近世代数学习系列一 学习方法

合集下载

简论近世代数课程的教学

简论近世代数课程的教学

简论近世代数课程的教学
近世代数课程是一门基础学科,在高中数学课程中占有重要的地位,其教学内容涉及到许多角度的数学思想和解决问题的能力。

在这门课程中,学生要掌握数值代数、函数、概率与统计等方面的基本概念和算法,加深对数学知识体系的了解。

为了有效引导学生深入学习近世代数,使其能够更好地掌握相关知识,在教学中应注重强化抽象思维能力的培养,能够培养学生的解题能力和创新精神,达到从数学抽象思想中进行解题的能力,面对解题过程中发生的任何问题,一个有效的解题机制也是非常重要的。

让学生熟悉近世代数课程中函数、数轴动态图、指数和对数函数、微分与积分等内容,也是其重要教学技巧之一。

这里强调两个重要技巧:一是增强学生自主学习的能力,让学生通过自主学习来解决实际问题;二是提高学生的主动学习能力,引导学生在理解数学内容的基础上进行自主的研究,积极地探索数学的内涵,深化其理解和回答更复杂的问题。

总之,在教授近世代数课程时,应注重深入分析实际问题,引导学生学以致用,注重提高学生解决问题的能力,从而培养学生良好的科学素养和思维性能力,能够解决实际问题。

提升学生数学学习兴趣和综合能力,为未来学习科学技术提供坚实的基础。

近世代数学习系列一 学习方法

近世代数学习系列一 学习方法

近世代数学习方法“近世代数”是一门比较抽象的学科,初学者往往感到虚无飘渺,困难重重。

为此,下面介绍五种常用的学习方法。

一、通过例子来加深对基本理论的理解针对“近世代数”课程的概念抽象、难于理解的特点,我们认为理解概念的一种有效方法是多举已学过的典型例子。

例如,一元多项式环和整数环是主理想整环的例子,关于主理想整环的许多结论都是通过推广关于多项式和整数的结论得到;一个无零因子交换环的商域就是模仿整数环和有理数环间的关系构造的;整环里的因子分解理论就是分解质因数和多项式的因式分解理论的推广。

当我们学习“近世代数”时,就仅仅背下来一些命题、性质和定理,并不意味着真正地理解。

要想真正理解,需要清楚这些命题、性质和定理的前提条件为什么是必要的?而达到这个目的的最有效的方法就是构造反例。

通常的做法是:去掉一个前提条件后,构造一个结论不成立的例子,从而表明所去掉的前提条件是必要的。

例如,关于素理想和极大理想的关系有结论:设R是含1交换环,则R的极大理想一定是素理想。

那么这个结论的条件“含1”是必要的吗?这个问题的答案可从下面的例子容易得到。

例:设R是所有偶数构成的环,Z表示整数环,则4Z是R的极大理想,但4Z不是R的素理想。

二、通过变换角度来寻求问题的解法通过变换角度来寻求问题的解法是一种很普遍的解题方法,通常是将已知或未知较复杂的问题变换为等价的较简单的问题,或者是将新问题变换为已经解决的问题,或者是将未知与已知关系较少的问题变为已知与未知关系较多的问题等等。

下面举例说明这种方法:例:设是从G1到G2的满同态,N2是G2的不变子群,N1= -1(N2),证明G1/N1同构于G2/N2。

对于这个问题,我们不直接证明G1/N1同构于G2/N2,而是将问题进行变换,先构造从G1到G2/N2的满同态,再证明N1是的核,然后根据同态基本定理知结论正确。

三、通过“同构”的观点将知识点(问题)归类“同构”的概念非常重要,因为凡是具有同构性质的结构在本质上可看成是同一结构。

近世代数学习系列-b1 集合论笔记

近世代数学习系列-b1 集合论笔记

近世代数预备知识集合论集合集合论之所以是数学的基础,不仅因为它提供了定义各种概念的框架,更因为它完全规定了数学所要讨论的问题的范围——一个“命题”,从本质上来说,就是关于某个元是否属于某个集合的问题。

