近世代数学习系列四 抽象代数的人间烟火

合集下载

近世代数-文档资料

近世代数-文档资料
这里所说的不同类型的项链,指两个 项链无论怎样旋转与翻转都不能重合。
06.09.2020
11:21
数学上的确切描述
设由m颗珠子做成一个项链,可用一个正m边形 来代表它,它的每个顶点代表一颗珠子。
沿逆时针方向给珠子标号,
2
由于每一颗珠子的颜色有n种选
ห้องสมุดไป่ตู้
择,因而用乘法原理,这些有标 3
号的项链共有nm种。
图。 问题:n个点的图中互不同构的图有多少个?
06.09.2020
11:21
5.开关线路的构造与计数问题 一个有两种状态的电子元件称为一个开关,
例如普通的电灯开关,二极管等。由一些开关 组成的二端网络称为开关线路。一个开关线路 的两端也只有两种状态:通与不通。
问题:用n个开关可以构造出多少种不同的 开关线路?
了几十年。
06.09.2020
11:21
伽利略死后,直到19世纪末期,他的理 论才由别的数学家加以进一步的发展和系统 的阐述。
这样一门具有悠久历史、充满许多有趣 问题和故事的数学分支,在近代又得到了蓬 勃发展和广发应用,出现了许多应用与某一 领域的专著,正吸引越来越多的科技人员和 学生来学习和掌握它。
利用近世代数的方法可得到更高效的检 错码与纠错码。
06.09.2020
11:21
7. 几何作图问题
古代数学家们曾提出一个有趣的作图问题:用 圆规和直尺能做出哪些图形?
而且规定所用的直尺不能有刻度和不能在其上 做记号。为什么会提出这样的问题呢?
一方面是由于生产发展的需要,圆规、直尺是 丈量土地的基本工具,且最初的直尺是没有刻度 的;另一方面,从几何学观点看,古人认为直线与 圆弧是构成一切平面图形的要素。据说,古人还认 为只有使用圆规与直尺作图才能确保其严密性。且 整个平面几何学是以圆规与直尺作为基本工具。

近世代数知识点教学文稿

近世代数知识点教学文稿

近世代数知识点近世代数知识点第一章基本概念1.1集合●A的全体子集所组成的集合称为A的幂集,记作2A.1.2映射●证明映射:●单射:元不同,像不同;或者像相同,元相同。

●满射:像集合中每个元素都有原像。

Remark:映射满足结合律!1.3卡氏积与代数运算●{(a,b)∣a∈A,b∈B }此集合称为卡氏积,其中(a,b)为有序元素对,所以一般A*B不等于B*A.●集合到自身的代数运算称为此集合上的代数运算。

1.4等价关系与集合的分类★等价关系:1 自反性:∀a∈A,a a;2 对称性:∀a,b∈R, a b=>b a∈R;3 传递性:∀a,b,c∈R,a b,b c =>a c∈R.Remark:对称+传递≠自反★一个等价关系决定一个分类,反之,一个分类决定一个等价关系★不同的等价类互不相交,一般等价类用[a]表示。

第二章群2.1 半群1.半群=代数运算+结合律,记作(S,)Remark: i.证明代数运算:任意选取集合中的两个元素,让两元素间做此运算,观察运算后的结果是否还在定义的集合中。

