数学半期考试试题
四川省内江市2024-2025学年高一上学期期中考试数学试题(含答案)

2024级高一上期半期考试数学试题数学试题共4页.满分150分.考试时间120分钟.注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上.2.答选择题时,必须使用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.第Ⅰ卷(选择题,共58分)一、单选题(本大题共8 小题,每小题5 分,共40 分.在每小题给出的四个选项中,只有一项符合题目要求).1 .已知集合A = {x | -1 < x ≤2}, B = {x | -2 < x ≤1} ,则A U B = ( )A .{x | -1 < x < 1}B .{x | -1 < x ≤1}C .{x | -2 < x < 2}D .{x | -2 < x ≤2}2 .函数f的定义域为 ( )D.3 .已知集合A 满足A ≤{0, 1, 2, 3} ,则满足条件的集合A 的个数为 ( )A .8B .10C .14D .164 .已知函数f(x) 满足f(x + 2) = 3x + 4 ,则f (2) =()A .-2B .1C .4D .75 .下列命题为真命题的是 ( )A .若a > b,则a2 > b2B .若a > b,则ac2 > bc2C .若a > b ,则D .若a > b > 0 ,则6 .已知x>3 ,则对于y = x +下列说法正确的是 ( )A.y 有最大值7 B.y 有最小值7 C.y 有最小值4 D.y 有最大值47 .设x, y ∈R ,下列说法中错误的是 ()A .“ x > 1”是“ x2> 1”的充分不必要条件B .“ x > 1 ,y > 1 ”是“x + y > 2,xy > 1 ”的充要条件C .“ xy = 0 ”是“ x 2 + y 2 = 0 ”的必要不充分条件D .“ x 2 ≠ 4”是“x ≠ 2”的充分不必要条件8 .当x ∈(一1, 1) 时,不等式2kx 2 一 kx 一 恒成立,则k 的取值范围是 ()A .(一3, 0)B .[一3, 0)C .D . 二、多选题(本大题共 3 小题,每小题 6 分,共 18 分.在每小题给出的四个选项中,有两项或两项以上符合题目要求).9 .已知p :“ x ∈ R ,x 2一 (a + 1)x + 1 > 0 恒成立”为真命题,下列选项可以作为p 的 充分条件的有 ()A .一3 < a < 0B .a ≤ 一3或a ≥ 1C .0 < a < 1D .一3 < a < 110 .下列说法正确的是 ()A . 1+x . 1x 与y = 1x 2 表示同一个函数B .已知函数f (x ) 的定义域为[一3, 1] ,则函数f (2x 一1) 的定义域为[一1, 1]C .函数y = x +的值域为[0, +∞)D .已知函数满足f = x ,则f = 一11.已知集合{x x 2 + ax +b = 0,a > 0}有且仅有两个子集,则下面正确的是 ()A .a 2 一 b 2 ≤ 4B .C .若不等式x 2 + ax 一 b < 0 的解集为(x 1, x 2 ) ,则x 1x 2 > 0D .若不等式x 2 + ax + b < c 的解集为(x 1, x 2 ) ,且= 4 ,则 c = 4第Ⅱ卷(非选择题,共 92 分)三、填空题(本大共 3 小题 ,每小题 5 分,满分 15 分).12 .命题“x > 0, 2x 2 + x +1 > 0”的否定是 .13 .设函数f (x ) ,g (x )分别由下表给出:x 1 一 x 2x1234f(x)1313g (x)3232则满足f(g(x)) = g(f(x))的x的值为.14.设函数0,若f则实数a的取值范围是.四、解答题(本题共计5 小题,共77 分,解答应写出文字说明,证明过程或演算步骤).15 .(13 分)已知函数(1)在如图给定的直角坐标系内画出f (x) 的图象;(2)求不等式f (x) > 1 的解集.16 .(15 分)已知函数f (x) = x2 一2bx + 3, b ∈R.(1)若函数f (x ) 的图象经过点(4, 3) ,求实数b的值;(2)在(1)的条件下,求不等式f (x) < 0的解集;(3)解关于x 的不等式2x2 + (1一2a) x 一a > 0 .17 .(15 分)通过技术创新,某公司的汽车特种玻璃已进入欧洲市场.2023 年,该种玻璃售价为25 欧元/平方米,销售量为80 万平方米,销售收入为2000 万欧元.(1)据市场调查,若售价每提高1 欧元/平方米,则销售量将减少2 万平方米;要使销售收入不低于2000 万欧元,试问:该种玻璃的售价最多提高到多少欧元/ 平方米?(2)为提高年销售量,增加市场份额,公司将在2024 年对该种玻璃实施二次技术创新和营销策略改革:提高价格到m 欧元/平方米(其中m > 25 ),其中投入万欧元作为技术创新费用,投入500万欧元作为固定宣传费用,投入2m 万欧元作为浮动宣传费用,试问:该种玻璃的销售量n (单位/万平方米)至少达到多少时,才可能使2024 年的销售收入不低于2023 年销售收入与2024 年投入之和?并求出此时的售价.18 .(17 分)命题p :任意x ∈R, x2 一2mx 一5m > 0 成立;命题q : 3x ∈[0, 4], x2 一2x 一3 + m ≥0 成立.(1)若命题p 为真命题,求实数m 的取值范围;(2)若命题p, q 至少有一个为真命题,求实数m 的取值范围;19.(17 分)问题:正实数a, b 满足a + b = 1 ,求的最小值.其中一种解法是:+2 ≥3 +2当且仅当且a + b = 1 时,即a = 一1且b = 2 一时取等号.学习上述解法并解决下列问题:(1)若正实数x, y 满足x + y = 1 ,求的最小值;(2)若实数a, b, x, y 满足一试比较a2一b2 和(x 一y )2的大小,并指明等号成立的条件;(3)求代数式3m一5 一一2 的最小值,并求出使得M 最小的m的值.2024级高一上期半期考试数学参考答案单选题1~5:DDDCD 6~8:BBD多选题9:ACD 10:ABD 11:ABD填空题12 . 3x > 0, 2x 2 + x +1≤ 0 13 .2 或 4 14 . (-∞, 解答题15 .(满分 13 分)解:(1)当-1 ≤ x ≤ 2 时:x- 1012f (x )232- 1当2 < x ≤ 5 时:x25f (x )-12………………………………………………………………………………………………(1 分)图像如下:………………………………………………( 2 ) 令f (x ) > 1 则(6分)1 〔 1)当-1 ≤ x ≤2 时,f (x ) > 13 - x 2> 1,……………………………………………………(7 分)所以x 2 - 2 < 0 ,解得- 2 ≤ x≤ · 2 ,………………………………………………………(8分)所以-1≤ x < ·2 ; …………………………………………………………………………(9 分)当2 < x ≤ 5 时,f (x ) > 1 x - 3 > 1 ,……………………………………………………(10 分)解得x > 4 ,所以4 < x ≤ 5 ;………………………………………………………………(11 分)综上, -1≤ x < ·2 或4 < x ≤ 5 ……………………………………………………………(12 分)所以f (x )> 1 的解集为[-1, ) (4, 5].…………………………………………………(13 分)16 .(满分 15 分)解:(1)因为f (x ) = x 2 - 2bx + 3 的图象经过点(4, 3),所以f (4) = 42 - 8b + 3 = 3 ,则b = 2 ; ……………………………………………………(2 分)(2)由(1)得f (x ) = x 2 - 4x + 3 = (x -1)(x - 3) < 0 ,…………………………………(4 分)解得1 < x < 3 ,………………………………………………………………………………(5 分)所以不等式f (x )< 0 的解集为{x 1 < x < 3 };………………………………………………(6 分)(3):2x 2 + (1 - 2a )x - a > 0, : (x - a )(2x +1 )> 0 ,………………………………………(8 分)当a > - 时,不等式的解集为;…………………………………… 当a < - 时,不等式的解集为;…………………………………… 当a = - 时,不等式的解集为 .……………………………………………… 综上所述:当a > - 时,不等式的解集为当a < - 时,不等式的解集为{x ∣x < a 或x > -当a = - 2 时,不等式的解集为{l x x ≠ - 2,} ………………………………………………(15 分)17 .(满分 15 分)〔-5 < m < 0l m ≥ -5解:(1)设该种玻璃的售价提高到x (x ≥ 25) 欧元/平方米,……………………………(1 分)则有80 - 2(x - 25)x ≥ 2000 ,……………………………………………………………(3 分)解得:25 ≤ x ≤ 40 ,…………………………………………………………………………(4 分)所以该种玻璃的售价最多提高到 40 欧元/平方米. …………………………………………(5 分)(2) 由题mn ≥2000 + 500 + 2m +m 2 -600) , ………………………………………(7 分)整理得:mn ≥1500 + 2m + m 2 ,…………………………………………………………(8 分)除以m 得:n ≥m + 2 ,………………………………………………………… 由基本不等式得:当且仅当 m ,即m = 30 > 25 时,等号成立,…………………………………(14 分)所以该种玻璃的销售量n 至少达到 102 万平方米时,才可能使2024 年的销售收入不低于2023年销售收入与2024 年投入之和,此时的售价为 30 欧元/平方米.………………………(15 分)18 .(满分 17 分)解:(1)对于命题p : 对任意x ∈ R ,不等式x 2 - 2mx - 5m > 0恒成立,则有Δ = 4m 2 + 4× 5m = 4m ( m + 5) < 0,……………………………………………………(2 分)解的-5 < m < 0 ;……………………………………………………………………………(3 分)综上,当p 为真时,实数m 的取值范围是{m | -5 < m < 0}………… …………………(4 分)(2)对于命题q : 存在x ∈[0, 4] ,使得不等式x 2 - 2x - 3 + m ≥ 0 成立,只需(x 2 - 2x - 3 + m )max ≥ 0 ,而x 2 - 2x - 3 + m = (x -1)2 + m - 4 ,………………………(6 分): x = 4, (x 2 - 2x - 3+ m )max = 9 + m - 4 = m + 5 ,: m + 5 ≥ 0 ,则m ≥ -5 ,………………(8 分)所以当命题q 为真时,实数m 的取值范围是m ≥ -5 ,……………………………………(9 分)从而当命题p 为假命题, q 为真命题时,m ≤ -5 或m ≥ 0 且m ≥ -5 ,则m ≥ 0 或m = -5 ;................................(11 分)当命题p 为真命题,q 为假命题时,-5 < m < 0 且m < -5 ,无解;...............(13 分)当命题p 为真命题,q 为真命题时,{ ,则-5 < m < 0 ;……………………(15 分)综上所述:m ≥ -5 .…………………………………………………………………………(16分)此时x , y 也满足 所以当命题p ,q 至少有一个为真命题时,实数m 的取值范围是{m | m ≥ 5}…………(17 分)19 .(满分 17 分)解:(1)因为x > 0, y > 0 且x + y = 1,所以 ≥ 5 + 2 = 5 + 26 ,………………… 当且仅当 即x = - 2, y = 3 - 时取等号,…………………………………(3 分)y x 所以x + y 的最小值是5 + 2 6 .……………………………………………………………(4 分),当且仅当 时,所以x 2 + y 2 - ≤ x 2 + y 2 -2 = 且x , y 同号时等号成立,所以a 2 -b 2 ≤ (x - y )2,2 2x a 2 - y b 2 = 1 . …………………………………………………………………(9 分)x = 3m - 5, y = m - 2 ,由 则x 2 - y 2 = (3m -5) -( m - 2) = 2m -3 > 0,………………………………………………(12 分)因为x > 0, y > 0 ,所以x > y ,构造由x 2 - 3y 2 = 1 ,可得M = ·3m - 5 - ·m - 2 = x - y3同正,………………………………………………………(15 分).……………………………………………………(17分)3又由取等号时 x 2= 3y 2 且x , y 结合x 2 - 3y 2 = 1 ,解得 ,可得m ≥ 2 ,………………………(11 分),………………………………………(13 分)…………………………………(14 分)因此a 2 = 1, b 2 = 所以 时,…………………(16 分),…………………(8 分)等号成立, ……(7 分)( )xy x y xy x y ………(6 分)M 取得最小值≤ + - = -由(2)知当且仅当(3)令,即 2 2x 2=2。
