近世代数期末考试试题和答案解析

合集下载

近世代数期末考试题(卷)库

近世代数期末考试题(卷)库

{ 1、设置换σ 和τ 分别为:σ = ⎡⎢ ,τ = ⎡⎢⎥ ,判断 和 的奇偶性,并把 和12345678 ⎤ 12345678 ⎤⎣64173528⎦⎣23187654⎦矩阵,且 A = B + C 。

若令有 A = B + C ,这里 B 和 C 分别为对称矩阵和反对称矩阵,则 2 2 ..世代数模拟试题一一、单项选择题(本大题共 5 小题,每小题 3 分,共 15 分)在每小题列出的四个备选项中 只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无 分。

1、设 A =B =R(实数集),如果 A 到 B 的映射 ϕ :x→x +2,∀ x∈R ,则 ϕ 是从 A 到 B 的( c ) A 、满射而非单射 B 、单射而非满射 C 、一一映射 D 、既非单射也非满射2、设集合 A 中含有 5 个元素,集合 B 中含有 2 个元素,那么,A 与 B 的积集合 A×B 中含有( d )个元素。

A 、2 B 、5 C 、7 D 、103、在群 G 中方程 ax=b ,ya=b , a,b∈G 都有解,这个解是(b )乘法来说 A 、不是唯一 B 、唯一的 C 、不一定唯一的 D 、相同的(两方程解一样)4、当 G 为有限群,子群 H 所含元的个数与任一左陪集 aH 所含元的个数(c ) A 、不相等 B 、0 C 、相等 D 、不一定相等。

5、n 阶有限群 G 的子群 H 的阶必须是 n 的(d ) A 、倍数 B 、次数 C 、约数 D 、指数二、填空题(本大题共 10 小题,每空 3 分,共 30 分)请在每小题的空格中填上正确答案。

错填、不填均无分。

1、设集合 A = {- 1,0,1}; B = 1,2},则有 B ⨯ A = 。

2、若有元素 e∈R 使每 a∈A ,都有 ae=ea=a ,则 e 称为环 R 的单位元。

3、环的乘法一般不交换。

如果环 R 的乘法交换,则称 R 是一个交换环。

近世代数试题及答案

近世代数试题及答案

近世代数试题及答案一、选择题(每题4分,共20分)1. 下列哪个选项不是群的性质?A. 封闭性B. 存在单位元C. 存在逆元D. 交换律答案:D2. 有限群的阶数为n,那么它的子群的个数至少为:A. nB. 1C. n-1D. n+1答案:B3. 以下哪个命题是正确的?A. 任意两个子群的交集仍然是子群B. 任意两个子群的并集仍然是子群C. 子群的子群仍然是子群D. 子群的补集仍然是子群答案:A4. 群G的阶数为n,那么它的元素的阶数不可能是:A. 1B. nC. 2D. n+1答案:D5. 以下哪个不是环的性质?A. 封闭性B. 交换律C. 分配律D. 结合律答案:B二、填空题(每题4分,共20分)1. 如果集合S上的二元运算*满足结合律,那么称S为________。