ii.若半群中的元素可交换,即a b=b a,则称为交换半群。

2.单位元i.半群中左右单位元不一定都存在,即使存在也可能不唯一,甚至可能都不存在;若都存在,则左单位元=右单位元=单位元。

ii.单位元具有唯一性,且在交换半群中:左单位元=右单位元=单位元。

iii.在有单位元的半群中,规定a0=e.3.逆元i.在有单位元e的半群中,存在b,使得ab=ba=e,则a为可逆元。

ii.逆元具有唯一性,记作a-1且在交换半群中,左逆元=右逆元=可逆元。

iii.若一个元素a既有左逆元a1,又有右逆元a2,则a1=a2,且为a的逆元。

4.子半群i.设S是半群,≠T S,若T对S的运算做成半群,则T为S的一个子半群ii.T是S的子半群a,b T,有ab T2.2 群1.群=半群+单位元+逆元=代数运算+结合律+单位元+逆元Remark:i. 若代数运算满足交换律,则称为交换群或Abel群.ii. 加群=代数运算为加法+交换群iii.单位根群Um={m=1},数域P上全体n阶可逆(满秩)矩阵集合GL(n,P),数域P上全体n阶的行列式为1的矩阵集合SL(n,p).2. 群=代数运算+结合律+左(右)单位元+左(右)逆元=代数运算+结合律+单位元+逆元=代数运算+结合律+∀a,b G,ax=b,ya=b有解3. 群的性质i. 群满足左右消去律ii.设G是群,则∀a,b G,ax=b,ya=b在G中有唯一解iii.e是G单位元⇔ e2=eiv.若G是有限半群,满足左右消去律,则G是一个群4. 群的阶群G的阶,即群G中的元素个数,用表示。

近世代数课后习题答案

近世代数课后习题答案

近世代数课后习题答案近世代数课后习题答案近世代数是数学中的一个重要分支,研究的是抽象代数结构及其性质。

在学习近世代数的过程中,课后习题是巩固知识、加深理解的重要途径。

本文将为大家提供一些近世代数课后习题的答案,希望对大家的学习有所帮助。

一、群论1. 设G是一个群,证明恒等元素是唯一的。

答案:假设G中有两个恒等元素e和e',则有e * e' = e'和e' * e = e。

由于e是恒等元素,所以e * e' = e' = e' * e。

再由于e'是恒等元素,所以e * e' = e =e' * e。

因此,e = e',即恒等元素是唯一的。

2. 设G是一个群,证明每个元素在G中的逆元素是唯一的。

答案:假设G中的元素a有两个逆元素b和c,即a * b = e,a * c = e。

则有a * b = a * c。

两边同时左乘a的逆元素a',得到a' * (a * b) = a' * (a * c)。

根据结合律和逆元素的定义,等式右边可以化简为b = c。

因此,元素a的逆元素是唯一的。

二、环论1. 设R是一个环,证明零元素是唯一的。

答案:假设R中有两个零元素0和0',则有0 + 0' = 0'和0' + 0 = 0。

由于0是零元素,所以0 + 0' = 0' = 0' + 0。

再由于0'是零元素,所以0 + 0' = 0 = 0' + 0。

因此,0 = 0',即零元素是唯一的。

2. 设R是一个环,证明每个非零元素在R中的乘法逆元素是唯一的。

答案:假设R中的非零元素a有两个乘法逆元素b和c,即a * b = 1,a * c = 1。

则有a * b = a * c。

两边同时左乘a的乘法逆元素a',得到(a * b) * a' = (a * c) *a'。

《近世代数》课件

《近世代数》课件

近世代数的重要性
近世代数是数学领域中的基础学科之 一,是学习其它数学分支的重要基础 。
它对于理解数学的抽象本质和掌握数 学的基本思想方法具有重要意义,有 助于培养学生的逻辑思维和抽象思维 能力。
课程大纲简介
本课程将介绍近世代数的基本概念和性质,包括集合、群、环、域等代数系统的 定义、性质和关系。
1.1 答案
对。因为$a^2$的定义是两个整数相乘,结果仍为整数。
第1章习题及解答
1.2 答案:(略)
1.3 答案:群的基本性质包括封闭性、结合律和存在单位元。
第2章习题及解答
2.1 判断题:若$a$是整数,则$a^3$也是整数。 2.2 选择题:下列哪个是环?
第2章习题及解答
要点一
2.3 简答题
编码理论中的应用
线性码
线性码是一类重要的纠错码,其生成矩阵和校验矩阵都是线性方程组的解。这 些矩阵的构造和性质都与代数理论紧密相关。
高斯-若尔当消元法
在编码理论中,经常使用高斯-若尔当消元法来求解线性方程组,这种方法在代 数中也有广泛的应用。
物理学中的应用
量子力学中的态空间
在量子力学中,态空间是一个复的向量空间,其基底对应于可观测物理量。这与代数学中的向量空间 概念非常相似。
如果E是F的一个子集,且E中的元素 都是方程f(x)=0的根,其中f(x)是F上 的一个多项式,那么E在F上形成一个 子域。
如果E是F的一个子集,且E中的元素 都是方程f(x)=0的根,其中f(x)是F上 的一个不可约多项式,那么E在F上形 成一个有限子域。
有限域
有限域的性质
有限域中的元素个数一定是某个素数的幂。
理想与商环
理想的定义与性质
介绍理想的定义,包括左理想、右理想、双边理想等 ,并讨论理想的封闭性、运算性质等。

