近世代数习题与答案
近世代数试题及答案

近世代数试题及答案一、选择题(每题4分,共20分)1. 下列哪个选项不是群的性质?A. 封闭性B. 存在单位元C. 存在逆元D. 交换律答案:D2. 有限群的阶数为n,那么它的子群的个数至少为:A. nB. 1C. n-1D. n+1答案:B3. 以下哪个命题是正确的?A. 任意两个子群的交集仍然是子群B. 任意两个子群的并集仍然是子群C. 子群的子群仍然是子群D. 子群的补集仍然是子群答案:A4. 群G的阶数为n,那么它的元素的阶数不可能是:A. 1B. nC. 2D. n+1答案:D5. 以下哪个不是环的性质?A. 封闭性B. 交换律C. 分配律D. 结合律答案:B二、填空题(每题4分,共20分)1. 如果集合S上的二元运算*满足结合律,那么称S为________。
答案:半群2. 一个群G的所有子群的集合构成一个________。
答案:格3. 一个环R中,如果对于任意的a,b∈R,都有a+b=b+a,则称R为________。
答案:交换环4. 一个环R中,如果对于任意的a,b∈R,都有ab=ba,则称R为________。
答案:交换环5. 一个群G中,如果存在一个元素a,使得对于任意的g∈G,都有ag=ga=e,则称a为G的________。
答案:单位元三、简答题(每题10分,共30分)1. 请简述子群和正规子群的区别。
答案:子群是群G的非空子集H,满足H中的任意两个元素的乘积仍然在H中,并且H对于G的运算是封闭的。
正规子群是子群N,满足对于任意的g∈G和n∈N,都有gng^-1∈N。
2. 请解释什么是群的同态和同构。
答案:群的同态是两个群G和H之间的函数f,满足对于任意的g1,g2∈G,都有f(g1g2)=f(g1)f(g2)。
群的同构是同态,并且是双射,即存在逆映射。
3. 请解释什么是环的零因子和非零因子。
答案:在环R中,如果存在非零元素a和b,使得ab=0,则称a和b 为零因子。
如果环R中不存在零因子,则称R为无零因子环。
近世代数复习题及答案

近世代数复习题及答案1. 群的定义是什么?请给出一个例子。
答案:群是一个集合G,配合一个运算*,满足以下四个条件:封闭性、结合律、单位元的存在性、逆元的存在性。
例如,整数集合Z在加法运算下构成一个群。
2. 什么是子群?如何判断一个子集是否为子群?答案:子群是群G的一个非空子集H,使得H中的元素在G的运算下满足群的四个条件。
判断一个子集是否为子群,需要验证它是否在群运算下封闭,是否包含单位元,以及每个元素是否有逆元。
3. 什么是正规子群?请给出一个例子。
答案:正规子群是群G的一个子群N,对于G中任意元素g和N中任意元素n,都有gng^-1属于N。
例如,整数集合Z在加法运算下的子群2Z(所有偶数的集合)是一个正规子群。
4. 什么是群的同态?请给出一个例子。
答案:群的同态是两个群G和H之间的函数φ,使得对于G中任意两个元素a和b,都有φ(a*b) = φ(a) * φ(b)。
例如,函数φ: Z → Z_2定义为φ(n) = n mod 2,是整数群Z到模2整数群Z_2的一个同态。
5. 什么是群的同构?请给出一个例子。
答案:群的同构是两个群G和H之间的双射同态。
这意味着G和H不仅满足相同的群运算规则,而且它们之间存在一一对应关系。
例如,群Z_3(模3整数群)和群{1, -1}在乘法下构成的群是同构的。
6. 什么是环?请给出一个例子。
答案:环是一个集合R,配合两个运算+和*,满足以下条件:(R, +)是一个交换群,(R, *)满足结合律,且乘法对加法满足分配律。
例如,整数集合Z在通常的加法和乘法运算下构成一个环。
7. 什么是理想?如何判断一个子集是否为理想?答案:理想是环R的一个子集I,满足以下条件:I在加法下封闭,对于R中任意元素r和I中任意元素i,都有ri和ir属于I。
判断一个子集是否为理想,需要验证它是否在加法下封闭,以及是否满足吸收性质。
8. 什么是环的同态?请给出一个例子。
答案:环的同态是两个环R和S之间的函数φ,使得对于R中任意两个元素a和b,都有φ(a+b) = φ(a) + φ(b)和φ(a*b) = φ(a) * φ(b)。
近世代数练习题(附答案)

《近世代数》练习题(附答案)一.选择题1. 设R 是实数集, 则对任意的,a b R ∈, 代数运算2a b a b =+ ( C )(A) 适合结合律但不适合交换律 (B) 适合交换律但不适合结合律(C) 不适合结合律和交换律 (D) 适合结合律和交换律2. 在群G 中,a G ∈, a 的阶为12, 则8a 的阶为 ( B )(A) 12 (B) 3 (C) 4 (D) 63.在7次对称群7S 中(25)(437)π=和(13)(546)λ=, 则πλ等于( A )(A) (1376524) (B) (137)(6524) (C) (65)(24137) (D) (1746253)4.在一个无零因子环R 中,,a b R ∈,,0a b ≠对加法来说,有( C )(A) a 的阶<3b 的阶 (B) a 的阶>3b 的阶(C) a 的阶=3b 的阶 (D) 4a 的阶>3b 的阶5.设p 为整环I 中素元, 则下列正确的是 ( D )(A) p 为零元 (B) p 为单位 (C) p 有真因子 (D) p 仅有平凡因子6. 假定φ是A 与A 间的一一映射,A a ∈, 则)]([1a φφ-和)]([1a -φφ分别为 ( D )(A) a , a (B) 无意义, a (C) 无意义,无意义 (D) a ,无意义7. 