抽象代数

合集下载

抽象代数-

抽象代数-

抽象代数抽象代数是一种研究代数结构的数学分支。

它主要研究抽象结构的性质和关系,这些结构在代数学中经常出现。

代数结构通常由一组对象以及代数运算所组成。

例如,向量空间就是一个代数结构,由向量组成,并在其上定义了称为加法和数乘的运算。

另一个例子是环,由一组元素和两个二元运算组成,称为加法和乘法。

抽象代数中的基本概念是群、环和域等代数结构。

一个群就是一个集合,其中包含一些元素以及定义在这些元素上的二元运算。

这个运算必须满足一些条件,例如结合律和单位元素的存在性。

另一个重要的性质是每个元素都有一个逆元素。

群的一些典型例子包括对称群和整数群。

环是一种代数结构,其中包含一个集合,以及定义在这个集合上的两个二元运算(加法和乘法)。

这些运算必须满足一些条件,例如分配律和乘法单位元素的存在性。

整数环和矩阵环都是一些典型例子。

域是一种代数结构,它包含一个集合,以及定义在这个集合上的加法、乘法和求逆元素运算。

域的一个重要性质是它的乘法和加法都满足分配律。

实数域和复数域都是典型的域。

在抽象代数中,还有一些与上述代数结构相关的概念,例如同态和同构。

同态是指两个代数结构之间的一种映射,它保留了结构中的一些性质。

同构是指一种同态,其中映射还是一一映射。

抽象代数中的一个重要原理是结构定理,它给出了任何有限生成的交换群的结构。

换言之,任何有限生成的交换群都可以写成一些有限阶循环群的直和形式。

这个原理是代数几何和代数数论中的许多结论的基础。

总的来说,抽象代数是研究代数结构的重要分支,它涵盖了群、环、域等许多概念,并具有广泛的应用,包括密码学、编码理论、代数几何和代数数论等。

抽象代数高等数学教材

抽象代数高等数学教材

抽象代数高等数学教材抽象代数,作为数学的一个重要分支,研究的是代数结构的抽象概念及其性质。

它是现代数学的基石之一,也是高等数学中的一门重要课程。

本教材旨在全面而系统地介绍抽象代数的基本概念、理论和方法,帮助读者建立起对抽象代数的深入理解和应用能力。

第一章:群论1.1 群的定义与性质1.2 群的子群与商群1.3 幺半群与半群1.4 群同态与同构1.5 群的作用与置换群第二章:环论2.1 环的定义与性质2.2 整环与域2.3 环的同态与同构2.4 素理想与极大理想2.5 多项式环与唯一因子分解整环第三章:域论3.1 域的定义与性质3.2 代数扩域与超越扩域3.3 有限域与伽罗华理论3.4 不可约多项式与域的扩张第四章:线性代数4.1 线性空间的定义与性质4.2 线性变换与矩阵4.3 特征值与特征向量4.4 正交矩阵与对角化4.5 线性空间的直和与内积空间第五章:模论5.1 模的定义与性质5.2 子模与商模5.3 生成元与基本定理5.4 非交换环上的模5.5 自由模与有限生成模第六章:域扩张与代数闭包6.1 域扩张的概念与性质6.2 代数元与超越元6.3 代数闭包与代数簇6.4 代数闭域与代数不变量6.5 有理函数与分式域的构造第七章:范畴论与同调代数7.1 范畴的基本概念与性质7.2 范畴的构造与自然变换7.3 函子与函子范畴7.4 外代数与同调代数基础7.5 奇异同调与同调算子第八章:群表示论8.1 群表示的基本概念与性质8.2 单群与群同态8.3 群表示与欣格尔引理8.4 卷积公式与算术引理8.5 特殊群的表示与表示的构造结语:本教材通过系统而严谨的讲解,涵盖了抽象代数的核心内容,旨在培养读者对抽象代数的兴趣和学习动力,提升读者对数学的抽象思维能力和证明能力。