近世代数的基础知识

近世代数的基础知识

近世代数的基础知识初等代数、高等代数和线性代数都称为经典代数(Classical algebra ),它的研究对象主要是代数方程和线性方程组)。

近世代数(modern algebra )又称为抽象代数(abstract algebra ),它的研究对象是代数系,所谓代数系,是由一个集合和定义在这个集合中的一种或若干种运算所构成的一个系统。

近世代数主要包括:群论、环论和域论等几个方面的理论,其中群论是基础。

下面,我们首先简要回顾一下集合、映射和整数等方面的基础知识,然后介绍本文需要用到的近世代数的相关知识。

3.1 集合、映射、二元运算和整数3.1.1 集合集合是指一些对象的总体,这些对象称为集合的元或元素。

“元素a 是集合A 的元”记作“A x ∈”,反之,“A a ∉”表示“x 不是集合A 的元”。

设有两个集合A 和B ,若对A 中的任意一个元素a (记作A a ∈∀)均有B a ∈,则称A 是B 的子集,记作B A ⊆。

若B A ⊆且A B ⊆,即A 和B 有完全相同的元素,则称它们相等,记作B A =。

若B A ⊆,但B A ≠,则称A 是B 的真子集,或称B 真包含A ,记作B A ⊂。

不含任何元素的集合叫空集,空集是任何一个集合的子集。

集合的表示方法通常有两种:一种是直接列出所有的元素,另一种是规定元素所具有的性质。

例如:{}c b a A ,,=;{})(x p x S =,其中)(x p 表示元素x 具有的性质。

本文中常用的集合及记号有:整数集合{} ,3,2,1,0±±±=Z ;非零整数集合{}{} ,3,2,10\±±±==*Z Z ; 正整数(自然数)集合{} ,3,2,1=+Z ;有理数集合Q ,实数集合R ,复数集合C 等。

一个集合A 的元素个数用A 表示。

当A 中有有限个元素时,称为有限集,否则称为无限集。

用∞=A 表示A 是无限集,∞<A 表示A 是有限集。

近世代数定理

近世代数定理

近世代数(抽象代数)
“近世代数即抽象代数。

代数是数学的其中一门分支,当中可大致分为初等代数学和抽象代数学两部分。

初等代数学是指19世纪上半叶以前发展的代数方程理论,主要研究某一代数方程(组)是否可解,如何求出代数方程所有的根〔包括近似根〕,以及代数方程的根有何性质等问题。

法国数学家伽罗瓦〔1811-1832〕在1832年运用「群」的思想彻底解决了用根式求解多项式方程的可能性问题。

他是第一个提出「群」的思想的数学家,一般称他为近世代数创始人。

【大学数学】重新理解系列之三:抽象代数

【大学数学】重新理解系列之三:抽象代数

【大学数学】重新理解系列之三:抽象代数我学过一学期的抽象代数,但感觉啥都没学到,对那些定义、定理没啥理解,完全就是考验记忆能力,但是下面的几篇文章居然勾起了哥学习抽象代数的欲望,对现代数学三大支柱一直的抽象代数感兴趣的同学可以慢慢看看,其实学习一门数学课时先读读这方面的科普文章,对整体把握和学习效果有非常大的提升。