在群G 中, G b a ∈,, 则方程b ax =和b ya =分别有唯一解为 ( B )(A) 1-ba , b a 1- (B) b a 1-, 1-ba (C) a b 1-, b a 1- (D) b a 1-, 1-ab8. 设M 是正整数集, 则对任意的,a b R ∈, 下面“o ”是代数运算的是( B ) (A) b a b a = (B) b a b a = (C) 2a b a b =+- (D) 2a b ab =- 9. 设M 是实数集, 代数运算是普通加法,下列映射是M 的自同构的是( D )(A) 2x x → (B) sin x x → (C) x x → (D) 5x x →-10. 在偶数阶群G 中阶等于2的元数为 ( A )(A) 奇数 (B) 偶数 (C) 1 (D) 不可确定11.在5次对称群5S 中元1(15)(24)π=和2(154)π=的乘积12ππ是( D )(A) (14)(25) (B) (124) (C) (152) (D) (142)12.若群G 的阶为48, G 的真子群H 的阶不可能为 ( C )(A) 12 (B) 16 (C) 18 (D) 2413.群G 中元a 的阶为24中,那么G 的循环子群9()a 的阶为 ( C )(A)3 (B) 4 (C) 8 (D) 914.在一个环R 里如果有一个消去律成立,那么下面不正确的是( B )(A) 另一个消去律也成立 (B) R 中非零元都有逆元(C) R 是无零因子环 (D) R 中非零元对加法的阶都一样15.假定F 是一个域,则一元多项式环[]F x 一定是 ( A )(A) 欧式环 (B) 除环 (C) 域 (D) 无法确定16.设12,εε为唯一分解环I 中单位, a 是I 中任意元, 则下列正确的是 ( B )(A) 12εε+ 也是单位 (B) 12,εε互为相伴元(C) 12,εε 都是a 的真因子 (D) a 有唯一分解17.一个30个元的域的特征可能是( A )(A) 5 (B) 6 (C) 10 (D) 1518.假定域R 与R 同态, 则R 是( C )(A) 域 (B) 整环 (C) 环 (D) 除环19.若I 是一个唯一分解环,I a ∈且a 21p p =和a 21q q =(其中2121,,,q q p p 都为素元),则下列说法正确的是 ( D )(A) 1p 与1q 互为相伴元 (B) 1p 与1q 互为相伴元和2p 与2q 互为相伴元(C) 2p 与2q 互为相伴元 (D) 1p 与1q 互为相伴元或1p 与2q 互为相伴元20.假定)(a 和)(b 是整环I 的两个主理想, 若)()(b a =, 则 ( A )(A) b 是a 的相伴元 (B) b 与a 互素 (C) b 是a 的真因子 (D) |b a 21.=A {所有整数},令τ: 2a a →,当a 是偶数;21+→a a ,当a 是奇数.则τ为 ( B )(A) 单射变换 (B) 满射变换 (C) 一一变换 (D) 不是变换22.若)(a G =,且a 的阶为有限整数n ,则下列说法正确的是 ( A )(A) G 与模n 的剩余类加群同构 (B) G 的阶可能无限(C) 元21012,,,,,---n a a a a a 中没有相同元 (D) G 与整数加群同构23.若R 是一个特征为有限整数n 的无零因子环,且R b a ∈,,则 ( D )(A) 0,00≠≠⇒=b a b a (B) 21n n n =,其中21,n n 为素数(C) 存在R 中元c 的阶为无限整数 (D) R 对乘法成立两个消去律24. 设Q 是有理数集, 则对任意的,a b Q ∈,下列“o ”是代数运算的是( C ) (A)22a b b a b =+ (B)b a b a= (C) 22a b a ab b =-+ (D) 10a b a b += 25. 在群G 中, ,,a b c G ∈, 则方程xaxba xbc =的唯一解为 ( D )(A)11abca b -- (B) 111bca a b --- (C) 111a b a bc --- (D) 111a bca b ---26.在6次对称群6S 中123456326514π⎛⎫= ⎪⎝⎭的阶是( A ) (A) 5 (B) 24 (C) 12 (D) 627.除环有理想( C )(A) 4个 (B) 1个 (C) 2个 (D) 无穷个28.假定F 是一个域,则一元多项式环[]F x 一定是 ( B )(A) 除环 (B) 欧式环 (C) 域 (D) 无法确定29.若Q 是一个域, 不正确的是 ( B )(A) Q 是交换除环 (B) Q 对乘法作成群(C) Q 无零因子 (D) Q 中不等于零的元都有逆元30.若I 是主理想环, p 是I 中素元, 且I b a ∈, 则 ( C )(A) 主理想)(p 不是I 的最大理想 (B) a 没有唯一分解(C) 若p |ab ,有p |a 或p |b (D) I /()p 不是域31. 设R 是实数集, 则对任意的,a b R ∈, 代数运算a b a b =- ( C )(A) 适合结合律但不适合交换律 (B) 适合交换律但不适合结合律(C) 不适合结合律和交换律 (D) 适合结合律和交换律32. 设Q 是有理数集, 则对任意的,a b Q ∈,下列“o ”是代数运算的是( A )(A) 2a b a b =+ (B)b a b a= (C) a b b a = (D) 10a a b = 33. 在群G 中, ,a b G ∈, 则方程xaxb xb =的唯一解为 ( D )(A)1aba - (B) 11a b -- (C) 11ba b -- (D) 1a -34.