近世代数学习系列二十二群论与魔方
近世代数-文档资料

06.09.2020
11:21
数学上的确切描述
设由m颗珠子做成一个项链,可用一个正m边形 来代表它,它的每个顶点代表一颗珠子。
沿逆时针方向给珠子标号,
2
由于每一颗珠子的颜色有n种选
ห้องสมุดไป่ตู้
择,因而用乘法原理,这些有标 3
号的项链共有nm种。
图。 问题:n个点的图中互不同构的图有多少个?
06.09.2020
11:21
5.开关线路的构造与计数问题 一个有两种状态的电子元件称为一个开关,
例如普通的电灯开关,二极管等。由一些开关 组成的二端网络称为开关线路。一个开关线路 的两端也只有两种状态:通与不通。
问题:用n个开关可以构造出多少种不同的 开关线路?
了几十年。
06.09.2020
11:21
伽利略死后,直到19世纪末期,他的理 论才由别的数学家加以进一步的发展和系统 的阐述。
这样一门具有悠久历史、充满许多有趣 问题和故事的数学分支,在近代又得到了蓬 勃发展和广发应用,出现了许多应用与某一 领域的专著,正吸引越来越多的科技人员和 学生来学习和掌握它。
利用近世代数的方法可得到更高效的检 错码与纠错码。
06.09.2020
11:21
7. 几何作图问题
古代数学家们曾提出一个有趣的作图问题:用 圆规和直尺能做出哪些图形?
而且规定所用的直尺不能有刻度和不能在其上 做记号。为什么会提出这样的问题呢?
一方面是由于生产发展的需要,圆规、直尺是 丈量土地的基本工具,且最初的直尺是没有刻度 的;另一方面,从几何学观点看,古人认为直线与 圆弧是构成一切平面图形的要素。据说,古人还认 为只有使用圆规与直尺作图才能确保其严密性。且 整个平面几何学是以圆规与直尺作为基本工具。
魔方的群论模型和完全解

xyz, yuz, uvz, vxz, // w面着地
zyu, ywu, wvu, vzu, // x面着地
xzv, zuv, uwv, wxv, // y面着地
yxw, xvw, vuw, uyw) // z面着地
所有置换构成置换群。其中L[xyz]为1元。
状态的等价关系 -- 对于魔方的两个状态S与T,如果存在一个置换L,使得
S*L = T
则称S与T等价。
动作的相似关系 -- 对于魔方的两个动作A与B,如果存在一个置换L,使得
S[0]*A = S[0]*L*B
则称A与B相似。
一定至少有一个动作的结果深度为d-1,确认该动作为一步。反复尝试和确认,一
定能够到达初始状态S[0]。
状态集S中元素个数的估计:六个面的中心点不因动作而变化,8个顶点与12
个棱,应当有 8!*12! 约50M个状态。虽然顶点和棱在位置上还有自由度,但是顶
点和棱之间也有相互的约束关系。我不能定量地计算各自的程度,但是我觉得PC
90度(right)等3种操作,共18种基本动作。分别标为:
(ul, uo, ur,
vl, vo, vr,
wl, wo, wr,
xl, xo, xr,
yl, yo, yr,
zl, zo, zr)
先执行动作A,再执行动作B,称为复合动作,简称动作。记为:A*B
一、概念
面(face) -- 魔方有6个面,分别标为(u,v,w,x,y,z),其中(u,v,w)分别是
(x,y,z)的反方向。
状态(status) -- 魔方的所有可能的不同色块排列。一般的表示为S。
《近世代数》课件

近世代数的重要性
近世代数是数学领域中的基础学科之 一,是学习其它数学分支的重要基础 。
它对于理解数学的抽象本质和掌握数 学的基本思想方法具有重要意义,有 助于培养学生的逻辑思维和抽象思维 能力。
课程大纲简介
本课程将介绍近世代数的基本概念和性质,包括集合、群、环、域等代数系统的 定义、性质和关系。
1.1 答案
对。因为$a^2$的定义是两个整数相乘,结果仍为整数。
第1章习题及解答
1.2 答案:(略)
1.3 答案:群的基本性质包括封闭性、结合律和存在单位元。
第2章习题及解答
2.1 判断题:若$a$是整数,则$a^3$也是整数。 2.2 选择题:下列哪个是环?
