近世代数群的概念

合集下载

第二章 近世代数简介

第二章 近世代数简介
若R是交换环,I是R的非空子集,如满足 1. a、b I, a-b I。 2. a I、r R, a r = r a I, 则I是R的理想子环,简称理想
若理想子环的所有元素可由一个元素a的各
次幂或各次幂的线性组合生成,则称该理想子环 主理想子环,简称主理想
10
域(Field)
一个集合,二种运算
一般m 素数q
可能是零因子环 整环
子环( subring )
理想子环(强收敛性)
主理想(所有元素是一个元
素幂的线性组合)
9
若集合S是集合R的子集(S R), 判断(S ,+, ·)是(R ,+, ·) 子环的充要条件是 1. a、b S, a-b S。 2. a、b S, a b S。 上述条件1强调了子环中加法逆元的存在和封闭 性,条件2强调了乘法封闭性。 理想子环的充要条件是:
作为其根。换言之,若deg
i
(x)
=
(x-
20)
(x-
21)
(x-
(i (x))=
22 )…(x-
li,必有
) 2( li1 )
这里,deg(i (x) )= li m,本原元的共轭根系对
(2-4)
这里,
GCD表示最大公约数(Greatest Common Divisor)
推理
循环群中n阶元素的n次幂恒等于1
23
各次幂 k
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
的 多项式
多项式系数 m重
1
(0001)
(0010)
2
(0100)
3
(1000)
+1
(0011)
本原多项式 Primary Polynomials

近世代数简介

近世代数简介

k
= i( x )
i 1
(2-4)
这里,
GCD表示最大公约数(Greatest Common Divisor)
推理
循环群中n阶元素的n次幂恒等于1
各次幂 k
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

多项式系数
多项式
m重
1
(0001)

(0010)
2
(0100)
多项式环Rq(x)g(x)
系数GF(q),模g(x)
g(x) 一般多项式:多项式环 m素数或合数,有限数环
PI(x) 既约多项式:多项式域(q元扩域)
q素数,整环
P(x) 本原多项式:域元素构成循环群
例2.8:剩余类环Rq(x) f(x) 中,q =2,f(x) = x3+x+1。若A(x)= x2+x+1、B(x)= x2+ 1 是 两个环元素,求A(x) B(x)是什么元素?该剩余类环至多由多少元素组成?
有限环(Ring)
一个有限集合,模m加,模m乘
一般m 素数q
可能是零因子环 整环
子环( subring )
理想子环(强收敛性)
主理想(所有元素是一个元
素幂的线性组合)
若集合S是集合R的子集(S R), 判断(S ,+, ·)是(R ,+, ·) 子环的充要条件是 1. a、b S, a-b S。 2. a、b S, a b S。 上述条件1强调了子环中加法逆元的存在和封闭 性,条件2强调了乘法封闭性。 理想子环的充要条件是:
元素的阶
15 / GCD(k,15)
1 15 15 5 15 3 5 15 15 5 3 15 5 15 15

近世代数课件-2-2_群的定义

近世代数课件-2-2_群的定义
(2)运算 o适合结合律;(3)运算 o适合消去律.
2020/4/27
五. 有限群的特殊性
推论 一个非空有限集G 构成有限群的条件 : (1)存在G上的一个代数运算•; (2)运算 • 适合结合律; (3)运算 • 适合消去律.
2020/4/27五. 来自限群的特殊性2020/4/27
六、特殊群-Klein(克莱因)四元群
本节教学目的与要求: 记住群的定义,掌握群的基本性质和有限群的特殊性质,并
能熟练判定一个给定的代数系是否是群.
一. 群的定义及常见的群 二. 群的4个等价定义 三. 一些特殊群的例子 四. 群的消去率性质 五. 有限群的特殊性 六. 特殊的群—Klein(克莱因)四元群
2020/4/27
一. 群的定义及常见的群
近世代数
第二章 群
近世代数的主要研究对象是各种各样的代数系, 即具有一些代数运算的集合。
群是具有一种代数运算的代数系,它是近世代数 中一个比较古老,而且内容丰富的重要分支,在数学、 物理、化学、计算机等自然科学的许多领域都有广泛 应用。
从本节开始,学习群的有关性质。
2020/4/27
2.2 群的定义
注:
2020/4/27
一.群的定义及常见的群
2020/4/27
一.群的定义及常见的群
注:
2020/4/27
二. 群的四个等价定义
2020/4/27
三. 几个特殊群的例子
2020/4/27
四. 群的消去率性质
注:
2020/4/27
五. 有限群的特殊性
推论 一个非空有限集G构成有限群的条件: 1存在G上的一个代数运算o;
2020/4/27
六、特殊群-Klein(克莱因)四元群