在学习的过程中,读者还可结合习题和实例进行巩固和应用,从而更好地掌握抽象代数的理论与方法。

希望本教材能成为读者学习抽象代数的重要参考资料,为他们在数学领域的探索和研究奠定坚实基础。

数学中的抽象代数及其应用

数学中的抽象代数及其应用

数学中的抽象代数及其应用在现代数学领域中,抽象代数是一门研究代数结构的学科。

它以代数系统的广义概念为基础,通过研究各种代数结构及其性质,来揭示数学本质的一门学科。

本文将探讨抽象代数的基本概念、理论及其在实际应用中的重要性。

一、群论群论是抽象代数的基础,它研究的是集合上的一种代数运算——群运算。

群是一个集合和一个运算的组合,满足封闭性、结合律、单位元和逆元四个条件。

通过研究群的性质及其变换规律,群论为其他分支提供了坚实的基础。

群论的应用非常广泛,尤其在密码学领域中起着重要的作用。

群论的概念和性质为密码学提供了理论基础,通过利用群论中的数论运算,可以设计出安全性较高的密码算法,保护信息的传输和存储安全。

二、环论环论是抽象代数中的另一个重要分支,它研究的是环这种代数结构及其性质。

环是一个集合,配以两个二元运算——加法和乘法,并且满足一定的条件。

环论的研究主要集中在环的性质、理论和相关结构上。

环论在数论、代数几何、图论等领域有广泛的应用。

例如,在数论中,环论可以用来研究数的整除性、同余关系等性质;在代数几何中,环论可以用来研究代数簇的结构和性质;在图论中,环论可以用来研究图的生成树、哈密顿路径等问题。

三、域论域论是抽象代数的又一个重要分支,它研究的是域这种代数结构及其性质。

域是一个包含加法和乘法两个运算的集合,并且满足一系列条件,如交换律、结合律、存在加法和乘法的单位元及其逆元等。

域论在代数几何、密码学、编码理论等领域中有广泛应用。

在代数几何中,域论为研究代数簇和其上的函数提供了基础;在密码学中,利用域论中的有限域概念可以设计出高效且安全的密码算法;在编码理论中,域论可以用来研究纠错码和解码算法。

四、线性代数线性代数是抽象代数的一个重要应用领域,它研究的是向量空间及其上的线性变换。

线性代数的主要内容包括线性方程组、矩阵理论、特征值与特征向量等。

线性代数在计算机图形学、量子力学、信号处理等领域中有广泛的应用。

代数系统(抽象代数)

代数系统(抽象代数)

6-1 代数结构(系统)的概念
所谓代数结构(系统),无非是有一个运算对象的集合, 和若干个运算,构成的系统。 一. n元运算 如何定义运算,先看几个我们熟悉的例子: 取相反数运算“-”、集合的补运算“~” 以及N上的“+” P(E) ~ P(E) N2 + N I - I 。 Φ Φ。 <0,0>。 。 0 2。 。 -2 <0,1>。 。 {a} 。 。 {a} 1 1。 。 -1 <0,2>。 0。 。 。 0 2 {b} 。 。 {b} -1。 。 1 。 -2。 。 3 <1,0> 。 2 {a,b} 。 。 {a,b} <1,1>。 <1,2>。
九.分配律 设和 都是X上的二元运算,若对任何x,y,z∈X,有 x(yz)=(xy)(xz) ,(yz) x =(y x)(z x) 则称对可分配。 例如: 乘法对加法可分配。 集合的∪与∩互相可分配。 命题的∧与∨互相可分配。 十.吸收律 设和 都是X上的可交换二元运算,若对任何x,y∈X, 有 x(xy)=x ,x(xy)=x 则与 满足吸收律。 例如:集合的∪与∩满足吸收律。 命题的∧与∨满足吸收律。
2.二元运算的运算表 有时用一个表来表示二元 运算的运算规律。 例如令E={a,b}, P(E)上的 ∩运算表如图所示。
∩ Φ 左 Φ Φ 表 {a} Φ 头 元 {b} Φ 素 {a,b} Φ
运算 上 表 头 元 素
{a} Φ {a} Φ {a}
{b} Φ Φ {b} {b}
{a,b} Φ {a} {b} {a,b}
六.可结合性 设是X上的二元运算,如果对任何x,y,z∈X,有 (xy)z =x(yz),则称是可结合的。 例:数值的加法、乘法,集合的交、并、对称差, 关系的复合、函数的复合,命题的合取、析取等。