也就是说,从本质上来讲数学的语言里只有一个谓语“属于”,用来描述一个“对象”和一个“集合”的关系。

在严密贯彻集合论的逻辑体系里,所谓的“对象”同样也是一个集合。

但是通常可以把对象理解成“一个意义明确的东西或一些这种东西组成的集合”。

比如说一个自然数 3 ,或者一个字母x,或者两者的集合 { 3 , x },都算做一个对象。

(在严密贯彻集合论的逻辑体系里,我们比如说是这么定义自然数的:上帝说,要有空集合。

于是就有了空集合(空集公理)。

我们把空集合定义为 0。

把集合{ 0 } 定义为 1。

把 { 0, 1 } 定义为 2。

把 { 0, 1, 2 } 定义为 3。

依此类推。

上帝看着这是好的,于是把上面定义好的这些东西全体做成了一个集合(无限公理),取名为自然数。

)不管怎么样,我们有了谓语,只要再规定构造名词(集合)的方法,再加上各种连接词(逻辑),就大功告成了。

只是为了避免由“不属于自身的所有集合组成的集合”(关于其是否属于自身)所造成的著名悖论,我们需要小心翼翼地规定什么样的东西才能算做集合。

除了这一点,我们把集合理解成为“一些对象组成的集体”的直观,通常是没有问题的。

不打算描述这里面的各种逻辑和技术细节,只列出一些常用的定义集合的方法,顺便规定一些记号。

集合的定义方法。

∙{ a, b, c } 列举。

a、b、c组成的集合。

∙{ x∈A| 命题 } 集合A中满足命题的所有元组成的子集。

注意这里有x∈A(x属于A)的限制,这样就可以避免定义出“不属于自身的所有集合组成的集合”之类的东西。

∙℘ ( A ) 幂集合。

集合A的所有子集组成的集合。

∙A∐B非交和。

把集合A的元和集合B的元合在一起看成是一个集合。

A的元与B的元总看成是不同的。

《近世代数》教案1

《近世代数》教案1

《近世代数》教案1《近世代数》教案1教案一:近世代数概述一、教学目标1.了解近世代数的起源和发展历程;2.理解近世代数的基本概念和基本运算;3.掌握近世代数的基本定理和性质;4.培养学生的逻辑推理和证明能力。

二、教学内容1.近世代数的起源和发展历程;2.近世代数的基本概念和基本运算;3.近世代数的基本定理和性质。

三、教学重点和难点1.理解近世代数的基本概念;2.掌握近世代数的基本运算;3.理解和运用近世代数的基本定理和性质。

四、教学方法1.前置知识导入:利用历史故事或问题引入近世代数的起源;2.概念解释与讨论:通过引导学生,共同探讨近世代数的基本概念;3.理解和运用:通过实际问题,让学生理解和运用近世代数的基本定理和性质;4.案例分析和练习:通过案例分析和练习,巩固学生对近世代数的理解和应用能力;5.归纳总结:通过归纳总结,整理和进一步理解所学的知识。

五、教学过程1.前置知识导入(10分钟)-引入:《近世代数》是一门重要的数学学科,它是现代数学的基石之一、那么,你们以为近世代数是从什么时候开始出现的呢?我们来听听关于近世代数起源的故事吧。

-故事:公元16世纪,意大利的一位数学家卡尔达诺被人请到一个庄园解决一个心理障碍的问题,他最终发现了它的根源与代数方程式求解有关。

这个故事揭示了近世代数起源的一部分,下面我们一起来探索更多关于近世代数的知识。

2.概念解释与讨论(20分钟)-定义:近世代数是一门研究代数结构及其性质的学科,它主要研究了代数系统的运算规则和代数方程式的求解方法。

-基本概念:群、环、域是近世代数中的基本概念。

群是指一个非空集合和一个在这个集合上的运算,满足封闭性、结合律、单位元和逆元的性质;环是指一个非空集合和两个在这个集合上的运算,满足加法封闭性、结合律、单位元和可逆性,以及乘法封闭性和结合律;域是指一个非空集合和两个在这个集合上的运算,满足加法封闭性、结合律、单位元和可逆性,以及乘法封闭性、结合律、单位元和可逆性。