在5次对称群5S 中1234532541π⎛⎫= ⎪⎝⎭的阶是( B )(A) 2 (B) 3 (C) 4 (D) 535.除环有理想( C )(A) 4个 (B) 1个 (C) 2个 (D) 无穷个36.假定R 是一个整环,则一元多项式环[]R x 一定是 ( A )(A) 整环 (B) 除环 (C) 域 (D) 无法确定37. 在16阶循环群()G a =中 , 循环子群6()a 的阶为 ( D )(A) 6 (B) 3 (C) 4 (D) 838.一个有8个元的域的特征是( A )(A) 2 (B) 4 (C) 6 (D) 839.设p 为整环I 中素元, 则下列正确的是 ( D )(A) p 为零元 (B) p 为单位 (C) p 有真因子 (D) p 仅有平凡因子40.若群G 的阶为48, G 的子群H 的阶为16,则H 在G 中的指数为( C )(A) 1 (B) 2 (C) 3 (D) 441. 设R 是实数集, 则对任意的,a b R ∈, 代数运算a b a b =- ( C )(A) 适合结合律但不适合交换律 (B) 适合交换律但不适合结合律(C) 不适合结合律和交换律 (D) 适合结合律和交换律42. 设Q 是有理数集, 则对任意的,a b Q ∈,下列“o ”是代数运算的是( C ) (A)a b b a = (B)b a b a= (C) 2a b a b =+ (D) 10a a b = 43. 在群G 中, ,a b G ∈, 则方程xaxb xb =的唯一解为 ( C )(A)1aba - (B) 11a b -- (C) 1a - (D) 11ba b --44.在5次对称群5S 中1234532541π⎛⎫= ⎪⎝⎭的阶是( B ) (A) 2 (B) 3 (C) 4 (D) 545.除环有理想( C )(A) 4个 (B) 1个 (C) 2个 (D) 无穷个46.假定R 是一个整环,则一元多项式环[]R x 一定是 ( A )(A) 整环 (B) 除环 (C) 域 (D) 无法确定47. 在16阶循环群()G a =中 , 循环子群6()a 的阶为 ( D )(A) 6 (B) 3 (C) 4 (D) 848.一个有8个元的域的特征是( )(A) 2 (B) 4 (C) 6 (D) 849.设p 为整环I 中素元, 则下列正确的是 ( D )(A) p 为零元 (B) p 为单位 (C) p 有真因子 (D) p 仅有平凡因子50.若群G 的阶为48, G 的子群H 的阶为16,则H 在G 中的指数为( C )(A) 1 (B) 2 (C) 3 (D) 4二.填空题1.设是集合A 的元间的一个等价关系,那么满足反射律、 对称律 、 推移律 .2.若G 为群,,,a b c G ∈,则3211()b c a c --- 123c ac b .3.循环群()a 的阶是50,则它的子群15()a 的阶是 10 .4. 群G 的中心N 是G 的一个 不变 子群.5.n 次对称群n S 的阶为 !n .6.假定B A ⊂,那么B A A , B A B .7. 假定A 和A 同态, A 和A 同态, 则A 和A 也同态 .8. 在群G 中, G b a ∈,, 则方程b ya =有唯一解为 1ba .9.设集合A 的元数为3 ,那么A 共有子集 8 个,A 的元间的关系共有 512 个.10.若G 为群, 方程1x ax bx -=的唯一解为 1ba .11.一个有限非可换群至少含有______ 6 ______个元素 .12.设~是集合A 的元间的一个等价关系,那么~满足自反律、对称律 、 推移律 .13.若G 为群,,,a b c G ∈,则211()bc a --- 21ac b .14.5次对称群5S 的阶为 120 .15.若φ是环R 与R 的同态满射, 则同态核中元都是R 中 单位元 e 的逆象,且同态核是R 的一个 理想 .16.设A 是有单位元的交换环R 的一个最大理想,那么剩余类环R A 是一个 域 .17.在整数环Z 中,理想(3,7)等于主理想 (1) .18.设9Z 为模9的剩余类环,那么[5]的负元为 [4] ,逆元为 【2】 .19.设G 是17阶群,则G 的生成元有 16 个.20.除环的最大理想是 零理想 .21.设R 是模7的剩余类环,在多项式环[]R x 中2([6][4])([2][5])x x x +-+=32[6][6]x x x -++22.设10Z 为模10的剩余类环,那么[3]的负元为 [7] ,逆元为[7] .23.在整数环I 中,主理想()()a b =当且仅当b 是a 的 相伴元 .24.设{,,}A a b c =,{,,,}R aRa aRc cRa cRc =.那么由R 决定的A 的分类为 {,},{}a c b .25.设I 是一个唯一分解环,那么多项式环[]I x 是 唯一分解 环.26.设9Z 为模9的剩余类环,那么[7]的负元为 [2] ,逆元为[4] .27.设I 是一个唯一分解环,那么I 的元12,,,n a a a 的两个最大公因子d 和d '相差一个相伴元 .28.若群的元a 的阶是15,b 的阶是8,且ab ba =, 则8a 和ab 的阶分别是 15 和 120 .29.在一个特征为p 的无零因子的交换环R 中,有p 为 素 数,且()p a b += p p a b + .30. 若群G 的阶为60, G 的子群H 的阶为15,则H 在G 中的指数为 4 .31. 若φ是环R 与R 的同态满射,则对,,a b c R ∈,它们的象分别为,,a b c ,则元()a b c +的象为 ()a b c + .32.