抽象代数教案

抽象代数教案

抽象代数教案一、引言抽象代数是数学的一个重要分支,它研究代数结构及其性质,并通过一种抽象的方式对代数对象进行分类和理解。

本教案旨在介绍抽象代数的基本概念和主要内容,帮助学生初步掌握抽象代数的思想和方法。

二、基本概念1. 代数系统代数系统是指具有一组运算和一些运算规则的集合。

常见的代数系统包括群、环和域等。

2. 群群是一种代数结构,它包括一个集合和一个二元运算,满足封闭性、结合律、单位元存在性和逆元存在性等性质。

群可以分为交换群和非交换群。

3. 环环是一种代数结构,它包括一个集合和两个二元运算,满足加法和乘法封闭性、结合律、分配律等性质。

环可以分为交换环和非交换环。

4. 域域是一种代数结构,它包括一个集合和两个二元运算,满足加法和乘法封闭性、结合律、分配律以及存在加法单位元和乘法单位元等性质。

三、主要内容1. 群论1.1 群的定义和基本性质1.2 子群和陪集1.3 同态和同构1.4 群的分类2. 环论2.1 环的定义和基本性质2.2 理想和商环2.3 同态和同构2.4 环的分类3. 域论3.1 域的定义和基本性质3.2 子域和扩域3.3 代数元和超越元3.4 域的分类四、教学方法1. 理论讲授通过清晰的讲解和示例,介绍抽象代数的基本概念和主要内容,帮助学生建立起关于代数结构的抽象思维。