第2章习题及解答
要点一
2.3 简答题
编码理论中的应用
线性码
线性码是一类重要的纠错码,其生成矩阵和校验矩阵都是线性方程组的解。这 些矩阵的构造和性质都与代数理论紧密相关。
高斯-若尔当消元法
在编码理论中,经常使用高斯-若尔当消元法来求解线性方程组,这种方法在代 数中也有广泛的应用。
物理学中的应用
量子力学中的态空间
在量子力学中,态空间是一个复的向量空间,其基底对应于可观测物理量。这与代数学中的向量空间 概念非常相似。
如果E是F的一个子集,且E中的元素 都是方程f(x)=0的根,其中f(x)是F上 的一个多项式,那么E在F上形成一个 子域。
如果E是F的一个子集,且E中的元素 都是方程f(x)=0的根,其中f(x)是F上 的一个不可约多项式,那么E在F上形 成一个有限子域。
有限域
有限域的性质
有限域中的元素个数一定是某个素数的幂。
理想与商环
理想的定义与性质
介绍理想的定义,包括左理想、右理想、双边理想等 ,并讨论理想的封闭性、运算性质等。
近世代数知识点

近世代数知识点近世代数,又称抽象代数,是数学的一个重要分支,它为许多其他数学领域提供了基础和工具。
下面让我们一起来了解一些近世代数的关键知识点。
首先是群的概念。
群是近世代数中最基本的结构之一。
简单来说,一个群就是一个集合 G 以及定义在这个集合上的一种运算“”,满足一些特定的条件。
比如,对于集合中的任意两个元素 a 和 b,运算的结果ab 仍然属于这个集合;存在一个单位元 e,使得对于任意元素 a,都有ae = ea = a;对于每个元素 a,都存在一个逆元 a^(-1),使得 aa^(-1) = a^(-1)a = e。
群的例子在生活中也有不少,比如整数集合在加法运算下构成一个群。
环也是近世代数中的重要概念。
一个环 R 是一个集合,上面定义了两种运算:加法“+”和乘法“·”。
加法满足交换律、结合律,有零元,每个元素都有相反数;乘法满足结合律;乘法对加法满足分配律。
常见的环有整数环、多项式环等。
接下来是域。
域是一种特殊的环,它要求非零元素对于乘法运算构成一个群。
比如有理数域、实数域和复数域。
同态和同构是近世代数中用来比较不同代数结构的重要工具。
同态是指两个代数结构之间存在一种保持运算的映射。
如果这个映射还是一一对应的,那就是同构。
同构的两个代数结构在本质上可以看作是相同的。
在近世代数中,子群、子环和理想也具有重要地位。
子群是群的一个子集,在原来的运算下也构成群;子环是环的一个子集,在原来的两种运算下也构成环;理想则是环中的一个特殊子集,对于环中的乘法和加法有特定的性质。
再来说说商群和商环。
以商群为例,给定一个群 G 和它的一个正规子群N,就可以构造出商群G/N。
商群中的元素是由N 的陪集构成的。
近世代数中的重要定理也不少。
比如拉格朗日定理,它对于理解群的结构和性质非常有帮助。
该定理指出,子群的阶整除群的阶。
最后,我们谈谈近世代数的应用。
在密码学中,群和环的理论被广泛用于加密和解密算法的设计。
近世代数文档

近世代数引言近世代数是数学中一个重要的分支,研究代数结构及其性质的理论体系。
通常包括群论、环论、域论等内容。
近世代数的发展对于数学的各个领域产生了深远的影响,也在应用数学和计算机科学中起着重要作用。
群论群论是近世代数的一个基础概念和重要分支。
群由三个基本要素组成:集合、运算和满足一定性质(结合律、封闭性、单位元、逆元)的公理。
群论研究集合中的元素如何进行运算,并研究这些运算的性质。
•子群:给定一个群,若一个集合中的元素满足群的性质和封闭性,则称其为一个子群。
•循环群:由一个元素生成的群称为循环群,循环群的结构相对简单。
•群的同态:将一个群的元素映射到另一个群中,并保持运算结构,称为群的同态。
同态的研究对于理解群之间的关系和性质非常重要。
环论环论是近世代数的另一个重要分支,研究满足特定性质的运算集合和运算规则。
环由两个基本要素组成:集合和满足一定性质(结合律、封闭性、零元、乘法交换律、分配律)的公理。
环论的研究主要关注集合中的元素之间的加法和乘法运算。
•子环:给定一个环,若一个集合中的元素满足环的定义和封闭性,则称其为一个子环。
•理想:一个环中的子集,满足特定运算性质(左右理想、乘法吸收律)的集合。
•商环:对于一个环和其中的一个理想,可以通过模运算构建一个新的环,称为商环。