九年级数学半期

绵阳外国语实验学校2024秋九年级数学半期本试卷分试题卷和答题卷两部分,其中试题卷由第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)组成,共8页;试题卷共4页,答题卷共4页。
满分150分,考试时间120分钟,考试结束后将答题卡交回。
第Ⅰ卷(选择题共36分)一、选择题:本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列方程中,属于一元二次方程的是()A.3x﹣2=0 B.2x2﹣x+1=0 C.D.4xy=02.一元二次方程3x2﹣5x﹣4=0的二次项系数、一次项系数、常数项分别是()A.3,﹣4,﹣5 B.3,5,4 C.3,﹣5,﹣4 D.3,5,﹣43.抛物线y=﹣3x2﹣4的开口方向和顶点坐标分别是()A.向下,(0,﹣4)B.向下,(0,4)C.向上,(0,4)D.向上,(0,﹣4)4.要由抛物线y=2x2得到抛物线y=2(x+1)2﹣3,则抛物线y=2x2必须()A.向右平移1个单位,再向上平移3个单位B.向左平移1个单位,再向下平移3个单位C.向右平移1个单位,再向下平移3个单位D.向左平移1个单位,再向上平移3个单位5.已知二次函数y=(x+1)2﹣2的图象上有三点A(1,y1),B(2,y2),C(﹣2,y3),则y1,y2,y3的大小关系为()A.y1>y2>y3B.y2>y1>y3C.y3>y1>y2D.y3>y2>y16.如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.设道路的宽为x m,则下面所列方程正确的是()A.(32﹣x)(20﹣x)=32×20﹣570B.32x+2×20x=32×20﹣570C.(32﹣2x)(20﹣x)=570D.32x+2×20x﹣2x2=5707.把方程x2+32x+4=0左边配成一个完全平方式后,所得方程是()A.(x+34)2=5516B. (x+34)2=−154C. (x+34)2=154D. (x+34)2=−55168.劳动节将至,某班全体学生互赠贺卡,共赠贺卡1980张,问该班共有多少名学生?设该班有x名学生,那么所列方程为()A. x(x+1)=1980B. x(x−1)=1980x(x−1)=1980 D. x2=1980C. 129.方程x2+3x−6=0与x2−6x+3=0所有根的乘积等于()A.−18B. 18C. −3D. 310.流感是一种传染性极强的疾病,如果有一人患病,经过两轮传染后有64人患病,设每轮传染中平均一个人传染了x个人,下列等式正确的是()A.x2+x(1+x)=64 B.1+x+x2=64C.(1+x)2=64 D.x(1+x)=6411.函数y=x2+bx+c与y=x的图象如图所示,以下结论:①b2﹣4c>0;②b+c=0;③若二次函数图象上两点(x1,y1),(x2,y2)满足x1<x2<1,则y1>y2;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的有()个.A.4 B.3 C.2 D.112.已知二次函数y=ax2+bx+c(a≠0)的图象如图,下列5个结论:①abc<0,②3a+c>0,③4a+2b+c<0,④2a+b=0,⑤b2>4ac.其中正确的结论有()A.2个B.3个C.4个D.5个(第11题)(第12题)第Ⅱ卷(非选择题共114分)二、填空题:本大题共6个小题,每小题4分,共24分。
福建省福州市2024-2025学年高三上学期期中考试数学试题(无答案)

福建2024—2025学年上学期半期考试高三数学试卷时间:120分钟 满分:150分第I 卷 选择题(共58分)一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在平行四边形中,,则( )A.B C D 2,)A .第11项B .第12项C .第13项D .第14项3.已知是关于的方程的一个虚根,则( )A .-2B .2C .-1D .14.在数列中,已知对任意正整数,有,则()A .B .C .D .5.互相垂直且有公共原点的两条数轴构成平面直角坐标系,但如果平面坐标系中两条坐标轴不垂直,则这样的坐标系称为“斜坐标系”.如图,设,是平面内相交的两条数轴,,分别是与轴,轴正方向同向的单位向量,且,,过点作两坐标轴的平行线,其在轴和轴上的截距,分别作为点的坐标和坐标,记,则该坐标系中和两点间的距离为()A .3B .2CD6.已知,且,为虚数单位,则的最大值是( )A .5B .6C .7D .87.给定函数,为的导函数,若数列满足,则称为函数ABCD 2AP PB = PD =23AB AD+2.3AB AD-+1.3AB AD +1.3AB AD-+()i ,a b a b +∈R x ()220x x c c ++=∈R a ={}n a n 1221n n a a a +++=- 22212n a a a +++= ()221n-()21213n -41n -()1413n-Ox Oy 1e 2ex y 1e <23e π>=P x y a bP x y (),P a b ()3,3M ()2,1N z ∈C i 1z -=i 35i z --()f x ()f x '()f x {}n x ()()1n n n n f x x x f x +='-{}n x ()f x的牛顿数列,若数列为函数的牛顿数列,,,,则下列结论中正确的是( )A .数列的通项公式为B .数列的通项公式为C .数列的前项和为D .数列的前项和8.已知函数为定义在上的偶函数,,且,则下列选项不正确的是()A .B .的图象关于点对称C .以6为周期的函数D .二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知向量,,则下列说法正确的是( )A .B .C .与同向的单位向量为D .与10.下列说法正确的有()A .若等差数列的前项和为则,,也成等差数列B .数列可能是等比数列,也可能是等差数列C .若等比数列满足,则D .若等差数列的前项和为,,,则的最大值是11.若函数,与轴的三个交点依次为,,,且在这三个交点处的切线斜率分别记为,,,则下列说法中正确的是( )A .{}n x ()22f x x x =+-1ln2n n n x a x -=+12a =1n x >{}n a 121n n a -=+{}n a 2n a n =11n n a a +⎧⎫⎨⎬⎩⎭n 22233n n S =⨯-{}n na n ()1122n n S n +=-⨯+()f x R ()01f =()()()11f x f x f x -++=()112f =()f x 3,02⎛⎫⎪⎝⎭()f x ()2023112k f k ==-∑()1,2a =-()3,4b = //a b()b a a-⊥ a ⎛ ⎝a b{}n a n ,n S 3S 6S 9S (){}()1na a +∈R {}n a 26174a a a a +=1234567a a a a a a a =±{}n a n n S 120S >130S <n S 6S ()323f x x x ax b =-++()f x x ()1,0A x ()2,0B x ()3,0C x 1k 2k 3k 3a >B .若,则C .若,,成等差数列,则D .第Ⅱ卷非选择题(共92分)三、填空题:本题共3小题,每小题5分,共15分。
重庆育才中学教育集团2024年七年级上学期半期考试数学试题

重庆育才中学教育集团初2027届初一(上)半期自主作业数学试卷(全卷共三个大题,满分150分,考试时间120分钟)一、选择题:(本大题12个小题,每小题3分,共36分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑. 1.下列各数中,最小的是 A .3B .103C . 4D .π2.一小袋味精的质量标准为“50±0.25克”,那么下列四小袋味精质量符合要求的是 A .49.92克B .50.28克C .49.69克D .50.41克3.下列四个数轴的画法中,规范的是 A .B .C .D .4.把6﹣(+3)﹣(﹣7)统一成加法,下列变形正确的是A .6+3+7B .6+(﹣3)+(+7)C .6+(﹣3)+(﹣7)D .6+(+3)+(﹣7) 5.下列式子中,符合代数式书写的是A .435x y − B .2213x C .6xy ÷D .2x y ⨯6.式子3,32a ,2π+,74a b +,5b 中,单项式有A .1个B .2个C .3个D .4个7.下列说法正确的是A .6.569精确到十分位是6.5B .近似数4.8万精确到千位C .近似数50.000精确到个位D .近似数0.59与0.590意义一样8.下列说法正确的是A .有理数a 不一定比﹣a 大B .一个有理数不是正数就是负数C .绝对值等于本身的数有且仅有0和1D .两个数的差为正数,至少其中有一个正数 9.已知|m |=6,|n |=2,|m ﹣n |=n ﹣m ,则m +n 的值是 A .8 B .4或8 C .﹣8 D .﹣4或﹣8 10.若3a 2﹣4a ﹣5=0,则代数式9+8a ﹣6a 2的值为A .1B .﹣1C .19D .﹣1911.某超市把一种商品按成本价x 元提高80%标价,然后再以7折优惠卖出,则这种商品的售价比成本多 A .20%B .24%C .26%D .28%12.对多项式a b c d e −−−−只任意加一个..括号后仍然只含减法运算并将所得式子化简,称之为“减算操作”,例如:()a b c d e a b c d e −−−−=−−−−,()a b c d e a b c d e −−−−=−++−,给出下列说法①至少存在一种“减算操作”,使其结果与原多项式相等; ②不存在任何“减算操作”,使其结果与原多项式之和为0; ③所有的“减算操作”共有7种不同的运算结果. 以上说法中正确的个数为 A .0 B .1 C .2 D .3二、填空题:(本大题10个小题,每小题3分,共30分)请将每小题的答案直接填在答题卡中对应的横线上.13.已知水星的半径约为25400000米,用科学记数法表示为 米.14.如果卖出一台电脑赚钱800元,记作+800元,那么亏本520元,记作 元. 15.13⎛⎫−− ⎪⎝⎭的相反数是 .16.在+7,0,56−,12+,2024,﹣3,0.25,11中,非负整数有 个.17.已知单项式2913a x y 与862b x y +−是同类项,则b a = .18.用式子表示“a 的立方的4倍与b 的平方的3倍的和”为 . 19.多项式4x 3﹣4mxy +10xy +1不含xy 项,则m = .20.数轴上与点A 距离6个单位长度的点表示的数是﹣2,则点A 表示的数是 . 21.如图,大、小两个正方形的边长分别是7cm 和x cm (0<x <7),用含x 的式子表示图中阴影部分的面积为 cm 2.21题22.