2. 经典案例分析选取一些经典的代数问题或定理,进行详细分析和讨论,帮助学生深入理解抽象代数的思想和方法。

3. 计算实践设计一些计算练习,让学生通过实际计算来巩固和应用所学的代数知识,培养解决问题的能力。

4. 小组讨论组织学生进行小组讨论,鼓励他们互相交流和思考,分享各自的见解和思路,提高彼此的学习效果。

五、教学评价1. 课堂表现评价评估学生在课堂上的参与度、提问能力和问题解决能力,对学生的表现给予及时反馈和指导。

2. 作业评价布置适量的作业,注重学生对代数概念和性质的运用,评价学生对所学内容的理解和掌握程度。

3. 平时成绩评价综合考虑学生的课堂表现、作业完成情况以及小组讨论等因素,给予综合评价和成绩打分。

抽象代数的概念与应用

抽象代数的概念与应用

抽象代数的概念与应用抽象代数是数学中一个非常重要的分支。

从字面上理解,抽象代数是对代数结构进行的一种抽象的研究。

虽然初学者可能会对这个领域感到陌生,但是抽象代数已经被证明是在许多不同的应用中至关重要的。

在本文中,我们将探索抽象代数的概念与应用以及它在数学、计算机科学、物理学和其他领域中的实际应用。

抽象代数的概念抽象代数是一种研究代数结构的数学学科。

代数结构是指一组数学对象及它们之间的一些关系,通常包括运算、等式和公理。

对这些对象和关系进行抽象地研究,是抽象代数的主要目标。

抽象代数的一个基本概念是群,它是一种代数结构,包括一组对象和一种二元运算,并满足一些基本性质。

具体来说,一个群必须满足以下性质:1. 闭合性: A和B是群G的成员,A*B也是群G的成员。

2. 结合律:对于群G中的任意三个成员,(A*B)*C=A*(B*C)。

3. 反元素:对于群G中的任意一个成员A,存在一个成员B,使得A*B=B*A=e,其中e是群G的恒等元素。

4. 恒等元素:存在一个元素e,使得对于群G中的任意元素A,e*A=A*e=A。

这些性质保证了群的基本性质,它们是抽象代数研究的核心内容。

在这之上,抽象代数还研究了其他代数结构,如环、域和向量空间等。

抽象代数的应用抽象代数在数学以外的领域中也有广泛的应用。

以下是抽象代数在数学、计算机科学、物理学和其他领域中的一些实际应用。

数学中的应用在数学研究中,抽象代数已被证明是一个强大的工具。

在代数几何中,群论、域论和其他抽象代数内容都扮演了重要角色。

抽象代数也被应用于实际问题的解决,如密码学中的ElGamal密码和Diffie–Hellman密钥交换协议等。

此外,抽象代数在贝尔定理、代数化数学、代数编程和代数处理四个方面都有广泛应用。

计算机科学中的应用抽象代数在计算机科学中也有广泛应用。

计算机科学中的数据结构、算法和程序设计等内容都涉及到抽象代数知识。

程序语言和编译器也要求对抽象代数有一定的理解。

抽象代数

抽象代数

关于近世代数的介绍抽象代数即近世代数。

代数〔Algebra〕是数学的其中一门分支,当中可大致分为初等代数学和抽象代数学两部分。

初等代数学是指19世纪上半叶以前发展的方程理论,主要研究某一方程〔组〕是否可解,如何求出方程所有的根〔包括近似根〕,以及方程的根有何性质等问题。

法国数学家伽罗瓦〔1811-1832〕在1832年运用「群」的思想彻底解决了用根式求解代数方程的可能性问题。

他是第一个提出「群」的思想的数学家,一般称他为近世代数的创始人。

他使代数学由作为解方程的科学转变为研究代数运算结构的科学,即把代数学由初等代数时期推向抽象代数即近世代数时期。

抽象代数学对于全部现代数学和一些其它科学领域都有重要的影响。

抽象代数学随着数学中各分支理论的发展和应用需要而得到不断的发展。

经过伯克霍夫、冯.诺伊曼、坎托罗维奇和斯通等人在1933-1938年所做的工作,格论确定了在代数学的地位。

而自20世纪40年代中叶起,作为线性代数的推广的模论得到进一步的发展并产生深刻的影响。

泛代数、同调代数、范畴等新领域也被建立和发展起来。

中国数学家在抽象代数学的研究始于30年代。

当中已在许多方面取得了有意义和重要的成果,其中尤以曾炯之、华罗庚和周炜良的工作更为显著。

现代数学的基础课程正在更新。

50年代数学系的教学计划,以“高等微积分”、“高等代数”、“高等几何”为主体。

时至今日,人们认为光靠这“老三高”已不够用了,应该发展“新三高”,即抽象代数、拓扑学和泛函分析。

现代数学理论是由这三根支柱撑着的。

现在,我们来追寻它们形成和发展的历史足迹,并从这一侧面窥视20世纪数学的特征。

抽象代数抽象代数在上一个世纪已经有了良好的开端,伽罗瓦在方程求根中就蕴蓄了群的概念。

后来凯利对群作了抽象定义(Cayley,1821~1895)。

他在1849年的一项工作里提出抽象群的概念,可惜没有引起反响。

“过早的抽象落到了聋子的耳朵里”。

直到1878年,凯利又写了抽象群的四篇文章才引起注意。

抽象代数的基本概念与运算

抽象代数的基本概念与运算
范畴论在几何学中的应用:范畴论是现代数学的一个重要分支,它在几何学中有着广泛的应用,例如同调代数、 代数拓扑等领域。
在代数学中的应用
群论:抽象代数中的群论在数学中有着广泛的应用,如对称性、组合数学等。 环论:环论在代数几何、线性代数等领域有着重要的应用,如多项式环、矩阵环等。 域论:域论在数论、代数几何等领域有着重要的应用,如代数数论、伽罗瓦理论等。 模论:模论在代数几何、同调代数等领域有着重要的应用,如向量模、自由模等。

定义:环是由加法封闭、结合律和单位元构成的代数结构 分类:根据定义不同,环可以分为整环、除环、交换环等 运算:环中元素可以进行加法、减法、乘法等运算,满足结合律和交换律 性质:环具有一些重要的性质,如零因子不可约、唯一分解性等
元素:域的元素可以是数字、 字母或其他符号