设A 是环R 的一个最大理想,那么包含A 的R 的理想仅有 A 和R .33.在整数环Z 中,理想(42,35)等于主理想 (7) .34.在唯一分解环I 中,若素元p 能整除ab ,则p 必能整除 ,a b 中一个元 .35. 若G 是由集合A 的全体一一变换所作成, 则G 是一个 变换 群.36.若R 是有单位元的交换环,则R 的主理想)(a 中的元有形式为 ,ra r R . 37.0R 是有单位元的交换环, x 是0R 的子环R 上的未定元, 则仅当 010n a a a时,才有010=+++n n x a x a a 成立.38. R 是一个有单位元的环, 且}0{≠R ,则在R 中必有一个元没有逆元, 它是 0 ; 必有两个元有逆元,它们是 1和-1 .39.唯一分解环I 中的元a 和b 的两个最大公因子d 和d '只能差一个 相伴元 .40.设}2,1{=A ,}4,3{=B .那么=⨯B A { (1,3),(1,4),(2,3),(2,4) } .41.若群G 和集合G 同态,则G 是 群 ,并且有G 中元e 和1-a 的象为G 中元e 和1a .42.在无零因子环R 中,如果对R b a ∈,有0=ab , 那么必有 0a 或0b .43.群的元a 的阶是n ,若d 是整数r 和n 的最大公因子,则r a 的阶是 n d. 44.在一个域Q 中,若有0,0,,≠≠∈d b Q d c b a ,则=+d c b a ad bc bd. 45.设φ是环R 与R 的同态满射, 则φ的核是环R 的一个 理想 . 46.在整环中必有一个元没有逆元,它是 0 ; 必有两个元有逆元,它们是 1和-1 .47.整环I 的元a 是][x I 的多项式)(x f 的根, 当且仅当)(x f 能被 xa 整除.三.判断题1.设}4,3,2,1{=A ,则能找到A A ⨯到A 的一一映射. ( × )2.无限群中的元的阶都无限. ( × )3.除环的最大理想是单位理想. ( × )4.整环中的素元只能有有限个数的因子. ( × )5.任何欧式环一定是主理想环,也一定是唯一分解环. ( √ )6.A 为不等于零的实数的全体,那么普通除法适合结合律. ( × )7.有限群中存在某个元的阶无限. ( × )8.假定域R 与R 同态, 则R 也是域. ( × )9.整环中的单位ε同素元p 的乘积p ε还是一个素元. ( √ )10.除环除了零理想和单位理想还有其它理想. ( × )四.解答题1. 用循环置换的方法写出三次对称群3S 的全体元.说明集合})23(,)1({=N 是3S 的子群,并且写出N 的所有左陪集.解: )}132(),123(),23(),13(),12(),1{(3=S ,(2分) 因为N 是有限集合, 由)1()1)(1(=,)23()23)(1(=,)23()1)(23(=,)1()23)(23(=知N 是封闭的,所以N 是3S 的子群.(4分) N 的全体左陪集为(6分):)}23(),1{()23()1(==N N ,)}132(),12{()132()12(==N N ,)}123(),13{()123()13(==N N .2. 求模6的剩余类环F 的所有子环.解:因为剩余类环F 是循环加群,所有子环为主理想:([1]),([2]),([3]),([6]).3. 设A 是整数集,规定A 中元间的关系R 如下:)6(b a aRb ≡⇔说明R 是A 中元间的等价关系,并且写出模6的所有剩余类.解: 因为对任意的整数 c b a ,,有(1)反射律: a 与a 模6同余;(2分)(2)对称律: 若a 与b 模6同余,那么必有b 与a 模6同余;(2分)(3)推移律: 若a 与b 模6同余,b 与c 模6同余,那么必有a 与c 模6同余, 所以R 是A 中元间的等价关系.(2分)模6的全体剩余类为(6分):},12,6,0,6,12,{]0[ --=, },13,7,1,5,11,{]1[ --=,},14,8,2,4,10,{]2[ --=, },15,9,3,3,9,{]3[ --=,},16,10,4,2,8,{]4[ --=, },17,11,5,1,7,{]5[ --=.4.求出阶是32的循环群()a 的所有子群.这些子群是否都是不变子群.解: 因为()a 为循环群,所以()a 为交换群,又因为32的所有正整数因子为:1,2,4,8,16,36. (2分) 所以循环群()a 的所有子群为循环子群:()a ,2()a ,4()a ,8()a ,16()a 360()(){}a a e ==. (8分)并且这些子群都是不变子群. (10分)5.设Z 是整数环,请把Z 的理想(3)(4)和(3,4)的元列出来.解: Z 是整数环,理想(3)(4)和(3,4)如下:(3)(4){,9,6,3,0,3,6,9,}{,12,8,4,0,4,8,12,}=------ (2分){,24,12,0,12,24,}=-- (4分)(12)= (6分) (3,4)(1){,3,2,1,0,1,2,3,}Z ===--- (10分)6.设R 是模8的剩余类环,在一元多项式环[]R x 中把32([2][7][3])([5][2])x x x x +--+计算出来,并求432()[4][5][2][7]f x x x x x =-+-+的导数. 