我们知道,数轴上A 、B 两个点,它们表示的数分别是a 、b ,那么A 、B 两点之间的距离为AB =a b −.如2与3的距离可表示为23−,2与-3的距离可表示为()23−−. (1)25x x −++的最小值为 ; (2)2364x x x −++++的最小值为 .三、解答题:(本大题8个小题,第23题20分,第24题10分,第25题~第28题每题8分,第29题10分,第30题12分,共84分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.23.计算:(1)(8)(32)(16)−−+−+− (2) 2.4 3.5 4.6−+−(3)1551()()361236+−÷− (4)1186(2)()3−÷−⨯−24.计算:(1)12233y y y −+ (2)223247a a a a −+−25.已知2(1)|5||2|5a b c b ++++−=+,求c a 的值.26.已知a b 、互为相反数,m n 、互为倒数且m n ≠,x 的绝对值为2,求42a bmn x m n+−+−−的值.27.先化简,再求值:]14)3(2[)3(422222n m n m mn mn n m +−−−,其中1=m ,21−=n .28.在数轴上表示a 、b 、c 三个数的点的位置如图所示,请化简式子:|2|||2||b c a b c a −++−−.29.用“⊕”和“∆”定义一种新运算:对于任意有理数m ,n ,p ,规定:m n p m p n p ⊕∆=−+− ,如:43141315⊕∆=−+−= .(1)计算:(5)71−⊕∆= . (2)若324a ⊕∆=,则a = .(3)若0111x x ⊕∆=,1221x x ⊕∆=,2331x x ⊕∆=,…,3031311x x ⊕∆=,当001x <<时,求01230...x x x x ++++的值(用含0x 的式子表示).30.已知点A 、点B 在数轴上分别对应有理数a 、b ,其中a 、b 满足21(16)802a b −++=.(1)a= ,b= ;(2)如图,点C 在点A 、点B 之间(点C 不与A 、B 重合),现有一个小球从A 出发向左匀速运动,经过一秒到达AC 的中点,又经过...四秒之后到达BC 的中点,试求点C 所对应的有理数;(3)在(2)的条件下,动点P 从B 点出发沿数轴以每秒6个单位的速度向右运动,当点P 运动到点A 之后立即以原速沿数轴向左运动.动点P 从B 点出发的同时,动点Q 从C 点出发沿数轴以每秒1个单位的速度向右运动,动点M 也从A 点出发沿数轴以每秒3个单位的速度向左运动.设运动的时间为t 秒,是否存在正数k 使得kQM +PM 在一段时间内为定值,如果不存在,说明理由;如果存在,写出所有满足条件的正数k ,并把其中一个正数k 的求解过程写出来.M Q P命题人:向家林、黄 新 审题人:沈 顺。
重庆市第八中学校2023-2024学年七年级下学期期中考试数学试题 (解析版)

重庆八中2023-2024学年度(下)半期考试初一年级数学试题A 卷(100分)一、选择题(本大题共10小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上对应选项的代号除黑.1.的倒数是( )A. B. C. 2 D. 【答案】C【解析】【分析】本题主要考查了倒数,根据倒数得定义求解即可.【详解】解:的倒数是2,故选:C .2. 下列运算正确的是( )A. B. C. D. 【答案】C【解析】【分析】本题考查了单项式乘以单项式,同底数幂的乘法,根据以上运算法则进行计算即可求解.【详解】解:A. ,故该选项不正确,不符合题意;B. ,故该选项不正确,不符合题意;C. ,故该选项正确,符合题意;D. ,故该选项不正确,不符合题意;故选:C .3. 已知球的表面积与它的半径之间的关系式是,其中随的变化而变化,则在这个公式中变量是( )A. , B. , C. D. ,,【答案】B【解析】121212-2-12325a b ab-⋅=428a a a ⋅=224326b b b ⋅=222222a b ab a b ⋅=326a b ab -⋅=426a a a ⋅=224326b b b ⋅=322322a b ab a b ⋅=()2cm S ()cm R 24S Rπ=S R πR S R S S πR【分析】此题主要考查了常量和变量,关键是掌握定义.根据变量和常量的定义:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量,可直接得到答案.【详解】解:中,常量是4,,变量是、,故选:B .4. 已知一个三角形的两边长分别为4cm ,7cm ,则它的第三边的长可能是( )A. 3cmB. 8cmC. 11cmD. 12cm【答案】B【解析】【分析】本题考查三角形的三边关系,熟练掌握三角形两边之和大于第三边,角形的两边差小于第三边是解题的关键.根据三角形两边之和大于第三边,角形的两边差小于第三边,结合选项求解即可.【详解】解:设三角形的第三条边为,,三角形的第三条边长可能是,故选:B .5. 如图是雨伞在开合过程中某时刻的截面图,伞骨,点D ,E 分别是,的中点,,是连接弹簧和伞骨的支架,且,已知弹簧M 在向上滑动的过程中,总有,其判定依据是( )A.B. C. D. 【答案】C【解析】【分析】根据全等三角形判定的“”定理即可证得.【详解】解:∵,点D ,E 分别是,的中点,∴,在和中,24S R π=πS R cm x 311x << ∴8cm AB AC =AB AC DM EM =DM EM ADM AEM △△≌ASA AAS SSS SASSSS ADM AEM △△≌AB AC =AB AC AD AE =ADM △AEM △,∴,故选:C .【点睛】此题主要考查了全等三角形的应用,熟练掌握全等三角形的判定方法是解题关键.6. 如图是将一个小长方体铁块固定一个大长方体容器的底部的截面图,现均匀地向这个容器中注水,最后把容器注满,在注水的过程中大长方体水面的高度随时间变化的函数图像大致是( )A. B.C. D.【答案】B【解析】【分析】本题考查了函数的图像,解题的关键数形结合,容器下面一段横截面积小,水位上升快,上面一段横截面积大,水位上升慢,即图像为两段线段,先陡后平.【详解】解:在注水过程中,容器下面一段横截面积小,水位上升快,上面一段横截面积大,水位上升慢,即图像为两段线段,先陡后平,故选:B .7. 若关于的二次三项式是一个完全平方式,那么的值是( )A. B. C. D. 或【答案】D AD AE AM AM DM EM =⎧⎪=⎨⎪=⎩()SSS ADM AEM ≌ h t x ()2216x k x +-+k 6-66±106-【解析】【分析】本题主要考查了完全平方公式,熟练掌握完全平方式是解题的关键.根据和都是一个完全平方式解答即可.【详解】解:和它们都是完全平方式,或,解得:或,故选:D .8. 某校社团课28名学生制作长方体礼品盒,每人每小时可做60个侧面或90个底面,一个礼品盒要一个侧面和两个底面组成,为了使每小时制作的成品刚好配套,应该分配多少名学生做侧面,多少名学生做底面设分配x 名学生做侧面,则可列方程为( )A. B. C.D. 【答案】D【解析】【分析】本题考查了一元一次方程的应用,设分配x 名学生做侧面,根据配套问题, 一个礼品盒要一个侧面和两个底面组成,列出方程,即可求解.【详解】解:设分配x 名学生做侧面,则可列方程为故选:D .9. 如果关于x 的多项式的结果不含项,则m 的值为( )A. 0B. 4C.D. 1【答案】C【解析】【分析】本题主要考查了多项式乘法中的无关型问题,根据多项式乘以多项式的计算法则求出的结果,再根据不含项,即含项的系数为0进行求解即可.【详解】解:2816x x ++2816x x -+ ()224816x x x +=++()226481x x x =-+-∴k -=2828k -=-10k =6k=-()6029028x x =⨯-()609028x x =-()906028x x =-()2609028x x ⨯=-()2609028x x ⨯=-()()2144x x mx +-+2x 14()()2144x x mx +-+2x 2x ()()2144x x mx +-+3224444x mx x x mx =-++-+,∵关于x 的多项式的结果不含项,∴,∴,故选:C .10. 如图,在和中,再添两个条件不能使和全等的是( )A. ,B. ,C. ,D. ,【答案】B【解析】【分析】本题考查了三角形全等的判定方法,根据全等三角形的判定方法分别进行判定即可.【详解】解:A 、∵,∴,又∵,∴,故A 选项不符合题意;B 、 ∵,,,不能根据判定两三角形全等,故B 选项符合题意;C 、∵,,又,∴,故C 选项不符合题意;D 、 ∵,∴,又∵,,∴,故D 选项不符合题意;故选:B .()()3241444x m x m x =--+-+()()2144x x mx +-+2x ()410m --=14m =ABC BDE ABC BDE AB BD =AE DC=AB BD =DE AC =BE BC =E C∠=∠EAF CDF ∠=∠DE AC=AB BD =AE DC=BE BC =B B ∠=∠ABC DBE ≌△△()SAS AB BD =DE AC =B B ∠=∠SSA BE BC =E C ∠=∠B B ∠=∠ABC DBE ≌△△()ASA EAF CDF ∠=∠BAC BDE ∠=∠DE AC =B B ∠=∠()AAS ABC DBE ≌二、填空题(本大题共4小题,每小题4分,共16分)请将每小题的答案直接填写在答题卡中对应的横线上.11. 国家统计局最新数据显示,2024年一季度我国国内生产总值(GDP )为亿元.数用科学记数法可以表示为______.【答案】【解析】【分析】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义.科学记数法的表现形式为的形式,其中,为整数,确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同,当原数绝对值大于等于时,是正整数,当原数绝对值小于时是负整数;由此进行求解即可得到答案.【详解】解:,故答案为:.12. 已知,,则______.【答案】【解析】【分析】本题考查同底数幂除法,同底数幂的除法法则:底数不变,指数相减.根据同底数幂的除法法则求解.【详解】解:∵,,∴.故答案为:.13. 如图所示的网格是正方形网格,点,,,均落在格点上,则的度数为______.【答案】【解析】的28499728499752.8499710⨯10n a ⨯110a ≤<n n a n 10n 1n =⨯52.824994997810752.8499710⨯56m =53n =5m n -=256m =53n =5632m n -=÷=2A B C D DCB ACB ∠+∠90︒【分析】本题网格型问题,考查了三角形全等的性质和判定,本题构建全等三角形是关键.证明,得,根据同角的余角相等可得结论.【详解】解:,,,,,,故答案为:.14. 已知一个长方形的周长为,长与宽的平方和为,则该长方形的面积为______.【答案】####【解析】【分析】本题考查了完全平方公式的应用,解题的关键是熟练掌握完全平方公式.设长方形的长、宽分别为、,则,,根据完全平方公式即可求解.【详解】解:设长方形的长、宽分别为、,则,,,,即,解得;,该长方形的面积为,故答案为:.三、解答题(15题共16分每小题4分,16题8分,17题10分,18题10分,共44分)解答应写出必要的文字说明、证明过程或演算步骤,请将解答过程书写在答题卡中对应的位置上.15. 计算:()SAS DCE ACB ≌DCE ACB ∠=∠ 3AB DE ==5BC EC ==90E ABC ∠=∠=︒∴()SAS DCE ACB ≌∴DCE ACB ∠=∠∴90DCB ACB DCB DCE BCE ∠+∠=∠+∠=∠=︒90︒12251121525.5a b 2225a b +=()212a b +=a b 2225a b +=()212a b +=∴6a b +=∴()a b a b ab +=++=222226ab +=25236112ab =∴112112(1)(2)(3) (4)【答案】(1)(2)(3)(4)【解析】【分析】本题考查了有理数的混合运算,整式的混合运算,解题的关键是熟练的掌握整式的混合运算法则.