商环中的元素相当于原环中的一个等价类。
域论域论是近世代数中的一个重要分支,研究满足一定性质的运算集合和运算规则。
域是一个满足加法和乘法交换律、分配律以及存在加法和乘法的单位元和乘法的逆元的环。
域是一种结构相对简单但非常重要的代数结构。
•子域:给定一个域,若一个集合中的元素满足域的定义和封闭性,则称其为一个子域。
•拓展域:给定一个域F,在F中添加一个新的元素,并扩展运算规则,得到的新的集合和运算称为拓展域。
•有限域:域中的元素个数是有限的,则称该域为有限域。
有限域具有特殊的性质和应用。
应用领域近世代数的研究对于数学的各个领域产生了深远的影响,也在应用数学和计算机科学中起着重要作用。
近世代数的基础知识

近世代数的基础知识初等代数、高等代数和线性代数都称为经典代数(Classical algebra ),它的研究对象主要是代数方程和线性方程组)。
近世代数(modern algebra )又称为抽象代数(abstract algebra ),它的研究对象是代数系,所谓代数系,是由一个集合和定义在这个集合中的一种或若干种运算所构成的一个系统。
近世代数主要包括:群论、环论和域论等几个方面的理论,其中群论是基础。
下面,我们首先简要回顾一下集合、映射和整数等方面的基础知识,然后介绍本文需要用到的近世代数的相关知识。
3.1 集合、映射、二元运算和整数3.1.1 集合集合是指一些对象的总体,这些对象称为集合的元或元素。
“元素a 是集合A 的元”记作“A x ∈”,反之,“A a ∉”表示“x 不是集合A 的元”。
设有两个集合A 和B ,若对A 中的任意一个元素a (记作A a ∈∀)均有B a ∈,则称A 是B 的子集,记作B A ⊆。
若B A ⊆且A B ⊆,即A 和B 有完全相同的元素,则称它们相等,记作B A =。
若B A ⊆,但B A ≠,则称A 是B 的真子集,或称B 真包含A ,记作B A ⊂。
不含任何元素的集合叫空集,空集是任何一个集合的子集。
集合的表示方法通常有两种:一种是直接列出所有的元素,另一种是规定元素所具有的性质。
例如:{}c b a A ,,=;{})(x p x S =,其中)(x p 表示元素x 具有的性质。
本文中常用的集合及记号有:整数集合{} ,3,2,1,0±±±=Z ;非零整数集合{}{} ,3,2,10\±±±==*Z Z ; 正整数(自然数)集合{} ,3,2,1=+Z ;有理数集合Q ,实数集合R ,复数集合C 等。
一个集合A 的元素个数用A 表示。
当A 中有有限个元素时,称为有限集,否则称为无限集。
用∞=A 表示A 是无限集,∞<A 表示A 是有限集。
近世代数学习系列二十二 群论与魔方

群论与魔方:群论基础知识要了解破解魔方攻略背后的数学原理,「群论」(Group Theory)是必不可少的知识,本章介绍群论的基础知识。
群论是「抽象代数学」(Abstract Algebra)的重要分支,是有关「群」(Group)的理论。
抽象代数学跟一般代数学或线性代数学不同,其要旨不是解方程或方程组,而是研究各种代数结构的特性,「群」就是一种非常重要的代数结构。
群的基本定义设有一个集合G和G上的「二元运算」(Binary Operation)「•」。
如果G 的元素和「•」满足以下「公理」(Axiom),我们便说(G, •)构成一个「群」(为了行文方便,有时可以把「群(G, •)」径直称为「群G」):1.「封闭性」(Closure)-对G中任何两个元素a和b而言,a • b ∈ G。
2.「结合性」(Associativity)-对G中任何三个元素a、b和c而言,(a • b) • c = a • (b • c)。
3.「单位元」(Identity)-存在G中一个元素e (称为「单位元」),使得对于G中任何元素a而言,e • a = a • e = a。
4.「逆元」(Inverse)-对于G中任何元素a而言,都有G中的元素a−1 (称为a的「逆元」),使得a • a−1 = a−1• a = e。
请注意由于「•」满足结合性,在写出三个或以上元素之间的运算时,可以不用括号,即写成a • b • c。
如果某个运算涉及同一个元素,我们可以像一般乘法那样采用「指数」记法,例如可以把a • a • a写成a3。