解: R 是模8的剩余类环(1) 32([2][7][3])([5][2])x x x x +--+543322[2][5][2][2][2][7][5][7][7][2][3][5][3][3][2]x x x x x x x x =-++-+-+- (1分)543322[2][2][4][3][7][6][7][3][6]x x x x x x x x =-++-+-+- (3分) 5432[2][2][7][6][6]x x x x x =-+-+- (5分)(2) 多项式432()[4][5][2][7]f x x x x x =-+-+的导数为32()4[1]3[4]2[5][2]f x x x x '=-+- (2分)32[4][4][2][2]x x x =-+-.7.找出对称群3S 的所有子群.解:因为3{(1),(12),(13),(23),(123),(132)}S =,它的子群的阶只可能为:1,2,3,6.所以它的所有子群为:1阶子群1{(1)}H =; (1分) 2阶子群21{(1),(12)}H =,22{(1),(13)}H =,23{(1),(23)}H =; (4分) 3阶子群3{(1),(123),(132)}H =; (5分) 6阶子群3{(1),(12),(13),(23),(123),(132)}S =。
近世代数经典题与答案

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载近世代数经典题与答案地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容1.设为整数加群, ,求解在 Z中的陪集有:, , ,, , 所以, .2、找出的所有子群。
解:S3显然有以下子群:本身;((1))={(1)};((12))={(12),(1)};((13))={(13),(1)};((23))={(23),(1)};((123))={(123),(132),(1)}若S3的一个子群H包含着两个循环置换,那么H含有(12),(13)这两个2-循环置换,那么H含有(12)(13)=(123),(123)(12)=(23),因而H=S3。
同理,若是S3的一个子群含有两个循环置换(21),(23)或(31),(32)。
这个子群也必然是S3。
用完全类似的方法,可以算出,若是S3的一个子群含有一个2-循环置换和一个3-循环置换,那么这个子群也必然是S3。
7.试求高斯整环的单位。
解设 () 为的单位, 则存在 , 使得 , 于是因为 , 所以 . 从而 , , 或 . 因此可能的单位只有显然它们都是的单位. 所以恰有四个单位:5.在中, 解下列线性方程组:解: 即 , .12. 试求的所有理想.解设为的任意理想, 则为的子环,则 , , 且 .对任意的 , , 有 ,从而由理想的定义知, 为的理想. 由此知, 的全部理想为且 .13、数域上的多项式环的理想是怎样的一个主理想。
解由于,所以,于是得。
14、在中, 求的全部根. 解共有16个元素: , , , , 将它们分别代入 ,可知共有下列4个元素, , , 为的根.20.设R为偶数环.证明:问:是否成立?N是由哪个偶数生成的主理想?解::故另外故总之有另方面,由于且而且实际上N是偶数环中由8生成的主理想,即,但是因此,.实际上是22、设,求关于的所有左陪集以及右陪集.解 , 的所有左陪集为:;;.的所有右陪集为:;;.1.在群中, 对任意 , 方程与都有唯一解.证明令 , 那么 , 故为方程的解。
近世代数试题及答案

近世代数试题及答案一、单项选择题(每题3分,共30分)1. 群的元素a的阶是指最小的正整数n,使得a^n=e,其中e是群的()。
A. 单位元B. 零元C. 负元D. 逆元答案:A2. 环R中,如果对于任意的a,b∈R,都有a+b=b+a,则称R 是()。
A. 交换环B. 非交换环C. 整环答案:A3. 向量空间V中,如果存在非零向量α,使得对于V中任意向量β,都有α⊥β,则称α是V的一个()。
A. 基B. 零向量C. 法向量D. 正交向量答案:C4. 有限域F中,如果存在元素a∈F,使得a^p=a对于所有a∈F 成立,则称F是()。
A. 素域B. 特征域C. 完全域答案:B5. 群G的一个子群H,如果对于任意的h∈H,g∈G,都有ghg^-1∈H,则称H是G的一个()。
A. 正规子群B. 非正规子群C. 子群D. 群答案:A6. 环R中,如果对于任意的a,b∈R,都有ab=ba,则称R是()。
A. 交换环B. 非交换环C. 整环答案:A7. 向量空间V中,如果存在一组向量α1,α2,…,αn,使得V中任意向量都可以表示为这些向量的线性组合,则称这组向量是V的一个()。
A. 基B. 零向量C. 法向量D. 正交向量答案:A8. 群G的一个子群H,如果H=G,则称H是G的一个()。
A. 正规子群B. 非正规子群C. 子群答案:C9. 环R中,如果对于任意的a,b∈R,都有a-b=b-a,则称R 是()。
A. 交换环B. 非交换环C. 整环D. 除环答案:A10. 向量空间V中,如果存在一组向量α1,α2,…,αn,使得这些向量线性无关,并且V中任意向量都可以表示为这些向量的线性组合,则称这组向量是V的一个()。
A. 基B. 零向量C. 法向量D. 正交向量答案:A二、填空题(每题4分,共40分)1. 群G中,如果对于任意的a,b∈G,都有ab=ba,则称G是________。
答案:交换群2. 环R中,如果对于任意的a,b∈R,都有ab=0,则称R是________。
近世代数期末考试试题和答案解析

一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1、设G 有6个元素的循环群,a 是生成元,则G 的子集( )是子群。