文章列表:1. 初学者应该如何学习抽象代数2. 漫谈抽象代数(非常好)3. 抽象代数不抽象4. 抽象代数的人间烟火5. 抽象代数学习方法6. 近世代数概论前言7. 近世代数学习方法(之后的几篇文章还没来得及看)8. 群论问题与物理问题(和众多牛人的讨论总结)9. 近世代数基础课件(感觉很不错)10. 近世代数发展简史11. 近世代数的应用12. 抽象代数学习报告初学者应该如何学习抽象代数曾经看到一些抽象代数(近世代数)的初学者有这样的疑问:我们为什么要研究像群这样的抽象结构呢?有人解释说这是刻画对称性,也有人解释说是现代数学的一种语言,有点道理却又语焉不详。

【为什么学抽象代数?多么实际而迫切的问题,但学了也没能回答这个问题。

既然抽象代数研究的是结构,那么就对应数学物理工程医学中的实际的结构,如化学中物质结构、网络结构等等,我觉得都是可以用上去的,这都是一下想到的,没有详细去考证。

】为什么要研究群呢?提出这类问题的人困惑的并不是群的本质,而是需要一个合理的过渡,我觉得从具体的代数到抽象代数之间的过渡可以类比于从算术到普通代数的过渡。

记得我第一次遇到代数时感到很奇怪,为什么一眼就能看出答案的问题,非要设个未知量x来解方程。

直到后来发现几个x可以抵消,我才算领会了方程的方便,再后来遇到二次的情形就非要列方程不可了。

如果说方程中字母x代表某个数的话,那么群中的字母g又代表什么呢?它不仅代表处在某个地位上的数,更是代表一个特殊的位置,这样的位置是与整个群的结构相互联系的。

比如在三阶循环群中,两个生成元尽管作为数是不同的,但它们在群的地位却是一致的。

近世代数学习系列四-北航李尚志抽象代数的人间烟火

近世代数学习系列四-北航李尚志抽象代数的人间烟火

抽象代数的人间烟火李尚志北京航空航天大学数学与系统科学学院北京, 100191摘要抽象代数课如果只是死记硬背一些自己根本不懂的定义,没有例子,没有计算,不会解决任何问题,这样的抽象代数只能给零分。

抽象代数能不能有既体现数学本质、又引人入胜的例子?本文介绍的就是这样的例子。

关键词:抽象代数,精彩案例某校有一个被保送读研的学生参加我们的面试。

我问她哪门课程学得最好。

答曰“抽象代数”。

不等我问问题,她就开始自问自答,开始背诵群的定义。

我马上制止她,说不要你背定义,只要你举例。

让她举一个非交换群。

举不出来。

举一个有限域,举不出来。

我说:这两个例子举不出来,抽象代数零分! 她大惑不解,说:“抽象代数就是没有例子嘛!”她大概认为我学的是假的抽象代数,她学的真的抽象代数就是死记硬背一些自己根本不懂的定义,没有任何例子,不解决任何问题,也没有任何前因后果。

如果只是少数学生这样认为,可以怪她自己学得不好。

问题的严重性在于:持这样观点的学生不是一两个,也不是10%--20%,我估计:学习抽象代数的大学生中有90%都持这种观点,只不过这个学生将这种观点总结得特别明确、特别精彩而已。

这恐怕就不能怪学生,而应当从教材和教学中找原因了。

现有的抽象代数教材,不是没有例子。

这些例子本来就很精彩。

三等分角的尺规作图,五次方程的求根公式,这是迄今为止一些“民间科学家”还在花费毕生精力苦心钻研的世界“难题”,早就被抽象代数解决了,这还不够精彩吗?密码、编码中的理论和实践,抽象代数大显身手,也够精彩了。

但是,这些精彩问题的解答叙述起来太难,学生不容易懂。

要讲清楚,课时也不够。

只有少数名牌大学的抽象代数课程还稍微讲一些,在其余的学校,就将抽象代数这些精华和灵魂砍掉了,只剩下最容易讲的:让学生死背一些自己也不懂的定义。

考试也不考用知识解决问题,只考背定义。

抽象代数就不是数学课,而是识字课,只要死记硬背就行了。

金庸的武侠小说《射雕英雄传》中的武功秘籍《九阴真经》中有一段用梵文写的话:“努尔七八,哈瓜儿,宁血契卡,混花察察,学根许八涂,米尔米尔。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