我们还可以仿照一般乘法规定零指数和负指数的定义如下:a0= e,a−n= (a−1)n。
另外,可以证明上述定义中的「单位元」是唯一的,而且对于G中任一元素a而言,其「逆元」a−1也是唯一的。
根据「封闭性」,若a和b是G的元素,则(a • b)也是G 的元素,因此我们也可以谈论(a • b)的逆元,而且这个逆元满足(a • b)−1 = b−1• a−1(1)如果(G, •)还满足「交换性」(Commutativity),即对G中任何两个元素a、b 而言,a • b = b • a,我们便说(G, •)是「交换群」(Commutative Group)或「阿贝尔群」(Abelian Group)。
近世代数学习方法

“近世代数”是一门比较抽象的学科,初学者往往感到虚无飘渺,困难重重。
为此,下面介绍五种常用的学习方法。
一、通过例子来加深对基本理论的理解 ?针对“近世代数”课程的概念抽象、难于理解的特点,我们认为理解概念的一种有效方法是多举已学过的典型例子。
例如,一元多项式环和整数环是主理想整环的例子,关于主理想整环的许多结论都是通过推广关于多项式和整数的结论得到;一个无零因子交换环的商域就是模仿整数环和有理数环间的关系构造的;整环里的因子分解理论就是分解质因数和多项式的因式分解理论的推广。
当我们学习“近世代数”时,就仅仅背下来一些命题、性质和定理,并不意味着真正地理解。
要想真正理解,需要清楚这些命题、性质和定理的前提条件为什么是必要的?而达到这个目的的最有效的方法就是构造反例。
通常的做法是:去掉一个前提条件后,构造一个结论不成立的例子,从而表明所去掉的前提条件是必要的。
例如,关于素理想和极大理想的关系有结论:设R是含1交换环,则R的极大理想一定是素理想。
那么这个结论的条件“含1”是必要的吗?这个问题的答案可从下面的例子容易得到。
例:设R是所有偶数构成的环,Z 表示整数环,则4Z是R的极大理想,但4Z不是R的素理想。
?二、通过变换角度来寻求问题的解法 ?通过变换角度来寻求问题的解法是一种很普遍的解题方法,通常是将已知或未知较复杂的问题变换为等价的较简单的问题,或者是将新问题变换为已经解决的问题,或者是将未知与已知关系较少的问题变为已知与未知关系较多的问题等等。
下面举例说明这种方法:例:设是从G1到G2的满同态,N2是G2的不变子群,N1= -1(N2),证明G1/N1同构于G2/N2。
对于这个问题,我们不直接证明G1/N1同构于G2/N2,而是将问题进行变换,先构造从G1到G2/N2的满同态,再证明N1是的核,然后根据同态基本定理知结论正确。
?三、通过“同构”的观点将知识点(问题)归类 ?“同构”的概念非常重要,因为凡是具有同构性质的结构在本质上可看成是同一结构。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
群论与魔方:群论基础知识要了解破解魔方攻略背后的数学原理,「群论」(Group Theory)是必不可少的知识,本章介绍群论的基础知识。
群论是「抽象代数学」(Abstract Algebra)的重要分支,是有关「群」(Group)的理论。
抽象代数学跟一般代数学或线性代数学不同,其要旨不是解方程或方程组,而是研究各种代数结构的特性,「群」就是一种非常重要的代数结构。
群的基本定义设有一个集合G和G上的「二元运算」(Binary Operation)「•」。
如果G 的元素和「•」满足以下「公理」(Axiom),我们便说(G, •)构成一个「群」(为了行文方便,有时可以把「群(G, •)」径直称为「群G」):1.「封闭性」(Closure)-对G中任何两个元素a和b而言,a • b ∈ G。
2.「结合性」(Associativity)-对G中任何三个元素a、b和c而言,(a • b) • c = a • (b • c)。
3.「单位元」(Identity)-存在G中一个元素e (称为「单位元」),使得对于G中任何元素a而言,e • a = a • e = a。
4.「逆元」(Inverse)-对于G中任何元素a而言,都有G中的元素a−1 (称为a的「逆元」),使得a • a−1 = a−1• a = e。
请注意由于「•」满足结合性,在写出三个或以上元素之间的运算时,可以不用括号,即写成a • b • c。
如果某个运算涉及同一个元素,我们可以像一般乘法那样采用「指数」记法,例如可以把a • a • a写成a3。