近世代数教学大纲

近世代数教学大纲

混凝土加气块标准
1、砌块砌筑时,应上下错缝,搭接长度不宜小于砌块长度的1/3。

2、砌块内外墙墙体应同时咬槎砌筑,临时间断时可留成斜槎,不得留“马牙槎”。

灰缝应横平竖直,水平缝砂浆饱满度不应小于90%。

垂直缝砂浆饱满度不应小于80%。

如砌块表面太干,砌筑前可适量浇水。

3、地震区砌块应采用专用砂浆砌筑,其水平缝和垂直缝的厚度均不宜大于15mm。

非地震区如采用普通砂浆砌筑,应采取有效措施,使砌块之间粘结良好,灰缝饱满。

当采用精确砌块和专用砂浆薄层砌筑方法时,其灰缝不宜大于3mm。

4、后砌填充砌块墙,当砌筑到梁(板)底面位置时,应留出缝隙,并应等待7d后,方可对该缝隙做柔性处理。

5、切锯砌块应采用专用工具,不得用斧子或瓦刀任意砍劈。

洞口两侧,应选用规格整齐的砌块砌筑。

6、砌筑外墙时,不得在墙上留脚手眼,可采用里脚手或双排外脚手。

7、砌体结构尺寸和位置允许偏差。

近世代数知识点

近世代数知识点

近世代数知识点近世代数,又称抽象代数,是数学的一个重要分支,它为许多其他数学领域提供了基础和工具。

下面让我们一起来了解一些近世代数的关键知识点。

首先是群的概念。

群是近世代数中最基本的结构之一。

简单来说,一个群就是一个集合 G 以及定义在这个集合上的一种运算“”,满足一些特定的条件。

比如,对于集合中的任意两个元素 a 和 b,运算的结果ab 仍然属于这个集合;存在一个单位元 e,使得对于任意元素 a,都有ae = ea = a;对于每个元素 a,都存在一个逆元 a^(-1),使得 aa^(-1) = a^(-1)a = e。

群的例子在生活中也有不少,比如整数集合在加法运算下构成一个群。

环也是近世代数中的重要概念。

一个环 R 是一个集合,上面定义了两种运算:加法“+”和乘法“·”。

加法满足交换律、结合律,有零元,每个元素都有相反数;乘法满足结合律;乘法对加法满足分配律。

常见的环有整数环、多项式环等。

接下来是域。

域是一种特殊的环,它要求非零元素对于乘法运算构成一个群。

比如有理数域、实数域和复数域。

同态和同构是近世代数中用来比较不同代数结构的重要工具。

同态是指两个代数结构之间存在一种保持运算的映射。

如果这个映射还是一一对应的,那就是同构。

同构的两个代数结构在本质上可以看作是相同的。

在近世代数中,子群、子环和理想也具有重要地位。

子群是群的一个子集,在原来的运算下也构成群;子环是环的一个子集,在原来的两种运算下也构成环;理想则是环中的一个特殊子集,对于环中的乘法和加法有特定的性质。

再来说说商群和商环。

以商群为例,给定一个群 G 和它的一个正规子群N,就可以构造出商群G/N。

商群中的元素是由N 的陪集构成的。

近世代数中的重要定理也不少。

比如拉格朗日定理,它对于理解群的结构和性质非常有帮助。

该定理指出,子群的阶整除群的阶。

最后,我们谈谈近世代数的应用。

在密码学中,群和环的理论被广泛用于加密和解密算法的设计。

(完整版)近世代数讲义(电子教案)(1)

(完整版)近世代数讲义(电子教案)(1)