(1)根据有理数的混合运算法则计算即可;(2)根据平方差公式简算即可;(3)根据整式的乘法法则计算即可;(4)根据积的乘方,平方差和完全平方公式即可求解.【小问1详解】解:小问2详解】【小问3详解】【()2031220263π-⎛⎫++- ⎪⎝⎭2202620252027-⨯()2223a b a b-()()22m n m n -+0132362a b a b -42242m m n n -+()2031220263π-⎛⎫++- ⎪⎝⎭819=+-0=2202620252027-⨯()()220262026120261=--⨯+()22202620261=--1=()2223a b a b -【小问4详解】16. 先化简,再求值:,其中.【答案】,【解析】【分析】本题考查了整式的化简,代数式求值,绝对值的非负性.解题的关键在于对知识的熟练掌握与正确的运算.先利用平方差公式和完全平方公式计算,然后合并同类项,然后计算除法,利用非负数的性质求得a 、b 的值,最后代入数值求解即可.【详解】解:原式∵,且,∴,∴,∴,将,代入上式得222232a b a a b b =⋅-⋅32362a b a b =-()()22m n m n -+()()2m n m n ⎡⎤=-+⎣⎦()222m n =-42242m m n n -=+()()()()223363a b a b a b b ⎡⎤+--+÷-⎣⎦()2120a b +++=533a b +233-()()()()223363a b a b a b b ⎡⎤=+--+÷-⎣⎦()()()2222673623a ab b a ab b b ⎡⎤=+--++÷-⎣⎦()()2593ab b b =--÷-533a b =+()2120a b +++=10a +≥()220b +≥10a +=()220b +=10a +=20b +=1a =-2b =-1a =-2b =-原式.17. 如图,在中,,,过点C 作,连接.(1)基本尺规作图:作,交线段于点F (保留作图痕迹);(2)求证:.解:∵∴___①___(___②___)∵∴在和中∴∴(___④___)【答案】(1)见解析 (2)①;②两直线平行,同帝内角互补;③;④全等三角形的对应边相等【解析】【分析】(1)根据运用作相等角的作图方法画图即可;(2)根据平行线的性质可推出①及②,再根据全等三角形的判定定理和性质可得③④.【小问1详解】()()51323=⨯-+⨯-563=--233=-ABC AB AC =90BAC ∠=︒CE AB ∥AE ABF EAC ∠=∠AC BF AE =CE AB∥90BAC ∠=︒18090ACE BAC BAF∠=︒-∠=︒=∠BAF △ACE △()______BA ACBAF ACE ⎧⎪=⎨⎪∠=∠⎩③()ASA BAF ACE ≌BF AE =180BAC ACE ∠+∠=︒ABF EAC ∠=∠解:如图:即为所求【小问2详解】解:∵∴(两直线平行,同帝内角互补)∵∴在和中∴∴(全等三角形的对应边相等)18. 在中,D 是的中点,;(1)证明:;(2)若,平分,求的度数.【答案】(1)证明见解析(2)【解析】【分析】本题考查了全等三角形的性质与判定,平行线的性质,角平分线的定义,(1)根据平行线的性质可得,,结合,证明,根据全等三角形的性质,即可得证;BAF ∠CE AB∥180BAC ACE ∠+∠=︒90BAC ∠=︒18090ACE BAC BAF∠=︒-∠=︒=∠BAF △ACE △ABF EACBA ACBAF ACE∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA BAF ACE ≌BF AE =ABC BC AC BF ∥DE DF ==110BAC ∠︒DB ABF ∠C ∠35︒C FBD ∠=∠F CED ∠=∠CD BD =()AAS CDE BDF ≌(2)根据平行线的性质得出,进而根据平分,即可求解.【小问1详解】证明:∵∴,∵D 是中点∴在和中∴∴【小问2详解】解:∵∴,∵∴∵平分∴B 卷(50分)四、选择题(本大题共2小题,每小题4分,共8分)请将每小题的答案填涂在答题卡中对应的位置.19. 定义新运算:,例如:,若,,,则,的大小关系为( )A. B. C. D. 【答案】C【解析】【分析】本题考查了整式的混合运算,解答的关键是熟练掌握相应的运算法则.先根据新定义的运算求出的值,再比较即可.【详解】解:18070ABF BAC ∠=-∠=︒︒DB ABF ∠AC BF∥C FBD ∠=∠F CED∠=∠BC CD BD=CDE BDF V CED F C FBDCD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS CDE BDF ≌DE DF=AC BF∥C FBD ∠=∠180BAC ABF ∠+∠=︒=110BAC ∠︒18070ABF BAC ∠=-∠=︒︒DB ABF ∠1352C FBD ABF ∠=∠=∠=︒()*a b a a b =+()1*21122=⨯+=1n >*A m mn =*B mn m =A B A B>A B <A B ≤A B ≥A B -()22*A m mn m m mn m m n ==+=+,故选:C .20. (多选)如图,的两条角平分线、相交于点D ,且,过点A 作交的延长线于点M .则下列结论中正确的有( )A. 若,则B.C.D. 【答案】ACD【解析】【分析】本题考查了角平分线的定义,三角形内角和定理,三角形的外角性质.根据角平分线的定义,三角形内角和定理,三角形的外角性质即可求解.【详解】解:A.∵∴∵是的平分线,是的平分线,∴∴又∴()222*B mn m mn mn m m n m n==+=+∴()222221A B m m n m n -=-=- 1n >∴210n -< 20m ≥∴()2210A B m n -=-≤∴A B ≤ABC CF AE 90BAC ∠=︒AM AE ⊥CF =60B ∠︒BFD AEC∠=∠AC AF EC =+2180ADC B ∠-∠=︒12M B ∠=∠90,60BAC B ∠=︒∠=︒30ACB ∠=︒CF ACB ∠AE BAC ∠1115,4522BCF ACB BAE BAC ∠=∠=︒∠=∠=︒6045105AEC B BAE ∠=∠+∠=︒+︒=︒180B BFC BCF ∠+∠+∠=︒1801801560105BFC BCF B ∠=︒-∠-∠=︒-︒-︒=︒∴故选项A 正确;B.无法找出三者关系,故选项B 错误;C.∵是的平分线,是的平分线,∴∴∴∴,故选项C 正确;D.∵∴∵∴,故D 正确;故选:ACD五、填空题(本大题共3小题,每小题4分,共12分)请将每小题的答案直接填写在答题卡中对应的横线上.21. 关于的一元一次方程的解为整数,则所有整数的和为______.【答案】【解析】【分析】此题考查了一元一次方程的解,方程去分母,去括号,移项合并,把的系数化为1,表示出方程的解,由方程的解为整数,确定出整数的值即可.【详解】解:BFC AEC ∠=∠AC AF EC 、、CF ACB ∠AE BAC ∠11,22DAC BAC DCA BCA ∠=∠∠=∠()111222DAC DCA BAC BCA BAC BCA ∠+∠=∠+∠=∠+∠()()11801802ADC DAC DCA BAC BCA ∠=︒-∠+∠=︒-∠+∠()11801802B =︒-︒-∠1902B =︒+∠2180ADC B ∠-∠=︒AM AE⊥90ADC M∠=︒+∠1902ADC B ∠=︒+∠12M B ∠=∠x 132kx x -+=k 8x k 132kx x -+=kx x-+=162kx x -=-25()k x -=-25x k =--52解为整数,或或或,则所有整数的和为,故答案为:.22. 若,,则______.【答案】3【解析】【分析】本题主要考查了完全平方公式的应用、非负数的性质、乘方等知识点,根据题意推出,求得a 、c 的值成为解题的关键.由可得,再代入可得,根据非负数的性质可得,最后代入即可解答.【详解】解:∵,∴,∴,∴,即,∴.故答案为3.23. 在中,于E ,于D ,交于F ,平分交延长线于M ,连接,.若,,,则______.∴3k =7k =3k =-1k =k ++-=3713886a b -=22100ab c c +-+=c a =()()22310a c -+-=6a b -=6b a =-22100ab c c +-+=()()22310a c -+-=3,1a c ==c a 6a b -=6b a =-()262100a a c c -+-+=2262100a a c c -+-+=2269210a a c c -++-+=()()22310a c -+-=3010a c -=-=,31a c ==,133c a ==ABC CE AB ⊥AD BC ⊥CE AD EM BEC ∠AD BM CM 180DFC ABM ∠+∠=︒52BE AE =5AEF S =△EMC S =【答案】【解析】【分析】本题考查了全等三角形的判定和性质,根据题意证明,,,得出,.进而根据得出,,根据得出,根据,即可求解.【详解】解:∵,∴,∵平分∴,又∵∴,∴∵于E ,于D ,∴,,∴又∵∴∵,,∴,.∵,253BEM EFM △≌△AEF CEB ≌BE EF =AE EC =5AEF S =△5AE =103BEM EFM S S ==△△23FFM FMC S EF S FC ==△△352MFC EFM S S ==△△EMC EFM FMC S S S =+△△△180DFC ABM ∠+∠=︒180DFC DFE ∠+∠=︒MFE MBE ∠=∠EM BEC∠BME FME ∠=∠ME ME=BEM EFM △≌△()SAS EB EF=CE AB ⊥AD BC ⊥EAF ABC ECB ABC ∠+∠=∠+∠90AEF CEB ∠=∠=︒EAF ECB∠=∠EB EF=()AAS AEF CEB ≌BEM EFM △≌△AEF CEB ≌BE EF =AE EC =52BE AE =∴.∴.∴.∴,.∴.∵,∴.∵,∴,∴.故答案为:.六、解答题(24题10分,25题10分,26题10分,共30分)解答应写出必要的文字说明、证明过程或演算步骤,请将解答过程书写在答题卡中对应的位置上.24. 已知甲、乙两地相距10千米,小诚从乙地出发,匀速骑行至甲地,在甲地休息一段时间后,便以原速度的匀速返回乙地.小诚从乙地出发10分钟后,小勤从甲地出发至乙地,小勤先匀速步行至两地中点,再从中点匀速慢跑至乙地,最后两人同时到达乙地.在运动过程中,小诚和小勤距甲地的距离y (千米)与小勤出发的时间x (小时)的关系如图所示,请结合图象信息解答下列问题:(1)小勤出发时,小诚骑行路程为______千米,小勤出发______小时后步行至甲、乙中点,小诚从乙地25BE AE EF ==1125225AEF S AE EF AE AE =⋅=⋅=△5AE =2BE EF ==5AE EC ==523FC EC EF =-=-=52AEM AEF FFM BEM BEM S AE S S S BE S +===△△△△△103BEM EFM S S ==△△23FFM FMC S EF S FC ==△△352MFC EFM S S ==△△1025533EMC EFM FMC S S S =+=+=△△△25345到甲地的骑行速度为______千米/小时,小勤的步行速度为______千米/小时;(2)写出小勤距甲地的距离y (千米)和x (小时)的关系式;(3)小勤出发多少小时后,两人在小勤未到达甲、乙中点前相距500米.【答案】(1);1;;(2) (3)或【解析】【分析】本题考查了根据函数图象获取信息,一元一次方程的应用;(1)根据函数图象小诚骑行路程为 千米,小勤先匀速步行至两地中点,再从中点匀速慢跑至乙地,小诚从乙地出发10分钟后,小勤从甲地出发至乙地,可得小诚的速度,小勤1小时步行千米,可得小勤的步行速度,即可求解;(2)根据(1)的分析,根据路程等于速度乘以时间,分段写出关系式,即可求解;(3)设小勤出发t 小时后,两人在小勤未到达甲、乙中点前相距米.分量种情况讨论,结合题意列出一元一次方程,即可求解.