我们还可以仿照一般乘法规定零指数和负指数的定义如下:a0= e,a−n= (a−1)n。
另外,可以证明上述定义中的「单位元」是唯一的,而且对于G中任一元素a而言,其「逆元」a−1也是唯一的。
根据「封闭性」,若a和b是G的元素,则(a • b)也是G 的元素,因此我们也可以谈论(a • b)的逆元,而且这个逆元满足(a • b)−1 = b−1• a−1(1)如果(G, •)还满足「交换性」(Commutativity),即对G中任何两个元素a、b 而言,a • b = b • a,我们便说(G, •)是「交换群」(Commutative Group)或「阿贝尔群」(Abelian Group)。
此外,如果在G中存在一个元素g使得对G中任何元素a,都有a = g n,其中n为0、正整数或负整数,我们便说(G, •)是「循环群」(Cyclic Group)。
在此情况下,我们说G由g生成,记作G = < g >,其中< g >称为g的「生成集合」(Span),其定义为< g > = {g n: n是整数},我们也说g是G的「生成元」(Generator)。
举例说,如果我们把G定为整数集Z,把「•」定为整数的加法「+」,那么容易验证(Z, +)构成一个交换群,这个群的「单位元」是0,对每个整数n而言,其「逆元」就是其负数−n。
而且(Z, +)也是一个循环群,其生成元就是1,因为Z中的元素要么是0,要么是正整数,要么是负整数,而对任何正整数n 而言,我们有n = 1 + 1 + ... 1 (共n个1),以及−n = (−1) + (−1) + ... (−1) (共n个−1)。
由此我们有Z = < 1 >。
类似地,如果我们把G定为非零实数集R*,把「•」定为实数的乘法「×」,那么容易验证(R*, ×)也构成一个交换群,这个群的「单位元」是1,对每个非零实数x而言,其「逆元」就是其倒数 1 / x。
但(R*, ×)不是一个循环群,因为我们无法找到R*的生成元。
「群」是一个非常广泛的概念,其定义中的集合G的元素可以是各式各样的对象,除了上述较为具体的整数/非零实数外,还可以是某些抽象数学对象,例如「几何变换」。
以下介绍一种特殊的几何变换-「对称变换」,即可保持几何图形的形状不变的变换,以下图为例:上图显示一个等边三角形的三个顶点A、B、C以及三条对称轴。
上图共有以下六种对称变换:恒等变换(Identity Transformation,记作I,即不作任何变换,亦等同于逆时针旋转0°)、逆时针旋转120° (记作R)、逆时针旋转240° (记作R2)、以通过三角形上方顶点(即上图中的A点)的轴为对称轴的反射(记作R A)、以通过三角形左下方顶点(即上图中的B点)的轴为对称轴的反射(记作R B)、以通过三角形右下方顶点(即上图中的C点)的轴为对称轴的反射(记作R C)(注1)。
我们可以把上述六种对称变换组成一个集合,记作S3(下标"3"代表三角形)。
这个集合中的元素有一种二元运算,称为「复合」(Composition),记作「•」。
两个变换的「复合」就是先后进行该两个变换,举例说,R A• R2便代表先以通过A点的轴为对称轴进行反射,然后逆时针旋转120° (注2)。
基于上述定义,容易推出(S3, •)构成一个群,称为「对称群」(Symmetry Group)。
首先,任何两个对称变换的复合显然也是一个对称变换,例如R A• R2 = R B,因此「•」满足封闭性。
其次,「•」显然也满足结合性。
第三,I显然就是S3中的单位元。
最后,每个对称变换都有其逆变换,而且这个逆变换显然也是对称变换,例如R−1 = R2,(R A)−1 = R A等。
我们也可以把S3的元素看成对顶点集合{A, B, C}进行「排列」(Permutation,亦译作「置换」)的结果,一个集合的排列就是该集合上的一个「双射」(Bijection)。
例如前述的R A就相当于把A映像为A,B映射为C和C 映射为B的变换。
由于这个集合有3个元素,所以共有3! = 6种排列,刚好对应着前述的六种对称变换,因此S3也称为「排列群」(Permutation Group,亦译作「置换群」)(注3)。
(S3, •)既非交换群,亦非循环群。
首先,变换的复合并不满足交换性。