《近世代数》课程教案第一章基本概念教学目的与教学要求:掌握集合元素、子集、真子集。

集合的交、并、积概念;掌握映射的定义及应注意的几点问题,象,原象的定义;理解映射的相同的定义;掌握代数运算的应用;掌握代数运算的一般结合运算,理解几个元素作代数运算的特点;理解代数运算的结合律;掌握并能应用分配律与结合律的综合应用;掌握满射,单射,一一映射及逆映射的定义。

理解满射,单射,一一映射及逆映射的定义;掌握同态映射、同态满射的定义及应用;掌握同构映射与自同构的定义;掌握等价关系的定义,理解模n的剩余类。

教学重点:映射的定义及象与原象的定义,映射相同的定义;代数运算的应用,对代数运算的理解;代数运算的结合律;对定理的理解与证明;同态映射,同态映射的定义;同构映射的定义以及在比较集合时的效果;等价关系,模n的剩余类。

教学难点:元素与集合的关系(属于),集合与集合的关系(包含);映射定义,应用该定义应注意几点;代数运算符号与映射合成运算符号的区别;结合率的推广及满足结合律的代数运算的定义;两种分配律与⊕的结合律的综合应用;满射,单射,一一映射及逆映射的定义;同态映射在比较两个集合时的结果;模n的剩余类.教学措施:网络远程。

教学时数:8学时.教学过程:§1 集合定义:若干个(有限或无限多个)固定事物的全体叫做一个集合(简称集)。

集合中的每个事物叫做这个集合的元素(简称元)。

定义:一个没有元素的集合叫做空集,记为∅,且∅是任一集合的子集。

(1)集合的要素:确定性、相异性、无序性。

(2)集合表示:习惯上用大写拉丁字母A ,B ,C …表示集合,习惯上用小写拉丁字母a ,b ,c …表示集合中的元素. 若a 是集合A 中的元素,则记为A a A a ∉∈否则记为,. 表示集合通常有三种方法: 1、枚举法(列举法):例:A ={1,2,3,4},B ={1,2,3,…,100}. 2、描述法:{})(,)(x p x p x A =—元素x 具有的性质。

近世代数教学大纲近世代数课程是高等学校数学专业的必修课程

近世代数教学大纲近世代数课程是高等学校数学专业的必修课程

近世代数教学大纲近世代数课程是高等学校数学专业的必修课程《近世代数》教学大纲《近世代数》课程是高等学校数学专业的必修课程,是大学数学的重要基础课程之一。

它是现代数学的一个重要分支,其主要研究对象不是代数机构中的元素特性,而是各种代数结构本身和不同代数结构之间的相互联系。

《近世代数》已成为进入现代数学的阶梯和基础,不仅在知识方面,而且在思想方法上对于学习和研究近代数学都起着明显而有力的作用,它的理论结果也已经应用到诸多相关的科学领域,如计算机科学、理论物理、理论化学等。

设置本课程的目的:向学生介绍近世代数的最基本的概念、理论和方法,介绍现代数学的基础知识,培养学生的抽象思维能力和逻辑推理能力。

从而满足学生对代数学进一步学习和研究的要求,满足其他数学领域及数学应用对代数的基本要求。

学习本课程的要求:学生应了解近世代数的基本的概念和理论,掌握代数学研究代数结构的一般方法,注意培养抽象思维能力和逻辑推理能力,能为以后的代数学习或其他数学领域的学习打下良好的代数学基础。

先修课程要求:集合论初步,线性代数,高等代数本课程学时:54学时选用教材:刘绍学、章璞编著,近世代数导引,高等教育出版社(2011)教学手段:课堂讲授为主,讨论、课外辅导为辅考核方法:考试注:1、注意章节之间的相互联系,每章内容在全教材中所处的地位及作用。

2、在概念的讲授中,应注意由特殊到一般,由具体到抽象。

教学的初始阶段,宜慢不宜快。

3、不拘泥于教材,同时编写课程讲义。

4、时刻把握学生的接受能力。

5、教材中打“*”的内容根据实际情况选择讲解。

主要教学内容与重难点:第一章集合与运算一、学习目的通过本章的学习,能够熟练掌握近世代数中常见的一些基本概念和符号,初步了解近世代数课程研究的对象和一般的研究方法。

