坐标y 的对应值如下表:
易看出(-2,0)是它与x 轴的一个交点,则它与x 轴的另一个交点的坐标为_________。

17. 兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1米的竹竿的影长为0.4米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.4米,则树高为_________。

18.某一型号飞机着陆后滑行的距离y (单位:m )与滑行时间x (单位:s )之间的函数关系式是y=60x-1.5x 2
,该型号飞机着陆后滑行 m 才能停下来.
三、解答题:
19.
计算:o
o
o
o
2
45tan 30cos 30tan 60sin +⋅-
20、如图,AB 是⊙O 的直径,∠BAC=45°,BA=BC 。

(1)求证:BC 是⊙O 的切线。

(2)求图中两个阴影部分的面积。

(圆的半径为2)
21.如图,以等腰三角形ABC 的腰AB 为直径的⊙O 交底边BC 于点D ,交腰AC 于点 G ,过D 点作DE 上AC 于点E .
(1)试确定直线DE 与⊙O 的位置关系,并说明理由; (2)若CD=2,AC=5,求CG 的长.
图1 图2
A
B
D
22.如图,不透明圆锥体DEC 放在直线BP 所在的水平面上,且BP 过圆锥体底面圆的圆心,圆锥体的离为
,底面半径为2m ,某光源位于点A 处,照射圆锥体在水平面上留下的影长BE 为4m .
(1)求∠B 的度数;
(2)若∠ACP=60°,求光源A 距水平面BP 的距离.
23.已知抛物线c bx ax y ++=2
(a ≠0) 经过(0,1)和(2,-3) 两点,对称轴为x =-1. 求抛物线的解析式。

如图,点P 在圆O 外,PA 与圆O 相切于A 点,OP 与圆周相交于C 点,点B 与点A 关于直线PO 对称,已知OA=4,PA=34。

求:
(1)∠POA 的度数;
(2)弦AB 的长;
(3)阴影部分的面积。

24.如图,河对岸有铁塔AB .在C 处测得塔顶A 的仰角为30°,向塔前进14米到达D ,在D 处测得A 的仰角为45°,求铁塔AB 的高.
25.某商品的进价为每件30元,现在的售价为每件40元,每星期可卖出150件.市场调查反映:如果每件的售价每涨1元(售价每件不能高于45元),那么每星期少卖10件.设每件涨价x 元(x 为非负整数),每星期的销量为y 件.
(1)求y 与x 的函数关系式及自变量x 的取值范围;
(2)如何定价才能使每星期的利润最大且每星期销量较大?每星期的最大利润是多少?
26.随着近几年城市建设的快速发展,对花木的需求量逐年提高。

某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润1y 与投资量x 成正比例关系,如图12-①所示;种植花卉的利润2y 与投资量x 成二次函数关系,如图12-②所示(注:利润与投资量
的单位:万元)(1)分别求出利润1y 与2y 关于 投资量x 的函数关系式;(2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少?
第17题图
27.如图,已知抛物线2
15
y x bx c =++和x 轴交于A 、B 两点,且AB=7,C
为抛物线上的一点,它的横坐标为-1,∠CBO=45°,tan ∠CAO=2
5
.
求:(1)C 点的坐标; (2)抛物线的解析式.
28.如图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB 和矩形的三边AE ,ED ,DB 组成,已知河底ED 是水平的,ED=16米,AE=8米,抛物线的顶点C 到ED 的距离是11米,以ED 所在的直线为x 轴,抛物线的对称轴为y 轴建立平面直角坐标系. (1)求抛物线的解析式;
(2)已知从某时刻开始的40小时内,水面与河底ED 的距离h (单位:米)随时间t (单位:时)的变化满足函数关系h=128
1-
(t-19)2
+8 (0≤t ≤40),且当水面到顶点C 的距离不大于5米时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行?
29、日本福岛出现核电站事故后,我国国家海洋局高度关注事态发展,紧急调集海上巡逻的海检船,在相关海域进行现场检测与海水采样,针对核泄漏在极端情况下对海洋的影响及时开展分析评估.如图上午9时,海检船位于A 处,观测到某港口城市P 位于海检船的北偏西67.5°,海检船以21海里/时的速度向正北方向行驶,下午2时海检船到达B 处,这时观测到城市P 位于海检船的南偏西36.9°方向,求此时海检船所在B 处与城市P 的距离?
(参考数据:sin36.9°≈35,tan36.9°≈34,sin67.5°≈1213,tan67.5°≈12
5

30、矩形ABCD 中,BC=4,AB=3,点P 由点C 出发,沿CA 方向向点A 匀速运动,速度为1cm/s ,过点P 作PQ ∥AD ,与边CD 交于点Q ,若设运动时间为t (s )(0<t<5),解答下列问题:
(1)t 为何值时,∠ABP=∠APB?
(2)设四边形BPQC 的面积为y(cm 2
),求y 与t 之间的函数关系式;
(3)是否存在某一时刻t ,使得折线BP-PQ 恰好把矩形的周长和面积都分成
上下两部分之比同时为 3:2? 若存在 求出此时t 的值,若不存在,请说
明理由。

B
C D Q。

相关文档
最新文档