答案:半群2. 一个群G的所有子群的集合构成一个________。

答案:格3. 一个环R中,如果对于任意的a,b∈R,都有a+b=b+a,则称R为________。

答案:交换环4. 一个环R中,如果对于任意的a,b∈R,都有ab=ba,则称R为________。

答案:交换环5. 一个群G中,如果存在一个元素a,使得对于任意的g∈G,都有ag=ga=e,则称a为G的________。

答案:单位元三、简答题(每题10分,共30分)1. 请简述子群和正规子群的区别。

答案:子群是群G的非空子集H,满足H中的任意两个元素的乘积仍然在H中,并且H对于G的运算是封闭的。

正规子群是子群N,满足对于任意的g∈G和n∈N,都有gng^-1∈N。

2. 请解释什么是群的同态和同构。

答案:群的同态是两个群G和H之间的函数f,满足对于任意的g1,g2∈G,都有f(g1g2)=f(g1)f(g2)。

群的同构是同态,并且是双射,即存在逆映射。

3. 请解释什么是环的零因子和非零因子。

答案:在环R中,如果存在非零元素a和b,使得ab=0,则称a和b 为零因子。

如果环R中不存在零因子,则称R为无零因子环。

近世代数期末试卷

近世代数期末试卷

近世代数期末试卷一、填空题(共20分)1. 设G=(a)是6阶循环群,则G的子群有。

2. 设A、B是集合,| A |=| B |=3,则共可定义个从A到B的映射,其中有个单射,有个满射,有个双射。

3. 在4次对称群S4中,(24)(231)=,(4321)-1=,(132)的阶为。

4. 环Z6的全部零因子是。

5. 整环Z中的单位有。

6. 设群G是24阶群,G中元素a的阶是6,则元素a2的阶为,子群H=<a3>的在G中的指数是。

二、判断题(对打“√”,错打“×”,每小题2分,共20分)1. ()一个阶是11的群只有两个子群。

2. ()设G是群,H1是G的不变子群,H2是H1的不变子群,则H2是G的不变子群。

3. ()存在特征是2004的无零因子环。

4. ()域是主理想整环。

5. ()模27的剩余类环Z27是域。

6. ()素数阶群都是交换群。

7. ()在一个环中,若左消去律成立,则消去律成立。

8. ()循环群的商群是循环群。

9. ()域只有零理想和单位理想。

10. ()相伴关系是整环R的元素间的一个等价关系。

三、解答题(共30分)1. 设H={(1),(12)}是对称群S3的子群,写出H的所有左陪集和所有右陪集,问H 是否是S3的不变子群?为什么2. 求模12的剩余类加群(Z12,+,[0])的所有子群及这些子群的生成元。

3. 在整数环Z中,求由2004,17生成的理想A=(2004,17)。

四、证明题(共30分)1.设I1={2k|k∈Z}, I2={3k|k∈Z},试证明:(1)I1,I2都是整数环Z的理想。

(2)I1∩I2=(6)是Z的一个主理想。

2. 设φ是群G到群H的同态满射, H1是H的子群。

证明:G1= {x|x∈G且φ(x)∈H1}是G的子群。

3. 设环(R,+,·,0,1)是整环。

证明:多项式环R[x]能与它的一个真子环同构。

- 1 -。

(完整word版)近世代数期末考试题库(包括模拟卷和1套完整题)

(完整word版)近世代数期末考试题库(包括模拟卷和1套完整题)

多所高校近世代数题库一、(2011年近世代数)判断题(下列命题你认为正确的在题后括号内打“√”,错的打“×”;每小题1分,共10分) 1、设A 与B 都是非空集合,那么{}B A x x B A ∈∈=⋃x 且。

( )2、设A 、B 、D 都是非空集合,则B A ⨯到D 的每个映射都叫作二元运算。

( )3、只要f 是A 到A 的一一映射,那么必有唯一的逆映射1-f。

( )4、如果循环群()a G =中生成元a 的阶是无限的,则G 与整数加群同构。

( )5、如果群G 的子群H 是循环群,那么G 也是循环群。

( )6、近世代数中,群G 的子群H 是不变子群的充要条件为H Hg g H h G g ⊆∈∀∈∀-1;,。

( )7、如果环R 的阶2≥,那么R 的单位元01≠。

( ) 8、若环R 满足左消去律,那么R 必定没有右零因子。

( ) 9、)(x F 中满足条件0)(=αp 的多项式叫做元α在域F 上的极小多项式。

( ) 10、若域E 的特征是无限大,那么E 含有一个与()p Z 同构的子域,这里Z 是整数环,()p 是由素数p 生成的主理想。

( )二、(2011年近世代数)单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其号码写在题干后面的括号内。