举例说,R A• R2≠ R2• R A,因为上式的左方等于R B,而右方则等于R C。
其次,S3也不存在生成元,因为旋转和反射是两类很不相同的变换,不能把某一类变换表达为重复进行另一类中某变换的结果。
子群接着我们引入「子群」(Subgroup)的概念。
给定群(G, •)和G的子集H,如果(H, •)本身也是群,那么我们说(H, •)是(G, •)的「子群」。
由于H的运算跟G的运算相同,若(G, •)满足结合性,(H, •)自然也满足结合性,所以给定G 的某子集H,如要检验(H, •)是否(G, •)的子群,只需检验1.「封闭性」-对H中任何两个元素a和b而言,a • b ∈ H。
2.「单位元」-G的「单位元」e ∈ H。
3.「逆元」-对于H中任何元素a而言,a−1∈ H。
如果在H中存在一个元素h使得对H中任何元素a,都有a = h n,其中n为整数,我们便说(H, •)是(G, •)的「循环子群」(Cyclic Subgroup),并记作H = < h >。
请注意即使G不是循环群,它也可以有循环子群。
事实上,给定群G和G 的某个元素h,不难构造出由h生成的循环子群< h >,方法是先写出h0 = e,然后依次写出h、h2 ... 直至h n= e,其中n为使h n= e成立的最小正整数。
容易验证< h > = {e, h, h2 ... h n−1}是G的一个循环子群。
请注意对G中任何元素h而言,必有某个最小的正整数n使得h n= e,我们把这个n称为h的「阶」(Order),这个数字也就是< h >的基数。
以前述的等边三角形对称群S3为例,这个群不是循环群,但却包含多个循环子群。
举例说,所有旋转变换便组成一个循环子群:< R > = {I, R, R2}。
此外,每个反射变换也各自生成一个循环子群,例如< R A> = {I, R A}。
最后,I本身也构成一个(平凡)循环子群:< I > = {I}。
魔方群把以上介绍的内容推广应用于魔方,便可得到一个「魔方群」(Rubik Group),记作(RUBIK, •),其中集合RUBIK包含对魔方的各种操作,这些操作包括笔者在上一章,即《群论与魔方:魔方的基本概念》中介绍的操作以及这些操作的复合。
举例说,上一章介绍了以下两种操作:「顺时针旋转前面90°」(F)和「逆时针旋转上面180°」(U−2),这两个操作的复合(F • U−2)也是一个操作,代表「先顺时针旋转前面90°,然后再逆时针旋转上面180°」,因此也是RUBIK的元素(注4)。
「魔方群」的二元运算「•」则代表魔方上各种运算之间的复合。
请注意「复合」(•)在这里出现于两个不同层面。
一方面它是RUBIK中元素之间的二元运算,另一方面它又是RUBIK中某些复合元素的代号的一个组成部分,例如前述的F • U−2。
之所以出现这个情况,是因为RUBIK包含非常多元素。
根据某些数学家的计算,RUBIK元素的数目为8! × 12! × 38× 212/ 12 = 4.3252 × 1019(2)由于RUBIK的元素极多,难以亦无必要为每一个元素提供一个独特的代号,所以无可避免要把某些复合元素写成其它较简单元素的复合。
不过,有时我们也需要区分上述两个层面。
为此,以下将把作为复合元素代号一部分的「•」略去不写。
在这个约定下,FU−2代表一个复合元素,而 F • U−2则代表两个元素的复合。
容易验证(RUBIK, •)满足上述公理。
首先,如前所述,任意两个操作的复合显然也是一个操作,故满足封闭性。
其次,操作之间的复合显然满足「结合性」。
第三,RUBIK的单位元就是「恒等变换」,即不作任何操作,以下记作I。
最后,RUBIK的每个元素都有逆元。
对于简单元素而言,其逆元在上一章中已有所定义,例如F的逆元就是F−1。
对于复合元素而言,只需应用前述的公式(1)便可找到其逆元,例如FU−2的逆元就是U2F−1。
RUBIK显然不是交换群,因为调换两个操作的先后次序,所得结果可能不同,例如 F • U ≠ U • F。
RUBIK包含多个循环子群,上一章介绍的各种90°旋转(包括顺时针和逆时针)便可生成4阶的循环子群,例如< F > = {I, F, F2, F−1}和< F−1 > = {I, F−1, F2, F}。
除此以外,各种180°旋转也可生成2阶的循环子群,例如< F2 > = {I, F2}。