运算:域中定义了加法、减法、 乘法和除法四种基本运算
起源:19世纪初,数学家开始研究抽象代数 奠基人:Galois、Cayley等数学家为抽象代数的发展做出了重要贡献 重要成果:群论、环论、域论等分支的形成与发展 应用领域:在数学、物理、计算机科学等领域有广泛的应用
抽象代数的研究对象
代数系统:由集合 和运算组成的代数 结构,包括群、环、 域等。
代数性质:研究代 数系统的性质和关 系,如同态、同构 等。
汇报人:XX
应用领域限制:虽然抽象代数在某些领域中得到了应用,但它仍然没有得到广泛 应用,这限制了其发展前景。
理论难度:抽象代数的理论比较深奥,难以理解和掌握,这给其发展和应用带来 了一定的挑战。
交叉学科融合:抽象代数需要与其他数学分支和学科进行交叉融合,以拓展其应 用领域和研究范围,这需要更多的努力和探索。
未来发展方向与展望
定义:域是一种数学结构,由 集合和定义在该集合上的运算 组成
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/3/2
案例11.分数化小数-- 循环节长度
• 数学聊斋: 商家打折: 1428元? • a=1/7=0.142857… • 循环节D=106a-a= 142857=(106-1)/7. • q/p=a的循环节 D=(10d-1)q/p=整数. • 最小的d使 10dq≡q(mod p) • 当 p是素数(≠2,5), 10d≡1(mod p) • D是 10在乘法群 Zp*中的阶,整除 p-1 • 混循环: (10d-1)10kq≡0(mod p).
2020/3/2
案例分析乘法群元素的阶
• 例:q/7. 10k (k=1,2,…)模7余3,2,6,4,5,1,d=6. • 循环节D=q(106-1)/7=142857q. 1/7=a=142857… • 对k=1,2,…,5, 10ka-qk=(10k-7qk)/7=rk/7。 • 将D前k位移到末尾,得到D的rk(=3,2,6,4,5)倍。 • 推广:1/a的循环节轮换排列都得到D的rk倍。 • 仅当d=n-1时得到所有各倍循环群的生成元 • 另例:1/17=0.0588235294117647…。1/19= • 更多性质:142+857=999,14+28+57=99。
2020/3/2
满足条件 J2 = -I.
推广. 域的代数扩张
• 无中生有: 为域F上多项式f(x)造根。 • 强制规定[f(x)]=[0]: 在F[x]中生成理想 (f(x)). • 同余类环 E=F[x]/(f(x))中[f(x)]=[0], [x]是根. • f(x) 在 F[x] 中不可约: E 是F的代数扩域. • 设d=deg f(x), 则 E 是 F 上 d 维空间,[E:F]=d. • 造矩阵根: F上线性变换[g(x)][x][g(x)] 在基
=rs+(r×偶+偶×s+偶×偶)=rs+偶 • “假零”性质: O1.偶±偶=偶
O2.整×偶=偶 • 真零性质: 0±0=0,数×0=0
• 只考虑奇偶性:可以将偶数当作0.
2020/3/2
公理化:环, 理想, 商环
• 环 D:对加、减、乘封闭 • 加、减、乘的合法性条件: • 加法:结合律,交换律,零,负元 • 减法:a-b=a+(-b),(a-b)+b=a. • 乘法:结合律,对加法的分配律 • 理想Q:D的子集,满足“假零”性质O1,O2 • 记a-b∈Q为 a≡b (mod Q),可按等式计算 • 商环: D/Q =同余类集合{ [a]=a+ Q}, • 定义加,减,乘:[a]±[b]=[a±b], [a][b]=[ab].
2020/3/2
案例12. 复数的代数模型—域扩张
2020/3/2
案例12. 复数的代数模型—域扩张
• 环同态基本定理 • 已经找到矩阵J满足J2+I=0。 • 环同态 f:R[x]R[J], f(x)f(J). Kerf = f-1(0) = (x2+1). • 每个 aI+bJ[a+bx]={a+bx+q(x)(x2+1)|q(x)∈R[x]} • 商环 C = R[x]/ (x2+1) ={[a+bx]|a,b∈R} • [0]=[x2+1]=[x]2+[1] [x]2 = -[1]。 • a+bx≠0 与x2+1互素,在C中可逆.C 是域. • 记[1]=1,[x]=i, 则 i2 = -1. C={a1+bi | a,b∈R} =复数域。 • 直接为x2+1造根: 不需先猜J2+I=0。 • 在R[x]中强制规定“假零集合”Q = [0]= [x2+1]. • 则 Q = (x2+1)由 x2+1 的所有倍式组成. C=R[x]/ (x2+1) • 线性变换: [a+bx][x][a+bx]在基{[1],[x]}下的矩阵
2020/3/2
案例8. Zn --单表密码
• Zn =Z/nZ={r+nZ| r=0,1,…,n-1}. • 加法密码: Z26: f(x) = x+b. • 仿射密码: f(x)=ax+b, a可逆. • 可逆元与反函数.例: • y=3x+5, 9×3=27=1, 9=3-1,x=9(y-5). • 可逆条件: (a,n)=1, 存在 au+nq=1,