A 、{}aB 、{}e a ,C 、{}3,a eD 、{}3,,a a e 2、下面的代数系统(G ,*)中,( )不是群A 、G 为整数集合,*为加法B 、G 为偶数集合,*为加法C 、G 为有理数集合,*为加法D 、G 为有理数集合,*为乘法3、在自然数集N 上,下列哪种运算是可结合的?( )A 、a*b=a-bB 、a*b=max{a,b}C 、 a*b=a+2bD 、a*b=|a-b|4、设1σ、2σ、3σ是三个置换,其中1σ=(12)(23)(13),2σ=(24)(14),3σ=(1324),则3σ=( ) A 、12σ B 、1σ2σ C 、22σ D 、2σ1σ5、任意一个具有2个或以上元的半群,它( )。
A 、不可能是群B 、不一定是群C 、一定是群D 、 是交换群二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
1、凯莱定理说:任一个子群都同一个----------同构。
2、一个有单位元的无零因子-----称为整环。
3、已知群G 中的元素a 的阶等于50,则4a 的阶等于------。
4、a 的阶若是一个有限整数n ,那么G 与-------同构。
5、A={1.2.3} B={2.5.6} 那么A ∩B=-----。
6、若映射ϕ既是单射又是满射,则称ϕ为-----------------。
7、α叫做域F 的一个代数元,如果存在F 的-----n a a a ,,,10 使得010=+++n n a a a αα 。
8、a 是代数系统)0,(A 的元素,对任何A x ∈均成立x a x = ,则称a 为---------。
《近世代数》练习题及参考答案

《近世代数》练习题及参考答案1.设A={a ,b ,c ,d}试写出集合A 的所有不同的等价关系。
2.证明::实数域R 上全体n 阶方阵的集合Mn(R),关于矩阵的加法构成一个交换群。
3.证明:实数域R 上全体n 阶正交矩阵的集合On(R)关于矩阵的乘法构成群.这个群称为n 阶正交群.4.设G=。
⎭⎬⎫⎩⎨⎧≠∈⎪⎪⎭⎫ ⎝⎛0,a R a a a a a 证明:G 关于矩阵的乘法构成群。
5.证明:所有形如n m 32的有理数(m ,n ∈Z )的集合关于数的乘法构成群。
参考答案1. 设A= 试写出集合A 的所有不同的等价关系。
解2.证明::实数域R 上全体n 阶方阵的集合Mn(R),关于矩阵的加法构成一个交换群。
证:(1)显然,Mn(R)为一个具有“+”的代数系统。
(2)∵矩阵的加法满足结合律,那么有结合律成立。
(3)∵矩阵的加法满足交换律,那么有交换律成立。
(4)零元是零矩阵。
∀A ∈Mn(R),A+0=0+A=A 。
(5)∀A ∈Mn(R),负元是-A 。
A+(-A)=(-A)+A=0。
∴(Mn(R),+)构成一个Abel 群。
3.证明:实数域R 上全体n 阶正交矩阵的集合On(R)关于矩阵的乘法构成群.这个群称为n 阶正交群.证:(1)由于E ∈On (R),∵On (R)非空。
(2 ) 任意A,B ∈On (R),有(AB )T=B T A T =B -1A -1=(AB) -1,∴AB ∈On(R),于是矩阵的乘法在On(R)上构成代数运算。
(3) ∵矩阵的乘法满足结合律,那么有结合律成立。
(4)对任意A ∈On (R),有AE=EA=A .∴E 为On (R)的单位元。
(5)对任意A ∈On (R),存在A T ∈On (R),满足AA T =E=AA -1, A T A=E=A -1A .∴A T 为A 在On (R)中的逆元。
∴On (R)关于矩阵的乘法构成一个群。
{}d c b a ,,,4.设G=。
近世代数课后习题参考答案

近世代数课后习题参考答案第一章 基本概念1 集合1.A B ⊂,但B 不是A 的真子集,这个情况什么时候才能出现? 解 ׃只有在B A =时, 才能出现题中说述情况.证明 如下当B A =,但B 不是A 的真子集,可知凡是属于A 而B a ∉,显然矛盾; 若A B ⊂,但B 不是A 的真子集,可知凡属于A 的元不可能属于B ,故B A =2.假定B A ⊂,?=B A ,A ∩B=? 解׃ 此时, A ∩B=A,这是因为A ∩B=A 及由B A ⊂得A ⊂A ∩B=A,故A B A = ,B B A ⊃ , 及由B A ⊂得B B A ⊂ ,故B B A = ,2 映射1.A =}{100,3,2,1,⋯⋯,找一个A A ⨯到A 的映射. 解׃ 此时1),(211=a a φ A a a ∈21, 1212),(a a a =φ 易证21,φφ都是A A ⨯到A 的映射.2.在你为习题1所找到的映射之下,是不是A 的每一个元都是A A ⨯到A 的一个元的的象? 解׃容易说明在1φ之下,有A 的元不是A A ⨯的任何元的象;容易验证在2φ之下,A 的每个元都是A A ⨯的象.3 代数运算1.A ={所有不等于零的偶数}.找到一个集合D ,使得普通除法 是A A ⨯到D 的代数运算;是不是找的到这样的D ?解׃取D 为全体有理数集,易见普通除法是A A ⨯到D 的代数运算;同时说明这样的D 不只一个.2.=A }{c b a ,,.规定A 的两个不同的代数运算. 解׃a b c aa b ca b cb bc a a a a a c c a b bd a aca a a4 结合律1.A ={所有不等于零的实数}. 是普通除法:bab a = .这个代数运算适合不适合结合律? 解׃ 这个代数运算不适合结合律: 212)11(= , 2)21(1= ,从而 )21(12)11( ≠.2.A ={所有实数}. : b a b a b a =+→2),(这个代数运算适合不适合结合律?