二、课程内容§1.1 集合§1.2 运算映射的定义,单射,满射,双射(一一映射);变换的定义,单射变换,满射变换,双射变换。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

近世代数学习方法
“近世代数”是一门比较抽象的学科,初学者往往感到虚无飘渺,困难重重。

为此,下面介绍五种常用的学习方法。

一、通过例子来加深对基本理论的理解
针对“近世代数”课程的概念抽象、难于理解的特点,我们认为理解概念的一种有效方法是多举已学过的典型例子。

例如,一元多项式环和整数环是主理想整环的例子,关于主理想整环的许多结论都是通过推广关于多项式和整数的结论得到;一个无零因子交换环的商域就是模仿整数环和有理数环间的关系构造的;整环里的因子分解理论就是分解质因数和多项式的因式分解理论的推广。

当我们学习“近世代数”时,就仅仅背下来一些命题、性质和定理,并不意味着真正地理解。

要想真正理解,需要清楚这些命题、性质和定理的前提条件为什么是必要的?而达到这个目的的最有效的方法就是构造反例。

通常的做法是:去掉一个前提条件后,构造一个结论不成立的例子,从而表明所去掉的前提条件是必要的。

例如,关于素理想和极大理想的关系有结论:设R是含1交换环,则R的极大理想一定是素理想。

那么这个结论的条件“含1”是必要的吗?这个问题的答案可从下面的例子容易得到。

例:设R是所有偶数构成的环,Z表示整数环,则4Z是R的极大理想,但4Z不是R的素理想。

二、通过变换角度来寻求问题的解法
通过变换角度来寻求问题的解法是一种很普遍的解题方法,通常是将已知或未知较复杂的问题变换为等价的较简单的问题,或者是将新问题变换为已经解决的问题,或者是将未知与已知关系较少的问题变为已知与未知关系较多的问题等等。

下面举例说明这种方法:
例:设是从G1到G2的满同态,N2是G2的不变子群,N1= -1(N2),证明G1/N1同构于G2/N2。

对于这个问题,我们不直接证明G1/N1同构于G2/N2,而是将问题进行变换,
先构造从G1到G2/N2的满同态,再证明N1是的核,然后根据同态基本定理知结论正确。

三、通过“同构”的观点将知识点(问题)归类
“同构”的概念非常重要,因为凡是具有同构性质的结构在本质上可看成是同一结构。

这样就可以将对其中一个结构进行分析得到的性质迁移到其它结构上去。

例如,在群结构理论下,一个由元a所生成的循环群G,它的构造完全可以由a的阶来决定: 如果a的阶无限,那么G与整数加群同构;如果a的阶是有限整数n,那么G与模n的剩余类加群同构。

这样研究了整数加群和以n为模的剩余类加群,整个循环群就都在我们掌握之中了。

运用同构的观点来学习“近世代数”,有利于弄清群、环、域间的纵横关系,有利于全面、深刻、系统的理解所学的知识,也有利于培养分析、综合、抽象、概括的能力。

四、加强与其它课程的联系
在学习近世代数时,应该注意将所学的内容和其它课程相联系。

例如:群论中的许多结论可依据高等代数的知识构造矩阵群来加以解释;环论中的许多结论可依据数论知识或多项式理论加以解释来加以解释。

五、通过重复加深理解
对于“近世代数”中很抽象的内容,需要反复阅读,逐渐推敲,从不同角度去理解本质所在。

经常会出现这样的情况,读第一遍时明白了,而读第二遍时又糊涂了,这时要联系前后内容认真思考未明白的地方。

实际上是第一遍没有真正明白,或者只明白了表面的东西,尚未理解本质所在。

上面仅就我们的理解提出了学习“近世代数”的五种方法。

相关文档
最新文档