2020/3/2
案例4. 单位根群
单位根: 1的 n 次方根. xn =1的根. f(a)n =1 na = 2kp a=2kp/n 1,w,w2,…,wn-1 , w = cos(2p/n) +isin(2p/n) • n阶循环群 〈 w 〉={1,w,w2,…,wn-1} • f:Z 〈 w 〉, k wk , f(k+r) = f(k)f(r) • Ker f = nZ • Zn=Z/nZ ≌ 〈 w 〉
2020/3/2
Z2 上n阶行列式
• 数域上的线性代数定理:
• detA=1A可逆行线性无 关
• 茅台换矿泉:也适合于二元域 Z2 • 第1行:A1≠0, 2n-1个选择 • 第2行:A2 ≠ lA1, 2n-2个选择 • 第k+1行:Ak+1 ≠ l1A1+…+lkAk,
2n-2k个选择
au=1, u=a-1. y=ax+b x=a-1(y-b)
• Zn中可逆元组成乘法群 Zn*
2020/3/2
案例9.p元域Zp上可逆阵
• 素数p: Zp* = Zp \{0}. Zp 是域. • Zp 上的n阶可逆方阵个数 • |GL(n,p)|=(pn-1)…(pn-pk)…(pn-pn-1) • 随机整数n阶行列式模p余r概率 • r=0: P0=1-|GL(n,p)|/pn2 • r≠0, f:GL(n,p) Zp*, AdetA.
Z2上的2阶行列式
• D=ad-bc为奇数的概率 • 情况1. ad=1,bc=0 • a=d=1, • (b,c)=(0,0),(0,1),(1,0) • 情况2. ad=0,bc=1 • b=c=1, • (a,d)=(0,0),(0,1),(1,0) • 共6种可能,概率=6/16=3/8 • D为偶数的概率=1-3/8=5/8
2020/3/2
Z2上可逆矩阵群
• GL(2,2):
• Z2上2维空间V共3个非零向量 • v1(1,0),v2(0,1),v3(1,1) • 任何两个线性无关 • 每个置换都是可逆线性变换 • 上述矩阵右乘分别得(1),(23),(12),
(123),(13),(132).
• GL(2,2) ≌ S3
• 曾肯成问题: 随机整数行列式等于奇 数与偶数的概率.
• 奇偶数加减乘公式: • 偶±偶=偶,偶±奇=奇,奇±奇=偶;
整×偶=偶,奇×奇=奇. • 用0,1表示: 0±0=0,0±1=1,1±1=0;
a×0=0,1×1=1. • 二元域 Z2={0,1}.注意1+1=0,a-
b=a+b.
2020/3/2
• 旋转a :v(cosa)v+(sina)(iv) • (cosa +isina)n = cosna +isinna
(棣美弗公式)
f: RR, a eia = cosa +isina
f(a+b) = f(a)f(b) : (群同态) Kerf=f-1(1)=2pZ. R/2pZ≌R (群同构)
• 各行和= (1+…+9)/3=15 • 中心=(15×4-45)/(4 - 1)=5 • 奇偶按角边: 第一行和=第一列和 :
a1+a2+a3 ≡a1+b1+c1a2 ≡b1 • 边=奇: a1+a2+a3 ≡1 a2 ≡1 • 边=奇, 角=偶
2020/3/2
案例7. 奇与偶的算术
---二元域
2020/3/2
案例2. 复数的几何与矩阵模型
• i2 = -1 : 左转两番朝后方 • 平面向量v(-1)v,后转(180o) • 记viv为左转(90o).则i2 = -1. • 域同构: 复数平面线性变换矩阵
• i 左转变换i
• a+bi a1+bi
2020/3/2
案例3. 平面旋转群 R
2020/3/2
抽象代数一定要从公理开始?
• 公理是什么? 许多不同东西的共同点. • 公理化方法: 描述性(非构造性)定义 • 样板: 几何(欧几里德) -- 代数(抽象代数) • 群,环,域的公理内容: • 1. 对加、减、乘、除的封闭性 • 2. 解释什么是加、减、乘、除 • 加法:向量空间前4条公理 = 交换群的运算 • 乘法:结合律(群的公理)
•Байду номын сангаас案例分析正规子群,同态基本定理
2020/3/2
案例10. 极限与微分
• 博士生 2010考题. • 在一点a连续的全体实函数构成环C • O(Dx)(无穷小)与o(Dx)=O(Dx)Dx都是C的理想. • limxcf(x)=A f(x) ≡A (mod O(Dx)) • f(x) ≡f(a)+f’(a)Dx (mod o(Dx)) • 和差积商极限: f(x)≡A, g(x)≡B 加减乘除 • 幂的导数: (x+Dx)n≡xn+nxn-1Dx (xn)’=nxn-1 • 积的导数: f(x)g(x)≡f(a)g(a)+(f(a)g’(a)+g(a)f’(a))Dx • 商的导数:
2020/3/2
有限域: 5最 PK 3最
• 1 抽象代数最后一课 • 2 最难 • 3 最不应当考
• 1 最有用: 信息安全大显身手 • 2 最有味: 抽象代数味道 • 3 最易懂: 小学生可以懂! • 4 最先讲: 可在第一课第一分钟! • 5 最应当考:首选第一题!
相关文档
最新文档