近世代数12群的概念

近世代数12群的概念
(1)“ ”适合结合律; (2)存在 e G ,使得
ae ea , a G ; (3)对于任意的 a G ,存在 bG ,使得
ab ba e , 则称 (G, ) 是一个群;不致混淆时,简称 G 是一个群.
2020/6/
数学与计算科学学院Company Logo
2020/6/
数学与计算科学学院Company Logo
§2 群的概念
例 1 令 N , Z, Q , R 和C 依次表示正整数集、 整数集、有理数集、实数集和复数集.则 Z, Q ,R 和 C 关于加法分别构成交换群; N 关于加法不构成
群. Q \{0}, R \{0} 和C \{0}关于乘法分别构成交换
2020/6/
数学与计算科学学院Company Logo
§2 群的概念
设 G 是一个群, a G .由于“ ”适合结合律,因
此对于任意的 nN , a 的 n 次幂 an 有意义.现在,对
于任意整数 n 0 ,我们定义 a 的 n 次幂 an 如下:
第一章 群 论
2020/6/26
数学与计算科学学院
LOGO
目录
§1 代数运算 §2 群的概念 §3 子 群 §4 循环群 §5 正规子群与商群 §6 群的同构与同态 §7 有限群
2020/6/
数学与计算科学学院Company Logo
§2 群的概念
定义 2.1 一个代数运算.若“ ”满足条件:
an
e, (a1)n ,
当 n 0 时; 当n 0 时.
这样一来,对于任意整数 n , an 都有意义.
2020/6/
数学与计算科学学院Company Logo
§2 群的概念
不难验证,幂具有如下性质:对于任意的 a, b G 和 m, n Z ,总有

近世代数前两章知识总结

近世代数前两章知识总结

近世代数论文师范学院14级数学与应用数学2班景羡林学号:12147139213一、上半学期学习总结第一章基本概念1、集合的幕集:以集合A的一切子集为元素构成的集合,记为p(A)或2\ (含n个元素的集合的子集有2•个,即無集中的元素共有2,个)2、积(笛卡尔积):AXB={ (a, b) |aEA, b€B}叫A 与B 的积。

(AXBHBXA)3、A到B的对应法则0为A到E的映射u>①VxGA, x有象②Vxe A, x的象唯一@Vxe A, X的象在B中。

4、若A是含n个元素的集合,则A的映射共有涉个,一一映射共有n!个。

5、代数运算:一个AXB到D的映射叫做一个AXB到D的代数运算。

(。

为AXB到D的代数运算oV(a, b) GAXB, anb有意义,且aob唯一,属于D)。

6、满射:VyG A,设y=0 (x),求出x (x为y的函数),若x存在且xGA,则0为满射。

(4中的每一个元素都有原象);单射:Va, be A,若aHb,则0 (a) H0 (b)。

(元素不同象不同):一一映射:即单乂满。

(一一映射都有逆映射,若A与B间是一一映射,则A、B 有限且元素个数相同)7、一个A到A的映射叫做A的一个变换:有限集A的一个一一变换,叫做A的一个置换。

& 一个A到才的映射叫做一个对于代数运算。

申10来说的,A到才的同态映射,假如满足:Va, b€A, a-» b~*b则aob~*ao^ (运算的象二象的运算);A与力同态u>A与4存在同态满射0。

9、一个A到力的一一映射0,叫做一个对于代数运算。

和0来说的,A到4的同构映射。

(同构映射的逆映射也是同构映射)。

10、若R为法则,若R满足Va, bEA,要么aRb,要么龍乩唯一确定,则称R为A的元间的一个关系;集合A的元间的一个关系~叫做一个等价关系,假如满足①反射律(VaGA,有a〜a)②对称律③推移律111、A的一个分类即为A的一些子集41、金、…令满足:① A】U金U ...U A n =A.②如Ai4;=0 (iH j )(不相交)。

近世代数--群的概念

近世代数--群的概念
(a b ) c a b c (a b) c a (b c) a b c a (b c ),
所以结合律成立.
(3) 对任意的 a,b Zm ,
a b a b b a b a,
所以交换律成立.
(4) 对任意的 a Zm ,
a 0 a 0 a,

0 a 0 a a,
的代表元的选取无关即可.设
a a ', b b ',

m | a a ', m | b b '.
于是 m | (a a ') (b b ') (a b) (a ' b '),
m | (a a ')b (b b ')a ' (ab) (a 'b ').
从而
a b a ' b ', ab a 'b'. 所以+与 都是Zm上的代数运算.
的逆元记作 a, 并称a为 a 的负元.
2.习惯上,只有当群为交换群时,才用“+” 来表 示群的运算,并称这个运算为加法,把运算的 结果叫做和,同时称这样的群为加群.相应地, 将 不是加群的群称为乘群,并把乘群的运算叫做乘法, 运算的结果叫做积.在运算过程中,乘群的运算符号 通常省略不写.今后,如不作特别声明,我们总假定 群的运算是乘法.当然, 所有关于乘群的结论对加群 也成立(必要时, 作一些相关的记号和术语上改变).
a b b a e. 则称 G关于运算“ ”构成一个群(group),记作 (G,) .在不致引起混淆的情况下, 也G称为群.
注 1.(G2)中的元素 e 称为群 G的单位元
(unit element)或恒等元(identity);