抽象代数的人间烟火李尚志北京航空航天大学数学与系统科学学院北京, 100191摘要抽象代数课如果只是死记硬背一些自己根本不懂的定义,没有例子,没有计算,不会解决任何问题,这样的抽象代数只能给零分。

抽象代数能不能有既体现数学本质、又引人入胜的例子?本文介绍的就是这样的例子。

关键词:抽象代数,精彩案例某校有一个被保送读研的学生参加我们的面试。

我问她哪门课程学得最好。

答曰“抽象代数”。

不等我问问题,她就开始自问自答,开始背诵群的定义。

我马上制止她,说不要你背定义,只要你举例。

让她举一个非交换群。

举不出来。

举一个有限域,举不出来。

我说:这两个例子举不出来,抽象代数零分! 她大惑不解,说:“抽象代数就是没有例子嘛!”她大概认为我学的是假的抽象代数,她学的真的抽象代数就是死记硬背一些自己根本不懂的定义,没有任何例子,不解决任何问题,也没有任何前因后果。

如果只是少数学生这样认为,可以怪她自己学得不好。

问题的严重性在于:持这样观点的学生不是一两个,也不是10%--20%,我估计:学习抽象代数的大学生中有90%都持这种观点,只不过这个学生将这种观点总结得特别明确、特别精彩而已。

这恐怕就不能怪学生,而应当从教材和教学中找原因了。

现有的抽象代数教材,不是没有例子。

这些例子本来就很精彩。

三等分角的尺规作图,五次方程的求根公式,这是迄今为止一些“民间科学家”还在花费毕生精力苦心钻研的世界“难题”,早就被抽象代数解决了,这还不够精彩吗?密码、编码中的理论和实践,抽象代数大显身手,也够精彩了。

但是,这些精彩问题的解答叙述起来太难,学生不容易懂。

要讲清楚,课时也不够。

只有少数名牌大学的抽象代数课程还稍微讲一些,在其余的学校,就将抽象代数这些精华和灵魂砍掉了,只剩下最容易讲的:让学生死背一些自己也不懂的定义。

考试也不考用知识解决问题,只考背定义。

抽象代数就不是数学课,而是识字课,只要死记硬背就行了。

金庸的武侠小说《射雕英雄传》中的武功秘籍《九阴真经》中有一段用梵文写的话:“努尔七八,哈瓜儿,宁血契卡,混花察察,学根许八涂,米尔米尔。

”只要认识字,小学生也可以化功夫死记硬背下来,但是根本不懂它的意思,更不可能照着去练习,难道就因为背熟了这些句子就成了武功高手吗?显然不是。

同样,死记硬背抽象代数教材中的定义而根本不懂它的意思,举不出一个例子,不会用来解决任何一个问题,这样学习的抽象代数就是假冒的,通通都应当给零分!这些年来,我们在抽象代数课程建设中所做的全部努力,就是要破除这种“就是没有例子”的假抽象代数。

我们取得的主要成绩,就是积累了一批既能体现数学本质、又为学生喜欢的案例。

下面是其中的一部分案例。

1. 幻方一变八----正方形的对称群我在抽象代数考试中考过这样的题:将如下的3阶幻方通过旋转和轴对称变出尽可能多的不同的幻方。

这不是考小学奥数。

而是考正方形的对称群:旋转90o,180o,270o得到3个新的幻方,关于第2行、第2列、两条对角线做轴对称得到4个新的幻方,包括原来的幻方在内一共可以得到8个。