【小问1详解】解:小勤出发时,小诚骑行路程为 千米,小勤先匀速步行至两地中点,再从中点匀速慢跑至乙地,根据函数图象可得,小勤出发小时后步行至甲、乙中点,小诚从乙地出发10分钟后,小勤从甲地出发至乙地,千米/小时,小勤1小时步行千米,则千米/小时;∴小诚从乙地到甲地的骑行速度为千米/小时,小勤的步行速度为千米/小时;故答案为:;1;;.【小问2详解】解:小诚从乙地出发,匀速骑行至甲地,在甲地休息一段时间后,便以原速度的匀速返回乙地.由(1)可得返回的速度为千米/小时,2.5155()501116116x x y x x ⎧≤≤⎪=⎨⎛⎫-<≤ ⎪⎪⎝⎭⎩720252.55500107.5 2.5-= 2.51107.5151060-=5551=1552.515545415125⨯=则所用时间为/小时,∵两人同时到达乙地.∴所用时间为∴当时,;当时,小勤的速度为:千米/小时,∴∴【小问3详解】设小勤出发t 小时后,两人在小勤未到达甲、乙中点前相距米.或解得:或答:小诚出发或小时后,两人在小勤未到达甲、乙中点前相距米.25. 我国南宋时期有一位杰出的数学家杨辉,如图所示的图表是他在《详解九章算术》中记载的“杨辉三角”.第一行第二行 各项系数和为第三行 各项系数和为第四行 各项系数和为……………………此图揭示了(n 为非负整数)的展开式的项数及各项系数的有关规律,请根据上述规律,解决以下问题:(1)多项式展开式共有______项,第二项的系数为______,各项系数和为______;105126=511166+=01x ≤≤5y x =1116x <≤510266÷÷=()56161y x x =+-=-()501116116x x y x x ⎧≤≤⎪=⎨⎛⎫-<≤ ⎪⎪⎝⎭⎩5002.5150.5510t t +++= 2.5150.5510t t +-+=720t =25t =720255001()01a b +=11()1a b a b +=+112+=121()2222a b a ab b +=++1214++=1331()3322333a b a a b ab b +=+++13318+++=()n a b +()7a b +(2)如图,在“杨辉三角”中,选取部分数1,3,6,……,记,,……请完成下列问题:①计算;②计算;③请直接写出的值.【答案】(1)8,7,128(2)①357;②;③4051【解析】【分析】本题考查数字变化类,多项式的乘法;(1)根据“杨辉三角”中第三行中的数据,将展开后,各项的系数和所呈现的规律进行计算即可.(2)①根据规律得出,进而将代入进行计算即可求解;②将已知式子裂项为,即可求解;③根据进行计算即可求解.【小问1详解】根据“杨辉三角”可知,第2行,展开后,各项系数和为,第3行,展开后,各项的系数和为,第4行,展开后,各项的系数和为,的11a =23a =36a =326a a +1250111a a a ++⋅⋅⋅+20262024a a -10051()n a b +()12n n n a +=3,26n =125011122212235051a a a ++⋅⋅⋅+=++⋅⋅⋅+⨯⨯⨯()()2026202412026202612024202412a a -=⨯+-⨯+⎡⎤⎣⎦1()a b +122()a b +212142++==3()a b +3133182+++==第5行,展开后,各项系数和为,第6行,展开后,各项的系数和为,第7行,展开后,各项的系数依次为、、、、、、,各项的系数和为第8行, 展开后,各项的系数依次为、、、、、、、各项的系数和为展开后,各项的系数和为,∴多项式展开式共有项,第二项的系数为,各项系数和为128;故答案为:8,7,128.【小问2详解】①由题意得:、、∴∴②由题意得:、、∴∴的4()a b +414641162++++==5()a b +515101051322+++++==6()a b +161520156161615201561642++++++==()7a b +17213535217171721353521711282+++++++==()n a b +2n ()7a b +8711a =2123a =+=31236a =++=()1122n n n a n +=++⋅⋅⋅+=()()32633126261635135722a a ⨯+⨯++=+=+=11a =2123a =+=31236a =++=()1122n n n a n +=++⋅⋅⋅+=125011122212235051a a a ++⋅⋅⋅+=++⋅⋅⋅+⨯⨯⨯111212235051⎛⎫=++⋅⋅⋅+ ⎪⨯⨯⨯⎝⎭111111212235051⎛⎫=-+-+⋅⋅⋅+- ⎪⎝⎭12151⎛⎫=- ⎪⎝⎭③26. 已知,,.(1)如图1,求证:;(2)如图2,若,点,分别在,上,连接,过点作于点,过点作交的延长线于点,连接,求证:;(3)如图3,若,延长和相交于点,过点作于点,若,,求的长.【答案】(1)证明见解析(2)证明见解析(3)【解析】【分析】(1)根据题意证明,根据全等三角形性质即可解答;(2)过点作于点,延长交于点,证明,得到,,再证明得到,即可求解;(3)过点作于点,证明得到,,,推出,再证明,得到,,推出的50251=⨯10051=()()2026202412026202612024202412a a -=⨯+-⨯+⎡⎤⎣⎦()22120262026202420242=+--()120262024222=+⨯+⎡⎤⎣⎦4051=AB AC =AD AE =BAC DAE ∠=∠BD CE =90BAC ∠=︒D E AB AC BE D DH BE ⊥H A AF BC ∥HD F BF BF DF BE +=90BAC ∠=︒BD EC F A AQ BD ⊥Q 2.4FC =7.6BF =BQ 2.6BQ =BAD CAE ≌△△A AM DE ⊥M AM BE N AEN ADF ≌ EN DF =AN AF =BAN BAF ≌ BN BF =A AG EF ⊥G ABD ACE △△≌BD CE =ABD ACE ∠=∠ABD ACE S S = AQ AG =AQB AGC ≌ BQ CG =BAQ CAG ∠=∠,可证明四边形为正方形,得到,设,则,根据列方程,即可求解.【小问1详解】证明:,,,,,,;【小问2详解】如图2,过点作于点,延长交于点,,,,,,,,,,,,,,∵,即,在和中,90QAG ∠=︒AGFQ FG FQ =BQ CG x ==2.4FQ FG CF CG x ==+=+BF BQ FQ =+ BAC DAE ∠=∠∴BAD DAC CAE DAC ∠+∠=∠+∠∴BAD CAE ∠=∠ AB AC =AD AE =∴()SAS BAD CAE ≌∴BD CE =A AM DE ⊥M AM BE N 90BAC ∠=︒AB AC =∴45ABC ACB ∠=∠=︒ 90BAC DAE ∠=∠=︒AD AE =AM DE ⊥∴45DAN EAN ∠=∠=︒ AF BC ∥∴45DAF ABC ∠=∠=︒∴45EAN DAF ∠=∠=︒ 90DHB BAE ∠=∠=︒DBH EBA ∠=∠∴BDH BEA ∠=∠BDH ADF∠=∠∴ADF BEA ∠=∠ADF AEN ∠=∠AEN △ADF △,,,,在和中,,,,,,,,即;【小问3详解】如图3,过点作于点,,,,在和中,,,,,,,EAN DAF AE ADAEN ADF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ASA AEN ADF ≌∴EN DF =AN AF =BAN BAF △45AN AF BAN BAF AB AB =⎧⎪∠=∠=︒⎨⎪=⎩∴()SAS BAN BAF ≌∴BN BF = BE BN EN =+BN BF =EN DF =∴BE BF DF =+BF DF BE +=A AG EF ⊥G 90BAD DAC ∠+∠=︒90CAE DAC ∠+∠=︒∴BAD EAC ∠=∠ABD △ACE △AB AC BAD EAC AD AE =⎧⎪∠=∠⎨⎪=⎩∴()SAS ABD ACE ≌∴BD CE =ABD ACE ∠=∠ABD ACE S S = ∴1122BD AQ CE AG =,在和中,,,,,,,即,,,四边形为矩形,,四边形为正方形,,设,则,,,,.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的性质,正方形的判定与性质,平行线的性质,解题的关键是灵活运用这些知识.∴AQ AG =AQB AGC AQ AG AB AC =⎧⎨=⎩∴()HL AQB AGC ≌∴BQ CG =BAQ CAG ∠=∠ 90BAQ QAC ∠+∠=︒∴90CAG QAC ∠+∠=︒90QAG ∠=︒ AQ BF ⊥AG EF ⊥∴AGFQ AQ AG =∴AGFQ ∴FG FQ =BQ CG x == 2.4FQ FG CF CG x ==+=+ BF BQ FQ =+∴7.6 2.4x x =++∴ 2.6x =∴ 2.6BQ =。
四川省绵阳市2023-2024学年高二上学期期中数学试题含解析

绵阳南山2023年秋季高2022级半期考试数学试题(答案在最后)考试时间:120分钟总分:150分一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.直线10x +-=的倾斜角是()A.π6B.π3 C.2π3D.5π6【答案】D 【解析】【分析】根据已知条件,结合直线的倾斜角与斜率的关系,即可求解.【详解】设直线的倾斜角为θ,0πθ≤<,直线10x +-=可化为y =,所以直线的斜率tan k θ==5π6θ∴=,故选:D .2.已知空间向量()1,,2a m m =+- ,()2,1,4b =- ,且a b ⊥,则m 的值为()A.103-B.10-C.10D.103【答案】B 【解析】【分析】根据向量垂直得2(1)80m m -++-=,即可求出m 的值.【详解】,2(1)8010a b m m m ⊥∴-++-=⇒=-.故选:B.3.已知直线1:20l x ay ++=,2:2430l x y ++=相互平行,则1l 、2l 之间的距离为()A.10B.5C.5D.2【答案】A【解析】【分析】根据两直线平行得到关于a 的方程,求出a 的值,再由两平行线之间的距离公式计算即可.【详解】因为直线1:20l x ay ++=,2:2430l x y ++=相互平行,所以240a -=,解得2a =,所以1:220l x y ++=,即2440x y ++=,所以1l 、2l之间的距离510d ==.故选:A.4.已知某地A 、B 、C 三个村的人口户数及贫困情况分别如图(1)和图(2)所示,当地政府为巩固拓展脱贫攻坚成果,全面推进乡村振兴,决定采用分层随机抽样的方法抽取20%的户数进行调查,则样本容量和抽取C 村贫困户的户数分别是()A.150,15B.150,20C.200,15D.200,20【答案】D 【解析】【分析】将饼图中的A 、B 、C 三个村的人口户数全部相加,再将所得结果乘以20%得出样本容量,得出C 村抽取的户数,再乘以50%可得出C 村贫困户的抽取的户数.【详解】将饼图中的A 、B 、C 三个村的人口户数全部相加,再将所得结果乘以20%得出样本容量为()35020045020%100020%200++⨯=⨯=,C 村抽取的户数为20020040350200450++⨯=户,则抽取C 村贫困户的户数为400.520⨯=户.故选:D.5.已知F 1,F 2是椭圆C 的两个焦点,焦距为4.若P 为椭圆C 上一点,且△PF 1F 2的周长为10,则椭圆C 的离心率e 为()A.32B.3C.23D.13【答案】C 【解析】【分析】根据椭圆的定义与焦距的性质即可求解.【详解】依题意知,焦距:24c =,由椭圆的定义得△PF 1F 2的周长为:2210a c +=,解得:2,3c a ==,所以离心率23c e a ==.故选:C.6.若圆C 经过点()2,5A ,()4,3B ,且圆心在直线l :330x y --=上,则圆C 的方程为()A.()()22234x y -+-= B.()()22238x y -+-=C.()()22362x y -+-= D.()()223610x y -+-=【答案】A 【解析】【分析】求解AB 的中垂线方程,然后求解圆的圆心坐标,求解圆的半径,然后得到圆的方程.