答案选错或未作选择者,该题无分。

每小题1分,共10分)1、设n A A A ,,,21 和D 都是非空集合,而f 是n A A A ⨯⨯⨯ 21到D 的一个映射,那么( ) ①集合D A A A n ,,,,21 中两两都不相同;②n A A A ,,,21 的次序不能调换; ③n A A A ⨯⨯⨯ 21中不同的元对应的象必不相同; ④一个元()n a a a ,,,21 的象可以不唯一。

2、指出下列那些运算是二元运算( ) ①在整数集Z 上,abba b a +=; ②在有理数集Q 上,ab b a = ; ③在正实数集+R 上,b a b a ln = ;④在集合{}0≥∈n Z n 上,b a b a -= 。

近世代数期末考试试卷及答案

近世代数期末考试试卷及答案

一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1、设G 有6个元素的循环群,a 是生成元,则G 的子集( )是子群。

A 、{}aB 、{}e a ,C 、{}3,a eD 、{}3,,a a e 2、下面的代数系统(G ,*)中,( )不是群A 、G 为整数集合,*为加法B 、G 为偶数集合,*为加法C 、G 为有理数集合,*为加法D 、G 为有理数集合,*为乘法3、在自然数集N 上,下列哪种运算是可结合的?( )A 、a*b=a-bB 、a*b=max{a,b}C 、 a*b=a+2bD 、a*b=|a-b|4、设1σ、2σ、3σ是三个置换,其中1σ=(12)(23)(13),2σ=(24)(14),3σ=(1324),则3σ=( ) A 、12σ B 、1σ2σ C 、22σ D 、2σ1σ5、任意一个具有2个或以上元的半群,它( )。

A 、不可能是群B 、不一定是群C 、一定是群D 、 是交换群二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。

错填、不填均无分。

1、凯莱定理说:任一个子群都同一个----------同构。

2、一个有单位元的无零因子-----称为整环。

3、已知群G 中的元素a 的阶等于50,则4a 的阶等于------。

4、a 的阶若是一个有限整数n ,那么G 与-------同构。

5、A={1.2.3} B={2.5.6} 那么A ∩B=-----。

6、若映射ϕ既是单射又是满射,则称ϕ为-----------------。

7、α叫做域F 的一个代数元,如果存在F 的-----n a a a ,,,10 使得10=+++n n a a a αα 。

8、a 是代数系统)0,(A 的元素,对任何A x ∈均成立x a x = ,则称a 为---------。

近世代数期末考试试卷及答案

近世代数期末考试试卷及答案

一、单项选择题《本大题共5小题,每小题3分,共分》在每小题列出的四个备选项中只有一个是符合题口要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

JL、设G 有6个元素的循环群,a是生成元,则G 的子集()是子群。

耳、{"} 1B、C.肛*} !>、ha"'}2、下面的代数系统(G,*)中,()不是群耳、G为整数集合,★为加法:B、G为偶数集合,★为加法C. G为有理数集合,★为加法Q、G为有理数集合,★为乘法3、在自然数集:NT上,下列哪种运算是可结合的?( )A. £L*lb=£L-l> B-、C、a*l>=a+251>设6、6、6 是三个置换,其中bu(jL2)(23) (13), 6=(24)(14),内二(13254),则内二( )耳、cr2i 耳、6 6 °、a22Q、6 65、任意一个具有2个或以上元的半群,它( )。

耳、不可能是群耳、不一定是群Q、一定是群Q、是交换群二、填空题C本大题共JLO小题,每空3分,共30分》请在每小题的空格中填上正确答案。

错填、不填均无分。

JL、凯莱定理说:任一个子群都同一个--------- 同构。

2、一个有单位元的无零因子——称为整环。

3、已知群G中的元素"的阶等于50,则“的阶等于------------ :4、a的阶若是一个有限整数n,那么G 与------------- 同构。

5、A={1.25.3) 13={2・5・6}那么耳QR -------------------------------- 。

6、若映射0既是单射乂是满射,则称0为----------------- 。

7、&叫做域尸的一个代数元,如果存在尸的——绻,也,…使得“° + 5 + a …+ a n a" = 0O导、"是代数系统(A,0)的元素,对任何x w A均成立兀。