为什么只能得到8个而不能得到更多? 通过旋转和轴对称只能将左上角的2变到4个不同的位置(正方形的4个角)。

将2固定在每个角不动,只能通过轴对称得到2个不同的幻方,4组总共2×4=8 个。

这实际上是说:将正方形变到与自己重合,有8个不同的动作。

这8个动作组成的集合对乘法(复合)与求逆运算封闭,组成一个群。

其中保持2不动的动作组成一个2阶子群,将2变到同一个位置的动作组成一个陪集。

非交换群、子群与陪集、子群的元素个数2是整个群的元素个数8的因子。

这些概念和知识都自然而然引入了。

类似地,可以计算正方体的对称群或者旋转群的元素个数,或者任意正多边形和正多面体的对称群的元素个数。

特别,正三角形的对称群由三个顶点的所有置换组成,就是元素最少的非交换群S3。

2.0与1的算术----二元域许多人说有限域是抽象代数最后一节课讲的,最难,没学好情有可原,考试也不应当考。

其实有限域最容易讲,最有趣,最有用,最有抽象代数味道,可以在抽象代数课第一节课第一分钟讲。

我的抽象代数考试每次必考有限域。

小学生都懂得奇偶数的运算规律:偶+偶=偶,偶+奇=奇,奇+奇=偶; 偶×整数=偶,奇×奇=奇。

将偶数用0表示,奇数用1表示,就得到:0+0=0, 0+1=1, 1+1=0; 0×a=0 (a=0或1),1×1=1。

按这样的运算公式,两个元素0,1组成的集合Z2就对加、减、乘、除封闭,Z2就是二元域,最简单的有限域。

我的导师曾肯成教授出过一个题:求随机整数组成的n阶行列式为奇数和偶数的概率。

貌似概率题,其实是代数题。

将行列式中的偶数用0表示,奇数用1表示,行列式为奇数(也就是等于1)就是二元域上可逆矩阵,充分必要条件就是各行线性无关。

归结为二元域上的线性代数题。

另一个例子是:在二元域上解齐次线性方程组,得到纠错码的一个设计方案。

二元域在信息与计算机科学中至关重要。

会算1+1=0,就懂了一点真正的抽象代数。

为什么两个整数a,b的和、差、积的奇偶性只与a,b的奇偶性有关而与奇数与偶数的不同取值无关?将a,b分别用它们除以2的余数r,s代表(r,s取值为0或1),写成a=r+偶,b=s+偶的形式,则a±b=(r+偶)±(s+偶)=(r±s)+(偶±偶),ab=(r+偶)(s+偶)= rs+r×偶+偶×s+偶×偶。

不论其中的“偶”取什么偶数值,总有:偶±偶=偶,偶×整数=偶,就好象0±0=0, 0×数=0一样。

可以将算式中的“偶”看作0来运算,得到a±b = (r±s)+偶,ab = rs+偶。

也就是说:将a,b 替换成与它们奇偶性相同的0或1进行运算,得到的和、差、积的奇偶性不变。

这件事可以推广:a,b取值的整数集合Z替换成对合法的加法与乘法封闭的任意集合D,称为环; 偶数集合替换成D中具有类似于0的运算性质O±O=O,D×O=O的子集O,称为理想。

D中两个元素a,b的差如果在O中,就将a,b“看成”同一类,得到的同余类组成的集合可以定义加、减、乘运算,这就是商环D/O。

特别,当D=Z,O=nZ时,商环D/O 就是整数模n的同余类环Z n 。

另一个重要例子:D 是在某点c连续的全体全体实函数f(x)组成的环,记∆x=x-c,O(∆x)与o(∆x)分别是当Dx→0时的无穷小量和高阶无穷小量组成的集合,则O(∆x)与o(∆x)都是D的理想,同余式f(x)≡a (mod O(∆x))表示当x→c时f(x)的极限是a,而f(x)≡a+b∆x (mod o(∆x)) 表示b是f(x)在c的导数。