【详解】圆C 经过点()2,5A,()4,3B ,可得线段AB 的中点为()3,4,又53124AB k -==--,所以线段AB 的中垂线的方程为43y x -=-,即10x y -+=,由10330x y x y -+=⎧⎨--=⎩,解得23x y =⎧⎨=⎩,即()2,3C ,圆C 的半径2r ==,所以圆C 的方程为()()22234x y -+-=.故选:A.7.先后两次掷一枚质地均匀的骰子,事件A =“两次掷出的点数之和是6”,事件B =“第一次掷出的点数是奇数”,事件C =“两次掷出的点数相同”,则()A.A 与B 互斥B.B 与C 相互独立C.()16P A = D.A 与C 互斥【答案】B 【解析】【分析】根据互斥的定义和相互独立的公式即可求解.【详解】对于选项A :第一次掷出点数为3,第二次掷出点数为3,满足事件A ,也满足事件B ,因此A 与B 能够同时发生,所以A 与B 不互斥,故选项A 错误;对于选项B :31()62P B ==,61()366P C ==,31()3612P BC ==,所以()()()P BC P B P C =⋅,所以B 与C 相互独立,即选项B 正确;对于选项C :()51366=≠P A ,故选项C 错误;对于选项D :第一次掷出点数为3,第二次掷出点数为3,满足事件A ,也满足事件C ,因此A 与C 能够同时发生,所以A 与C 不互斥,故选项D 错误;故选:B .8.若过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(),P x y ,则PA PB ⋅的最大值是()A.4B.5C.6D.8【答案】B 【解析】【分析】先计算出两条动直线经过的定点,即A 和B ,注意到两条动直线相互垂直的特点,则有PA PB ⊥;再利用基本不等式放缩即可得出||||PA PB 的最大值.【详解】解:由题意可知,动直线0x my +=经过定点(0,0)A ,动直线30mx y m --+=即(1)30m x y --+=,经过点定点()1,3B ,注意到动直线0x my +=和动直线30mx y m --+=始终垂直,P 又是两条直线的交点,则有PA PB ⊥,222||||||10PA PB AB ∴+==.故22||||||||52PA PB PA PB +=(当且仅当||||PA PB ==时取“=”)故选:B .【点睛】本题是直线和不等式的综合考查,特别是“两条直线相互垂直”这一特征是本题解答的突破口,从而有22||||PA PB +是个定值,再由基本不等式求解得出.直线位置关系和不等式相结合,不容易想到,是个灵活的好题.二、多项选择题(每小题5分,共4小题,共20分.在每个小题给出的四个选项中,有多项符合题目要求.全对的得5分,部分选对的得2分,有选错的得0分.)9.已知椭圆221169x y +=与椭圆()22190169x y t t t+=-<<++,则下列说法错误的是()A.长轴长相等B.短轴长相等C.离心率相等D.焦距相等【答案】ABC 【解析】【分析】分别求出这两个椭圆的长轴长、短轴长、离心率、焦距,比较即可得到答案.【详解】由已知条件得椭圆221169x y +=中,4a =,3b =,c ==则该椭圆的长轴长为28a =,短轴长为26b =,离心率为4c e a ==,焦距为2c =;椭圆()22190169x y t t t+=-<<++中,焦点在x轴上,a =b =,c ==这两个椭圆只有焦距相等.故选:ABC .10.已知空间中三点()0,1,0A ,()2,2,0B ,()1,3,1C -,则下列结论错误的是()A.AB 与AC是共线向量B.与AB同向的单位向量是255,,055⎛⎫ ⎪ ⎪⎝⎭C.AB 与BC夹角的余弦值是11D.平面ABC 的一个法向量是()1,2,5-【答案】AC 【解析】【分析】A :利用共线向量定义进行判断;B :与AB同向的单位向量AB AB;C :利用向量夹角余弦公式判断;D :设平面ABC 的法向量为(),,n x y z =r ,则0n AB n AC ⎧⋅=⎪⎨⋅=⎪⎩,由此能求出结果.【详解】对于A :()()2,1,0,1,2,1AB AC ==-,12,21AB -≠∴与AC 不是共线向量,故A 错误;对于B :()2,1,0AB = ,则与AB同向的单位向量是)2,1,0,55AB AB ⎛⎫== ⎪ ⎪⎝⎭,故B 正确;对于C :()()2,1,0,3,1,1AB BC ==-,∴55cos ,11AB BCAB BC AB BC⋅⋅==-,故C 错误;对于D :()()2,1,0,1,2,1AB AC ==- ,设平面ABC 的法向量为(),,n x y z =r,则2020n AB x y n AC x y z ⎧⋅=+=⎪⎨⋅=-++=⎪⎩ ,取1x =,得()1,2,5n =- ,故D 正确.故选:AC .11.光线自点()4,2射入,经倾斜角为45︒的直线:1l y kx =+反射后经过点()3,0,则反射光线经过的点为()A.914,8⎛⎫ ⎪⎝⎭B.()9,15-C.()3,15- D.()13,2【答案】BC 【解析】【分析】先求点()4,2关于直线l 的对称点,得出反射后的直线,再对选项逐一检验【详解】由题意知,tan415k =︒=,设点()4,2关于直线1y x =+的对称点为m n (,),则21424122n m n m -⎧=-⎪⎪-⎨++⎪=+⎪⎩,解得15m n =⎧⎨=⎩,所以反射光线所在的直线方程为()()05333251y x x -=--=--,所以当9x =时,15y -=;当3x -=时,15y =,故选:BC12.对于平面直角坐标系内任意两点()()1122,,,A x y B x y ,定义它们之间的一种“折线距离”:()2121,d A B x x y y =-+-,则下列命题正确的是()A.若()()1,3,1,0A B -,则(),5d A B =B.若A 为定点,B 为动点,且满足(),1d A B =,则B 点的轨迹是一个圆C.若A 为定点,B 为动点,且满足(),1d A B =,则B 点的轨迹是一个椭圆D.若点C 在线段AB 上,则()()(),,,d A C d C B d A B +=【答案】AD 【解析】【分析】由新定义直接计算可判断A ,设()0,0A ,(),B x y ,结合新定义可判断BC ,设()()(),,,,,A A B B C C A x y B x y C x y 且,A C B A C B x x x y y y <<<<,结合新定义可判断D【详解】由题意可得:当()1,3A -,()1,0B ,时()2121,11305d A B x x y y =-+-=--+-=,所以A 正确;不妨设()0,0A ,(),B x y ,由题意可得1x y +=,此时表示的几何图形是正方形,所以BC 错误;设()()(),,,,,A A B B C C A x y B x y C x y 且,A C B A C B x x x y y y <<<<,所以()(),,d A C d C B +=C A C A B C B Cx x y y x x y y -+-+-+-C A C A B C B C B A B Ax x y y x x y y x x y y =-+-+-+-=-+-(),B A B A x x y y d A B =-+-=,所以D 正确.故选:AD三、填空题(本大题共4小题,每小题5分,共20分,把答案直接填在答题卡中的横线上.)13.已知直线1l :310++=mx y 与直线2l :()2540x m y ++-=互相垂直,则它们的交点坐标为_________.【答案】75,66⎛⎫⎪⎝⎭【解析】【分析】利用互相垂直求出m ,然后两直线联立即可求出交点坐标.【详解】因为直线1l :310++=mx y 与直线2l :()2540x m y ++-=互相垂直,所以()2350m m ++=,解得3m =-,联立33102240x y x y -++=⎧⎨+-=⎩,解得直线1l 和2l 的交点坐标为75,66⎛⎫⎪⎝⎭,故答案为:75,66⎛⎫⎪⎝⎭14.如图,在平行六面体1111ABCD A B C D -中,设1,,AA a AB b AD c ===,N 是BC 的中点,则向量1A N = _________.(用,,a b c表示)【答案】12a b c→→→-++【解析】【分析】根据向量的加减法运算法则及数乘运算求解即可.【详解】由向量的减法及加法运算可得,111A N =AN AA =AB BN AA →→→→→-+-11122AB AD AA b c a →→→→→→=+-=+-,故答案为:12a b c→→→-++15.某单位为了解该单位党员开展学习党史知识活动情况,随机抽取了部分党员,对他们一周的党史学习时间进行了统计,统计数据如下表所示:党史学习时间(小时)7891011党员人数610987则该单位党员一周学习党史时间的第60百分位数是______.【答案】9【解析】【分析】根据百分位数的定义即可求出结果.【详解】党员人数一共有61098740++++=,4060%24⨯=,那么第60百分位数是第24和25个数的平均数,第24和25个数分别为9,9,所以第60百分位数是9992+=,故答案为:9.16.已知点P 在直线2y x =-上运动,点E 是圆221x y +=上的动点,点F 是圆22(6)(2)9x y -++=上的动点,则PF PE -的最大值为________.【答案】8【解析】【分析】根据圆的性质可得4PF PE PA PO -≤-+,若求PF PE -的最大值,转化为求PA PO -的最大值,再根据点关于线对称的性质,数形结合从而得解.【详解】如图所示,圆22(6)(2)9x y -++=的圆心为()6,2A -,半径为3,圆221x y +=的圆心为()0,0O ,半径为1,可知33,11PA PF PA PO PE PO -≤≤+-≤≤+,所以()()314PF PE PA PO PA PO -≤+--=-+,若求PF PE -的最大值,转化为求PA PO -的最大值,设()0,0O 关于直线2y x =-的对称点为B ,设B 坐标为(),m n ,则1222nm n m ⎧=-⎪⎪⎨⎪=-⎪⎩,解得22m n =⎧⎨=-⎩,故B ()2,2-,因为PO PB =,可得4PA PO PA PB AB -=-≤=,当P ,B ,A 三点共线,即P 点为()10,2P -时,等号成立,所以PF PE -的最大值为448+=.故答案为:8.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.求适合下列条件的椭圆的标准方程:(1)长轴在x 轴上,长轴的长为12,离心率为23;(2)经过点()6,0P -和()0,8Q .【答案】(1)2213620x y +=;(2)2216436y x +=.【解析】【分析】(1)由长轴长及离心率求椭圆参数a 、c ,进而求参数b ,即可写出椭圆方程.(2)由题设知P ,Q 分别是椭圆的短轴和长轴的一个端点,即可得a 、b ,结合顶点坐标特征写出椭圆方程.【小问1详解】由已知,212a =,23c e a ==,得:6a =,4c =,从而22220b a c =-=.所以椭圆的标准方程为2213620x y +=.【小问2详解】由椭圆的几何性质知,以坐标轴为对称轴的椭圆与坐标轴的交点就是椭圆的顶点,所以点P ,Q 分别是椭圆的短轴和长轴的一个端点,于是有6b =,8a =.又短轴、长轴分别在x 轴和y 轴上,所以椭圆的标准方程为2216436y x +=.18.已知()1,2A -,以点A 为圆心的圆被y轴截得的弦长为(1)求圆A 的方程;(2)若过点()1,2B -的直线l 与圆A 相切,求直线l 的方程.【答案】(1)()()22124x y ++-=(2)1x =或3450x y ++=【解析】【分析】(1)根据垂径定理,可直接计算出圆的半径;(2)根据直线l 的斜率是否存在分类讨论,斜率不存在时,可得到直线方程为1x =的直线满足题意,斜率存在时,利用直线l 与圆相切,即()1,2A -到直线l 的距离等于半径,然后解出关于斜率的方程即可.【小问1详解】不妨设圆的半径为R,根据垂径定理,可得:2221R =+解得:2R =则圆的方程为:()()22124x y ++-=【小问2详解】当直线l 的斜率不存在时,则有:1x =故此时直线l 与圆相切,满足题意当直线l 的斜率存在时,不妨设直线l 的斜率为k ,点()1,2B -的直线l 的距离为d 直线l 的方程为:()12y k x =--则有:2d ==解得:34k =-,此时直线l 的方程为:3450x y ++=综上可得,直线l 的方程为:1x =或3450x y ++=19.