解׃ 这个代数运算不适合结合律c b a c b a 22)(++= ,c b a c b a 42)(++= )()(c b a c b a ≠ 除非0=c .3.A ={c b a ,,},由表所给的代数运算适合不适合结合律?解׃ 经过27个结合等式后可以得出所给的代数运算适合结合律.5 交换律1.A ={所有实数}. 是普通减法:b a b a -= .这个代数运算适合不适合交换律?解׃ 一般地a b b a -≠- 除非b a =.2.},,,{d c b a A =,由表a b c d a a b c d b b d a c c c a b d dd c a b所给出代数运算适合不适合交换律?a b c aa b cb bc a cc a b解׃ d d c = , a c d =从而c d d c ≠.故所给的代数运算不适合交换律.6 分配律假定:⊗⊕,是A 的两个代数运算,并且⊕适合结合律,⊕⊗,适合两个分配律.证明)()()()(22122111b a b a b a b a ⊗⊕⊗⊕⊗⊕⊗ )()()()(22211211b a b a b a b a ⊗⊕⊗⊕⊗⊕⊗= 证)()()()(22122111b a b a b a b a ⊗⊕⊗⊕⊗⊕⊗׃ =])[(])[(221121b a a b a a ⊗⊕⊕⊗⊕ =)()(2121b b a a ⊕⊗⊕=)]([)]([212211b b a b b a ⊕⊗⊕⊕⊗)()()()(22211211b a b a b a b a ⊗⊕⊗⊕⊗⊕⊗=7 一 一 映射、变换1.A ={所有0〉的实数},=-A {所有实数}.找一个A 与-A 间的意义映射.证 φ:a a a log =→-因为a 是大于零的实数,所以a log 是实数即 A a ∈,而--∈A a ,而且b a b a log log =⇒=.因此φ是A 到-A 的映射.又给了一个-A 的任意元-a ,一定有一个A 的元a ,满足-=a a log ,因此φ是A 到-A 的满射.a a a log =→-b b b log =→-若 b a ≠, 则 b a log log ≠.即 --≠⇒≠b a b a 因此φ又是A 到-A 的单射.总之,φ是A 到-A 的一一映射.2. A ={所有0≥的实数},=-A {所有实数-a ,10≤≤-a }. 找一个A 到-A 的满射. 证 a a a sin :=→-φ,容易验证φ是A 到-A 的满射.3.假定φ是A 与-A 间的一个一一映射,a 是A 的一个元.?)]([1=-A φφ?)]([1=-a φφ若φ是A 的一个一一变换,这两个问题的回答又该是什么?解׃ a a =-)]([1φφ, a a =-)]([1φφ未必有意义;当φ是A 的一一变换时,.)]([,)]([11a a a a ==--φφφφ8 同态1.A ={所有实数x },A 的代数运算是普通乘法.以下映射是不是A 到A 的一个子集-A 的同态满射?x x a →) x x b 2)→ 2)x x c → x x d -→) 证׃ )a 显然=-A {所有0≥的实数}.又由于 y x xy xy =→ 可知x x →是A 到-A 的同态满射.)b 由于)2)(2(2y x xy xy ≠→ ( 除非0=xy )所以x x 2→不是A 到-A 的同态满射.)c 由于222)()()(y x xy xy =→,易知2x x →是A 到-A 的同态满射.这里-A ={所有0≥的实数}.)d 一般来说,))((y x xy --≠-,:所以x x -→不是A 到-A 的同态满射 .2. 假定A 和-A 对于代数运算ο和-ο来说同态,-A 和=A 对于代数运算-ο和=ο来说同态,证明 A 和=A 对于代数运算ο和=ο来说同态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
近世代数习题与答案
Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT
一、 选择题(本题共5小题,每小题3分,共15分)
一、 (从下列备选答案中选择正确答案) 1、下列子集对通常复数的乘法不构成群的是( )。
(A) {1,-1,i ,-i } (B) {1,-1} (C) {1,-1,i }
2、设H 是群G的子群,a ,b ∈G,则aH = bH 的充要条件是( )。
(A) a -1b -1∈H (B) a -1b ∈H (C) ab -1∈H
3、在模6的剩余类环Z 6 中,Z 6 的极大理想是( )。
(A) (2),(3) (B) (2) (C)(3)
4、若Q 是有理数域,则(Q(2):Q)是( )。
(A) 6 (B) 3 (C) 2
5、下列不成立的命题是( )。
(A) 欧氏环是主理想环 (B) 整环是唯一分解环 (C) 主理想环是唯一分解环 二、填空题(本题共5空,每空3分,共15分) (请将正确答案填入空格内)
1、R 为整环,a ,b ∈R ,b |a ,则(b ) (a )。
2、F 是域,则[](())
F x f x 是域当且仅当 。
3、域F 上的所有n 阶方阵的集合M n (F )中,规定等价关系~:
A ~
B ⇔秩(A )=秩(B ),则这个等价关系决定的等价类有________个。
4、6次对称群S 6中,(1235)-1(36)=____________。
5、12的剩余类环Z 12的可逆元是 。
三、判断题(本题共5小题,每小题2分,共10分) (请在你认为正确的题后括号内打“√”,错误的打“×”)
1、设G 是群,∅≠H ,若对任意a,b ∈H 可推出ab ∈H ,则H≤G ..