3.从凯撒密码谈起-----整数的同余类。

密码的重要性不容置疑,神秘性也令人向往。

最早的一种简单密码是凯撒设计的,加密方案是将每个英文字母用它后面第3个字母代替。

将26个字母依次用整数模26的各个同余类表示,凯撒密码的加密就可以用最简单的加法函数y = x+3 表示,解密函数为x = y-3。

更进一步,可以用Z26上的一次函数y=ax+b 加密,其中a可逆,称为仿射密码。

例如3×9 =1就说明9=3-1,加密函数y=3x+5的解密函数就是x=9(y-5)。

Z26中的乘法可逆元组成乘法群Z26*,由与26互素的整数所在的同余类组成。

更进一步,可以将若干个字母对应的同余类组成列向量X,用矩阵运算Y=AX+B来加密,其中A的行列式在Z26*中。

也可以将信息写成二元域Z2上的列向量,用Z2上的矩阵运算Y=AX+B加密。

更一般地,讨论Z n的乘法群Z n*。

特别,当n为素数p时,Z p中的p-1个非零元都可逆,组成乘法群Z p*。

Z p是有限域,Z p*中的元素都可以写成一个元素的幂,Z p*是循环群。

在另一种情形,n = pq是两个素数p,q的乘积,为了讨论Z n及其乘法群Z n*的构造,将每个整数a除以p,q各得到一个余数r,s,将a对应到“坐标”(r,s),就建立了环同态Z→Z p×Z q,进而得到环同构Z n→Z p×Z q,这就引出了中国剩余定理,环同态基本定理,环的直积。

进而可以讨论Z n上的幂函数y=x m 是可逆变换的条件,得到RSA公钥密码。

4.复数的几何模型--- 同构、同态与单位根群中学数学强行定义i2=–1,不解释这种定义的合理性。

其实,很容易给出i2 =–1的一个几何解释:–1乘向量是向后转180度; 用i表示向左转90度, 则i2就是向后转180度,就是–1。

这其实是将虚数单位i用“左转90度”的线性变求逆运算,是复数域C与它的几何版本(由线性变换组成)和矩阵版本(由矩阵组成)之间的环同构、域同构。

在这个同构下,复数cos♋ + i sin♋对应的变换是旋转角♋ 其 n次幂就是旋转nα 由此立即得到 ☎cosα + i sinα ✆n cos nα + i sin nα (棣美弗公式)及其矩阵版本。

由旋转角α到复数cosα+isinα 的对应关系f具有性质f(α+β) = f(α)f(β),将实数的加法对应到复数的乘法,这说明加法与乘法本质上是一回事(都满足结合律与交换律,加法的0对应于乘法的1,加法的负元对应于乘法的逆元),对加减法封闭的与对乘除法封闭的集合同样都称为群。

以上对应关系f是实数加法群R 到表示旋转的(模为1)的复数乘法群P的同态,同态核为2π的全体整倍数2πZ。

将相差2π 的整倍数的角α对应于同一个复数f(α)。

将相差2π 的整倍数的角α看成相等,组成一个同余类,得到同余类集合R/2πZ到P的1-1对应σ 并且保持运算(将加法变到乘法),σ 是群同构R/2πZ→P。

这就是群同态基本定理。

既然群同态f将2π 的整数倍2kπ对应到1,求1的n次方根也就相当于将2kπ 除以n,得到的方根为f(2kπ/n) = cos(2kπ/n)+isin(2kπ/n)= ωk,让k取遍n个值0,1,2,…,n-1就得到n个不同的方根,称为n次单位根,它们都可以写成其中一个根 ω = cos(2π/n)+isin(2π/n) 的整数次幂,其几何意义就是旋转2kπ 的n分之一。

对应关系φ :k → ωk 是整数加群到单位根乘法群的同态,同态核由n的全体整数倍组成。

让相差n的整倍数的整数组成一个同余类,得到同余类 Z n的加法群到单位根乘法群的同构,这是群同态基本定理又一个例子。

5. x15-1在有理数范围内的因式分解x15-1在复数范围内分解为一次因子的乘积(x-1)(x-ω)…(x-ω n-1 ),每个一次因子x-ωk对应于一个15次单位根ωk,每个ωk的在乘法群中的阶d都是15的因子,共有4个不同的值1,3,5,15。

相关文档
最新文档