南山实验高二年级的同学们学习完《统计与概率》章节后,统一进行了一次测试,并将所有测试成绩(满分100分)按照[)[)[]50,60,60,70,,90,100⋅⋅⋅进行分组,得到如图所示的频率分布直方图,已知图中3b a =.(1)求出a b ,;(2)估计测试成绩的平均分;(3)按照人数比例用分层随机抽样的方法,从成绩在[]80,100内的学生中抽取4人,再从这4人中任选2人,求这2人成绩都在[)80,90内的概率.【答案】(1)0.01a =,0.03b =(2)76.5;(3)12【解析】【分析】(1)根据频率之和即可求解,(2)根据平均数的计算公式即可求解,(3)由列举法列举所有基本事件,即可由古典概型概率公式求解.【小问1详解】由频率分布直方图可知(0.0150.035)101a b a ++++⨯=,即20.05b a +=,又3b a =,所以0.01a =,0.03b =.【小问2详解】测试成绩的平均分为:550.1650.15750.35850.3950.176.5x =⨯+⨯+⨯+⨯+⨯=【小问3详解】成绩在[80,90)和[90,100]内的人数之比为3:1,故抽取的4人中成绩在[80,90)内的有3人,设为a ,b ,c ,成绩在[90,100]内的有1人,设为D ,再从这4人中选2人,这2人的所有可能情况为(,)a b ,(,)a c ,(,)a D ,(,)b c ,(,)b D ,(,)c D ,共6种,这2人成绩均在[80,90)内的情况有(,)a b ,(,)a c ,(,)b c ,共3种,故这2人成绩都在[80,90)内的概率为3162P ==20.为了保证我国东海油气田海域海上平台的生产安全,海事部门在某平台O 的北偏西45°方向km 处设立观测点A ,在平台O 的正东方向12km 处设立观测点B ,规定经过O 、A 、B 三点的圆以及其内部区域为安全预警区.如图所示:以O 为坐标原点,O 的正东方向为x 轴正方向,建立平面直角坐标系.(1)试写出A ,B 的坐标,并求两个观测点A ,B 之间的距离;(2)某日经观测发现,在该平台O 正南10km C 处,有一艘轮船正以每小时km 的速度沿北偏东45°方向行驶,如果航向不变,该轮船是否会进入安全预警区?如果不进入,请说明理由;如果进入,则它在安全警示区内会行驶多长时间?【答案】(1)(2,2),(12,0)A B -;||AB =(2)会驶入安全预警区,行驶时长为半小时【解析】【分析】(1)先求出A ,B 的坐标,再由距离公式得出A ,B 之间的距离;(2)由,,A O B 三点的坐标列出方程组得出经过,,O A B 三点的圆的方程,设轮船航线所在的直线为l ,再由几何法得出直线l 与圆截得的弦长,进而得出安全警示区内行驶时长.【小问1详解】由题意得(2,2),(12,0)A B -,∴AB ==;【小问2详解】设圆的方程为220x y Dx Ey F ++++=,因为该圆经过,,O A B 三点,∴022********F D y D =⎧⎪-++=⎨⎪+=⎩,得到12160D E F =-⎧⎪=-⎨⎪=⎩.所以该圆的方程为:2212160x y x y +--=,化成标准方程为:()()2268100x y -+-=.设轮船航线所在的直线为l ,则直线l 的方程为:10y x =-,圆心(6,8)到直线:100l x y --=的距离10d r ==<=,所以直线l 与圆相交,即轮船会驶入安全预警区.直线l 与圆截得的弦长为L ==km,行驶时长0.5L t v ===小时.即在安全警示区内行驶时长为半小时.21.甲、乙两人组成“九章队”参加青岛二中数学学科周“最强大脑”比赛,每轮比赛由甲、乙各猜一个数学名词,已知甲每轮猜对的概率为23,乙每轮猜对的概率为34.在每轮比赛中,甲和乙猜对与否互不影响,各轮结果也互不影响.(1)求甲两轮至少猜对一个数学名词的概率;(2)求“九章队”在两轮比赛中猜对三个数学名词的概率.【答案】(1)89(2)512【解析】【分析】(1)根据相互独立事件的乘法概率公式计算即可;(2)两人分别猜两次,总共四次中有一次没猜对,分四种情况计算可得答案.【小问1详解】设甲两轮至少猜对一个数学名词为事件F ,()212212448C 333999P F ⎛⎫=⋅⨯+=+= ⎪⎝⎭.【小问2详解】设事A =“甲第一轮猜对”,B =“乙第一轮猜对”,C =“甲第二轮猜对”,D =“乙第二轮猜对”,E =““九章队”猜对三个数学名词”,所以()()()()23,34P A P C P B P D ====,()()()()11,34P A P C P B P D ====则E ABCD ABCD ABCD ABCD =⋃⋃⋃,由事件的独立性与互斥性,得()()()()()P E P ABCD P ABCD P ABCD P ABCD =+++()()()()()()()()()()()()P A P B P C P D P A P B P C P D P A P B P C P D =++()()()()P A P B P C P D +13232123231323215343434343434343412=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯+⨯⨯⨯=,故“九章队”在两轮活动中猜对三个数学名词的概率为512.22.如图,等腰梯形ABCD 中,1//,22AD BC AB BC CD AD ====,现以AC 为折痕把ABC 折起,使点B 到达点P 的位置,且PA CD ⊥.(1)证明:面PAC ⊥面ACD ;(2)若M 为PD 上的一点,点P 到面ACM ,求PM PD的值及平面MAC 和平面DAC 夹角的余弦值.【答案】(1)证明见详解;(2)12,5【解析】【分析】(1)先证AC CD ⊥,利用线线垂直证线面垂直,由线面垂直的性质可判定面面垂直;(2)建立空间直角坐标系,利用空间向量计算点面距离及二面角即可.【小问1详解】如图所示,在梯形ABCD 中,取AD 中点N ,连接CN ,易知四边形ABCN 为平行四边形,可得CN AN DN ==,即AC CD ⊥,又PA CD ⊥,,PA AC A PA AC 、=Ì平面PAC ,所以CD ⊥平面PAC ,因为CD ⊂平面DAC ,所以面PAC ⊥面ACD ;【小问2详解】取AC 的中点O ,则//ON CD ON AC ⇒⊥,因为PA PC =,所以PO AC ⊥,结合(1)的结论,可以以O 为原点,建立如图所示的空间直角坐标系,则)()()()(),,0,1,0,0,0,1,AC N P D,()()(),2,1,CA PD AP ==-= ,设(],0,1PMPD λλ=∈,即()(),2,,2,1PM PD AM AP PM λλλλλ==-=+=-,设面ACM的一个法向量为(),,m x y z =,则有(()0210CA m AM m x y z λλ⎧⋅==⎪⎨⋅=-++-=⎪⎩,令10,2y x z λλ=-⇒==,即()0,1,2m λλ=-,则点P 到面ACM 的距离为152m PM d m λ⋅===,即12PM PD =;易知平面ACD 的一个法向量可为()0,0,1n =,设平面MAC 和平面DAC 夹角为α,易知10,,12m ⎛⎫=-⎪⎝⎭ ,所以25 cos cos,5m nm nm nα⋅===⋅.。
重庆市四川外语学院重庆第二外国语学校2024一2025学年上学期 九年级半期质量监测数学试题

重庆市第二外国语学校2024—2025学年上期初2025级半期质量监测数学试题(全卷共三大题满分:150分 考试时间:120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答;2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色2B 铅笔完成;4.考试结束,由监考人员将试题卷和答题卡一并收回.参考公式;抛物线的顶点坐标:,对称轴:直线一、选择题:(本大题10个小题,每小题4分,共40分)。
在每个小题的下面,都给出了A 、B 、C 、D 四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的框涂黑.1.如图是五个小立方块组成的一个几何体,其主视图是( ).A. B. C. D.2.如图,在中,,,则( ).A.3.如图,点是反比例函数在第一象限内的图象上任意一点,过点A 作轴于点B ,若的面积是1,则k 的值是( )A.1B.-1C.2D.-2()20y ax bx c a =++≠24,24b ac b a a ⎛⎫-- ⎪⎝⎭2b x a =-Rt ABC △90C ∠=︒30A ∠=︒sin A =12()0k y k x=≠AB x ⊥OAB △4.如图,和是以点O 为位似中心的位似图形,点A 在线段上,若,则和的周长之比为( )A.1:2B.1:3C.1:4D.1:95.下列性质中,菱形具有而矩形不具有的是( ).A.对角线平分一组内角 B.对角线相等C.对角线互相平分D.对边平行且相等6.在一个箱子内放有同种规格的白球和红球若干个,已知白球有20个,搅匀后多次重复随机摸取,若摸到白球的频率为0.2,则箱子内的红球大约有( ).A.80个B.98个C.100个D.120个7.若a ,b 是方程的两根,则( ).A.-2030B.2030C.-2018D.20188.矩形ABCD 和矩形CEFG 按照如图所示位置摆放,其中点B ,C ,G 共线,点E ,D ,C 共线,连接AF ,点H 是AF 的中点,连接DH ,若,,则DH 的长( ).A.1B.0.5D.9.一次函数与二次函数在同一平面直角坐标系中的图象可能是( ).A. B. C. D.10.定义:已知,是关于x 的一元二次方程的两个实数根,若,且ABC △111A B C △1OA 1:1:3OA OA =ABC △111A B C △2320240x x +-=22a ab b -+=1AB CG ==2BC EC ==13()0a y x c ab b=+≠()20y ax bx c a =++≠1x 2x ()200ax bx c a ++=≠120x x <<,则称这个方程为“友好方程”.如:一元二次方程的两根为,,且,所以一元二次方程为“友好方程”.关于x 的一元二次方程,有下列两个结论:①当时,该方程是“友好方程”;②若该方程是“友好方程”,则有且仅有3个整数p 满足要求,对于这两个结论判断正确的是( )A.①②都正确 B.①②都错误 C.①正确,②错误D.①错误,②正确二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.若,则_______.12.重庆因魔幻建筑被网友称为“8D 魔幻城市”,小成和小都打算2025年元旦分别从洪崖洞、李子坝、磁器口、解放碑四个景点选择一个景点一日游,小成和小都选择了同一个景点的概率为________.13.抛物线的顶点坐标为_______.14.高6m 的旗杆在水平地面上的影长为8m ,如果此时附近的一建筑物在水平地面上的影长为24m ,则该建筑物的高度为________m.15.如图,在中,,,D 为AC 上一点,,,则________.16.如图,在菱形ABCD 中,对角线AC 、BD 交于点O ,以BD 为斜边作,使得,AC 与BP 交于点Q ,连接AP ,若,,,则AC 的长为_________.17.若a 使关于x 的分式方程有整数解,且使关于y 的一元二次方程1213x x ≤≤28150x x ++=15x =-23x =-5133-≤≤-28150x x ++=()210x p x p +--=23p =-95a b =a b b-=()2321y x =--+Rt ABC △90C ∠=︒2sin 5A =45BDC ∠=︒8DC =AB =Rt BPD △90BPD ∠=︒AQ DO =2PAQ PBD ∠=∠4BD =33122ax x x x--=--()21520a y y ---=有实数根,那么满足条件的所有整数a 的和为_________.18.如图,平面直角坐标系中正方形OABC 的顶点A ,C 分别在x 轴,y 轴上,且,的图象与正方形OABC 的两边AB 、BC 分别相交于M 、反比例函数N 两点,且的面积为3.5,若动点P 在x 轴上,则的最小值是__________.三、解答题:(本大题8个小题,第19题8分,其余每题10分,共78分)解答每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上。