( )
2、群G 中的元,a b ,()2,()7,a b ab ba ===,则()14ab =。
( )
3、商环6Z Z 是一个域。
( )
4、设f 是群G 到群-G 的同态映射,若1()f H G -, 则H G 。
( )
5、任意群都同构于一个变换群。
( ) 四、计算题(本题共2小题,每小题10分,共20分) (要求写出主要计算步骤及结果)
1、找出6Z 的全部理想,并指出哪些是极大理想。
对极大理想K ,写出
6Z K 的全部元。
2、确定3次对称群S 3的所有子群及所有正规子群。
五、证明题(本题共4小题,每小题10分,共40分)
1、 设f 是群G 到群-G 的满同态,N 是G 的正规子群,证明:
G Kerf N G N f =⋅⇔=-)(。
2、设N G, [G:N]=2008, 证明:对G x ∈∀, 恒有2008x N ∈。
3、设R 为交换环,若R 的理想P ≠R ,则R /P 是整环当且仅当P 是素理想。
4、设R [x ]是实数域R 上的一元多项式环,取21[]x R x +∈,证明:2[]
(1)R x C x ≅+,
C
为复数域。
《近世代数》测试题(一)
一、 选择题(本题共5小题,每小题3分,共15分)
一、 (从下列备选答案中选择正确答案)
1、设G =Z ,对G 规定运算o ,下列规定中只有( )构成群。
(A) aob=a+b-2 (B) aob=a b (C) aob=2 a+3 b (“”为数的乘法)
2、设H ≤G ,a ,b ∈G ,则Ha = Hb 的充要条件是( ).
(A) ab ∈H (B) ab -1∈H (C) a -1b ∈H
3、在整数环Z 中,包含(15)的极大理想是( )。
(A) (3) (B) (5) (C) (3)或(5)
4、若Q 是有理数域,则
是( )
(A) 6 (B) 3 (C) 2 5、下面不成立...
的命题是( )
(A) 域是整环 (B) 除环是域 (C) 整数环是整环
二、填空题(本题共5空,每空3分,共15分)
(请将正确答案填入空格内)
1、环Z (i )={a +bi |a,b ∈Z }的单位是________________。
2、若a 是群G 中的一个8阶元,则a 6的阶为________ 。
3、设M 100 (F )是数域F 上的所有100阶方阵的集合,在M 100 (F )中规定等价关系~下:
A ~
B ⇔秩(A )=秩(B ),则这个等价关系所决定的等价类共有_______个。
4、6次对称群S 6中,(1245)-1(46)=____________。
5、12的剩余类环Z 12的零因子是 。
三、判断题(本题共5小题,每小题2分,共10分)
(请在你认为正确的题后括号内打“√”,错误的打“×”)
1、若H N ,H G ,那么NH G 。
( )
2、设I 是一主理想环,则I 是一欧氏环。
( )
3、商环(9)Z 是一个域。
( )
4、设f 是群G 到群-G 的同态映射,H G ,则 f (H )
-
G 。
( ) 5、素数阶的群G 一定是循环群。
( )
四、计算题(本题共2小题,每小题10分,共20分)(要求写出主要计算步骤及结
果)
1、在10次对称群S 10中,σ=⎪⎪⎭
⎫ ⎝⎛1968752431010987654321.
将σ表成一些不相交轮换之积,并求1σ-及()σ。
2、在整数环Z 中,试求出所有包含30的极大理想。
五、证明题(本题共4小题,每小题10分,共40分)
1、设f 是环R 到环R '的满同态,A 为R 的理想,证明:R Kerf A R A f =+⇔'=)(。
2、设N G, [G:N]=2009, 证明:对G x ∈∀, 恒有2009x N ∈。
3、设R 为交换环,则R 的每个极大理想都是素理想。
4、设G与G是两个群,
f
G G,K = Kerf,H G
≤,令H = {x |x∈G,f(x) ∈H},证
明:H G
≤且H H
K≅。