近世代数课件群的概念

近世代数课件群的概念
ae ea , a G ; (3)对于任意的 a G ,存在 bG ,使得
ab ba e , 则称 (G, ) 是一个群;不致混淆时,简称 G 是一个群.
§2 群的概念
当 (G, ) 是一个群时,我们就称 G 关于“ ”构成一 个群.
设 (G, ) 是一个群. 若“ ”适合交换律,则称 (G, ) 是交换群或 Abel 群. 若 G 是有限集,则称 (G, ) 是有限群.若 G 是无限集,则 称 (G, ) 是无限群.当 (G, ) 是有限群时,如 G 是由 n 个不同的 元素构成集合,我们就说群 (G, ) 的阶为 n ,记作 | G | n .当 (G, ) 是 无限 群时,我们就说群 (G, ) 的 阶为无 限 大,记作 |G|.
此对于任意的 nN , a 的 n 次幂an 有意义.现在,对
于任意整数 n 0 ,我们定义 a 的 n 次幂 an 如下:
an
e, (a1)n ,
当 n 0 时; 当n 0 时.
这样一来,对于任意整数 n , an 都有意义.
§2 群的概念
不难验证,幂具有如下性质:对于任意的 a, b G 和 m, n Z ,总有
§2 群的概念
上述的幂的性质应改称为倍元的性质:对于任 意的 a, b G 和 m, n Z ,总有
Ⅰ. (na) (n)a ; Ⅱ. ma na (m n)a ; Ⅲ. n(ma) (mn)a ; Ⅳ. n(a b) na nb .
§2 群的概念
定义 2.4 设 A 是一个非空集合. A 到 A 的映射又称为 A 的变换.特别地, A 到 A 的双射又称为 A 的一一变换; A 到 A 的单位映射又称 为 A 的单位变换. A 的一个一一变换 f 作为映射时的 逆映射 f 1 称为变换 f 的逆变换. 令 X 表示 A 的所有变换构成的集合.我们定义 X 上的乘法“ ”如下:对于任意的 f , g X ,

近世代数--群的概念

近世代数--群的概念
1 1 2 2 s s
1 = m∏ 1 − . pi t =1
s
* 例10 具体写出 Z 5 中任意两个个元素的乘积以
及每一个元素的逆元素.易知 Z = {1 , 2. 3, 4}.
* 5
直接计算,可得 表1.2.1
1⋅1 = 1 2 ⋅1 = 2 3 ⋅1 = 3 4 ⋅1 = 4
{
}
U 的阶等于 (2) 由初等数论可知(参见[1]), ( m)
φ ( m) 这里 φ (m) 是欧拉函数.如果
r m = p1r1 p22 L psrs ,
其中 p1 , p2 ,L, ps 为的 m 不同素因子,那么
r r φ (m) = ( p1r − p1r −1 )( p2 − p2 −1 )( psr − psr −1 )
所以1是U ( m) 的单位元.
(4) 对任意的 a ∈ U ( m), ,有( a, m) = 1 , 由整数的性质可知,存在 u , v ∈ Z ,使au + mv = 1, 显然(u , m) = 1, 所以 u ∈ U ( m) ,且
a ⋅ u = au = au + mv = 1 , (因m | mv) u ⋅ a = ua = au = 1,
2.习惯上,只有当群为交换群时,才用“+” 来表 示群的运算,并称这个运算为加法 加法,把运算的 加法 结果叫做和,同时称这样的群为加群 和 加群.相应地, 将 加群 不是加群的群称为乘群 乘群,并把乘群的运算叫做乘法 乘法, 乘群 乘法 运算的结果叫做积.在运算过程中,乘群的运算符号 积 通常省略不写.今后,如不作特别声明,我们总假定 群的运算是乘法.当然, 所有关于乘群的结论对加群 也成立(必要时, 作一些相关的记号和术语上改变).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
近世代数中,群是一个重要的概念。群是一个非空集合,配备了一个满足特定条件的代数运算。这些条件包括结合律、单位元和逆元的存在。为了证明一个集合和运算构成群,我们需要验证这些条件是否满足。首先,我们需要确认代数运算在集合上是封闭的,即运算的结果仍在集合中。其次,验证结合律,即对于集合中的任意三个元素,先进行前两个元素的运算,再与第三个元素进行运算,结果应与先进行后两个元素的运算,再与第一个元素进行运算的结果相同。接着,我们需要找到集合中的单位元,它对于集合中的每一个元素,经过运算后结果仍为该元素。最后,对于集合中的每一个元素,我们需要找到它的逆元,即与该元素经过运算后得到单位元。例如,整数集关于加法构成群,称为整数加群,其中单位元为0,每个元素的逆元为它的相反数。类似地,我们还可以证明其他集合和运算构成群,如非零有理数集关于乘法构成群等。
相关文档
最新文档