四川省绵阳市2024-2025学年高二上学期期中考试数学试题含答案

绵阳2024年秋季高2023级半期考试数学试题(答案在最后)本测评题分试题卷和答题卷两部份,试题卷共4页,满分150分,时间120分钟.注意事项:1、答题前,请将本人的信息用0.5毫米的黑色墨水签字笔或黑色墨水钢笔填在答题卡的对应位置上;2、选择题的答案,必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑;3、请用0.5毫米的黑色墨水签字笔或黑色墨水钢笔将每个题目的答案答在答题卷上每题对应的位置上,答在试题卷上的无效.作图一律用2B 铅笔或0.5毫米黑色签字笔;第Ⅰ卷(选择题,共58分)一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一个是符合题目要求的.1.直线020233=+-y x 的倾斜角是()A.︒30 B.︒60 C.︒120 D.︒1502.在ABC ∆中,,6),0,2(),0,2(=+-AC AB C B 则顶点A 的轨迹方程()A.)3(15922±≠=+x y xB.)2(14922±≠=+x y x C.15922=+y x D.14922=+y x 3.已知B 为)1,2,1(-A 在坐标平面Oyz 内的射影,则=OB ()A.3B.5C.2D.64.直线1sin cos :-+θθy x l 与圆22:1O x y +=的位置关系为()A .相离B .相交C .相切D .无法确定5.与椭圆13622=+y x 共焦点且过)1,2(P 的双曲线方程为()A .2214x y -=B .2212y x -=C .2212x y -=D .2213x y -=6.在平行六面体1111D C B A ABCD -中,,311MC AC =若,,,1c AA b AD a AB ===则1MD =()A.c b a --31B.c b a 323231--C.c b a 3131-+D.a c b 323131-+7.已知四棱锥P ABCD -的底面为正方形,PA ⊥平面ABCD ,1==PA AB ,点E 是BC 的中2024年11月点,则点E 到直线PD 的距离是()A .45B .25 C.423D .228.在平面直角坐标系Oxy 中,点)1,0(),0,1(),0,4(C B A ,若点P 满足2PA PB =,则22PC PO +的最大值为()A .7B .9C .11D .13二、多项选择题:本题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目要求,全部选对得6分,部分选对得部分分,有选错项得0分.9.下列关于空间向量的命题中,是真命题的有()A.将空间所有的单位向量平移到一个起点,则它们的终点构成一个球面B.若非零向量c b a ,,,满足,//,//c b b a 则有c a //C.与一个平面法向量共线的非零向量都是该平面的法向量D.设OC OB OA ,,为空间的一组基底,且,2121OC OB OA OD ++=则D C B A ,,,四点共10.若方程11522=-+-m y m x 所表示的曲线为C ,则()A .曲线C 可能是圆B.当2=m 时,表示焦点在x 轴上的椭圆,焦距为2C .若51<<m ,则C 为椭圆D .若C 为椭圆,且焦点在x 轴上,则31<<m 11.过点()()0,R P t t ∈的直线与圆22:(2)3C x y -+=相切,切点分别为B A ,,则()A .当0t =时,3=AB B .存在R t ∈,使得65π=∠APB C .直线AB 经过点)0,21(D .直线PC 与直线AB 的交点在定圆上三、填空题:本大题共3小题,每小题5分,共15分.请将答案填写在答题卷中的横线上.12.双曲线112422=-y x 的左右焦点分别是21,F F ,M 是双曲线左支上一点,且,51=MF 则=2MF .13.已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12,,F F 过2F 作x 轴垂线交椭圆于P ,若︒=∠3021PF F ,则该椭圆的离心率是.14.如图所示,在四面体ABCD 中,BCD ∆为等边三角形,2π=∠ADB ,则平面ABD 与平面ACD 夹角的最大值是.四、解答题:本题共5小题,满分77分.解答应写出必要文字说明、证明过程或演算步骤.15.(13分)如图,矩形ABCD 的两条对角线相交于点)5,3(M ,AB 边所在直线的方程为,083=+-y x 点)6,0(N 在AD 边所在直线上.(Ⅰ)求AD 边所在直线的方程;(Ⅱ)求对角线AC 所在直线的方程.16.(15分)已知圆C 与y 轴相切,其圆心在x 轴的正半轴上,且圆C 被直线x y =截得的弦长为22.(Ⅰ)求圆C 的标准方程;(Ⅱ)若过点()0,3P 的直线l 与圆C 相切,求直线l 的方程.第14题图17.(15分)如图所示,在几何体ABCDEFG 中,四边形ABCD 和ABFE 均为边长为2的正方形,//AD EG ,1EG =,平面ABCD ABFE 平面⊥M 、N 分别为DG 、EF 的中点.(Ⅰ)求证://MN 平面CFG ;(Ⅱ)求直线AN 与平面CFG 所成角的正弦值.18.(17分)在平面直角坐标系Oxy 中,椭圆2222:1(0)x y C a b a b+=>>的右焦点为)0,3(F ,短轴长为2.过点F 且不平行于坐标轴的直线l 与椭圆C 交于,A B 两点,线段AB 的中点为M .(Ⅰ)求椭圆C 的标准方程;(Ⅱ)证明:直线OM 的斜率与直线l 的斜率的乘积为定值;(Ⅲ)求AOB ∆面积的最大值.19.(17分)定义:M 是圆C 上一动点,N 是圆C 外一点,记MN 的最大值为m ,MN 的最小值为n ,若2m n =,则称N 为圆C 的“黄金点”;若G 同时是圆E 和圆F 的“黄金点”,则称G 为圆“E F -”的“钻石点”.已知圆A :()()221113x y +++=,P 为圆A 的“黄金点”(Ⅰ)求点P 的轨迹方程;(Ⅱ)已知圆B :1)2()2(22=-+-y x ,P ,Q 均为圆“A B -”的“钻石点”.(ⅰ)求直线PQ 的方程;(ⅱ)若圆H 是以线段PQ 为直径的圆,直线31:+=kx y l 与圆H 交于I ,J 两点,对于任意的实数k ,在y 轴上是否存在一点W ,使得y 轴平分IWJ ∠?若存在,求出点W 的坐标;若不存在,请说明理由.绵阳2024年秋季高2023级半期考试数学试题参考答案一、选择题题号1234567891011选项AABCCDCDABCADACD三、填空题12.913.32-14.3π四、解答题15.解:(Ⅰ)法一:因为AB 边所在直线的方程为083=+-y x ,所以31=AB k .又因为矩形ABCD 中,AB AD ⊥,所以3-=AD k ,所以由点斜式可得AD 边所在直线的方程为:)0(36--=-x y ,即063=-+y x ;法二:因为AB AD ⊥,设AD 边所在直线的方程为:03=++m y x 又因为直线AD 过点)6,0(N ,所以将点)6,0(N 代入上式得:6-=m .所以AD 边所在直线的方程为:063=-+y x ;(Ⅱ)由⎩⎨⎧=-+=+-063083y x y x ,得:)3,1(A ,得AC 所在直线的方程:131353--=--x y ,即02=+-y x .16.解:(Ⅰ)由题可设圆C 的方程为)0()(222>=+-a a y a x ,则有2222(2(a a =+,解得)(2舍负=a ;所以圆C 的标准方程为:4)2(22=+-y x ;(Ⅱ)因为43)20(22>+-,所以过P 的切线有两条,当l 斜率存在时,设切线方程为:3+=kx y 即03=+-y kx ,所以有:21322=++k k ,解得:125-=k ;所以l 的方程为:0036125==-+x y x 或。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 9.到△ABC的三个顶点距离相 等的点是 ( ) • A、三条中线的交点 • B、三条角平分线的交点 C、三条高线的交点 D、三条边的垂直平分线的交点
• 二、填空题(本题共8小题,每小 题3分,共24分) • 11. 如图,△ABC不△A′B′C′关于直 线对称,则∠B的度数为_____ . A A′ •
• 4、如图,在△ABC不△DEF中,已有条件 AB=DE,还需添加两个条件才能使 △ABC≌△DEF,丌能添加的一组条件是 ( ) • A.∠B=∠E,BC=EF • B.BC=EF,AC=DF • C.∠A=∠D,∠B=∠E • D.∠A=∠D,BC=EF
• 5、下列说法中正确的是( ) • A.两腰对应相等的两个等腰三角形全 等 • B.面积相等的两个等腰三角形全等 • C.能够完全重合的两个三角形全等 • D.两个锐角对应相等的两个直角三角 形全等
50o B B′
30o
C (第11题)
C′
• 12.一个多边形的内角和比外 角和的2倍多180度,则它的 边数是 ____________
• 13. 将点 A(-1,-2) 向_______平秱______个 单位长度后得到的点不点 B(1,3)关于y轴对 称.
• 14.一辆汽车的车牌号在水中的倒影是: 的实际车牌号是:_ .
A M E D N B C
• 22.(4分),分别代表铁路和公路,点M、N分别 代表蔬菜和杂货批发市场.现要建中转站O点, 使O点到铁路、公路距离相等,且到两市场距离 相等.请用尺规画出O点位置,丌写作法,保留 a 作图痕迹.
N M
b
• 23.(6分)已知:如图,点B、 E、C、F在同一直线上, AB=DE, • 求证:BE=CF.
• 24.(7分)如图:△ABC中, ∠ABC和∠ACB的平分线交于F 点,过F点作DE∥BC,分别交 AB、AC于点D、E。 • 求证:DE=BD+CE
A D B F E C
• 25.(7分)如图,在△ABC中,、 FG分别是AB、AC的垂直平分 线,求的度数。
ห้องสมุดไป่ตู้
• 6.如图,将长方形ABCD沿AE折叠,使点D落在BC边上的 • 点F处,如果,那么等于 ( ) • A. B. C. D.
• 7.如图所示,△ABC中,AC=AD=BD,,则的 • 度数是( ) • A. B. C. D.
• 8.如图,△ABC中边AB的垂直平分 线分别交BC、AB于点D、E, AE=3cm,△ADC• 周长为9cm, 的 则△ABC的周长是 ( ) • A.10cm • B.12cm • C.15cm • D.17cm
, 那么它
• 15.如图,△ABC中,AD⊥BC 于D,BE⊥AC于E,AD交EF于 F,若BF=AC,则∠ABC等于 _________ .
• 16.已知一个等腰三角形的外角等 于80度,则它的顶角的度数为 _________ 。
• 17.如图所示,∠B=∠D=90°,要 证明△ABC不△ADC全等,还需要 补充的条件是________。(填上一 个条件即可)
• 18.如图,将等边△ABC剪去一 个角后, • ∠BDE+∠CED=_________.
A
D E
B
C
第18题
y A C 6 4 2 -5 B -2 O 5 x
• 20. (6分)已知:如图,AC=BD, AD⊥AC, BC⊥BD. • 求证:AD=BC;
• 21. (8分)如图,在△ABC中,AB=AC,AB的垂直平分 线MN交AC于点D,交AB于点E. • (1)求证:△ABD是等腰三角形; • (2)若∠A=40°,求∠DBC的度数 • (3)若AE=6,△CBD的周长为20,求△ABC的周长。
数学半期考试试题
1
• 一、选择题 (本题共10小题, 每小题3分,共30分) • 1.下面有4个汽车标致图案,其 中丌是轴对称图形的是 ( )
• 2、已知等腰三角形中的一边 长为4㎝,另一边长为9㎝, 则它的周长为( ) • A、13㎝ B、17㎝ • C、22㎝ D、17㎝或22 ㎝
• 3、点P(1,2)关于y轴对称点的 坐标是( ) • A.(-1,2) B.(1,-2) C.(1,2) D.(-1,-2)