近世代数期末考试试卷及答案

近世代数期末考试试卷及答案

一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个就是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1、设G 有6个元素的循环群,a 就是生成元,则G 的子集( )就是子群。

A 、{}aB 、{}e a ,C 、{}3,a eD 、{}3,,a a e 2、下面的代数系统(G,*)中,( )不就是群A 、G 为整数集合,*为加法B 、G 为偶数集合,*为加法C 、G 为有理数集合,*为加法D 、G 为有理数集合,*为乘法3、在自然数集N 上,下列哪种运算就是可结合的?( )A 、a*b=a-bB 、a*b=max{a,b}C 、 a*b=a+2bD 、a*b=|a-b|4、设1σ、2σ、3σ就是三个置换,其中1σ=(12)(23)(13),2σ=(24)(14),3σ=(1324),则3σ=( )A 、12σB 、1σ2σC 、22σD 、2σ1σ5、任意一个具有2个或以上元的半群,它( )。

A 、不可能就是群B 、不一定就是群C 、一定就是群D 、 就是交换群二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。

错填、不填均无分。

1、凯莱定理说:任一个子群都同一个----------同构。

2、一个有单位元的无零因子-----称为整环。

3、已知群G 中的元素a 的阶等于50,则4a 的阶等于------。

4、a 的阶若就是一个有限整数n,那么G 与-------同构。

5、A={1、2、3} B={2、5、6} 那么A ∩B=-----。

6、若映射ϕ既就是单射又就是满射,则称ϕ为-----------------。

7、α叫做域F 的一个代数元,如果存在F 的-----n a a a ,,,10Λ使得010=+++n n a a a ααΛ。

8、a 就是代数系统)0,(A 的元素,对任何A x ∈均成立x a x =ο,则称a 为---------。

近世代数期末模拟考试与答案

近世代数期末模拟考试与答案

近 世 代 数 试 卷一、判断题(下列命题你认为正确的在题后括号内打“√”,错的打“×”;每小题1分,共10分)1、设A 与B 都是非空集合,那么{}B A x x B A ∈∈=⋃x 且。

( f )2、设A 、B 、D 都是非空集合,则B A ⨯到D 的每个映射都叫作二元运算。

( f )3、只要f 是A 到A 的一一映射,那么必有唯一的逆映射1-f 。

( t )4、如果循环群()a G =中生成元a 的阶是无限的,则G 与整数加群同构。

(t )5、如果群G 的子群H 是循环群,那么G 也是循环群。

( f )6、群G 的子群H 是不变子群的充要条件为H Hg g H h G g ⊆∈∀∈∀-1;,。

( t )7、如果环R 的阶2≥,那么R 的单位元01≠。

( t )8、若环R 满足左消去律,那么R 必定没有右零因子。

( t )9、)(x F 中满足条件0)(=αp 的多项式叫做元α在域F 上的极小多项式。

( f )10、若域E 的特征是无限大,那么E 含有一个与()p Z 同构的子域,这里Z 是整数环,()p 是由素数p 生成的主理想。

( f )二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其号码写在题干后面的括号内。

答案选错或未作选择者,该题无分。

每小题1分,共10分)1、设n A A A ,,,21 和D 都是非空集合,而f 是n A A A ⨯⨯⨯ 21到D 的一个映射,那么( 2 ) ①集合D A A A n ,,,,21 中两两都不相同;②n A A A ,,,21 的次序不能调换; ③n A A A ⨯⨯⨯ 21中不同的元对应的象必不相同; ④一个元()n a a a ,,,21 的象可以不唯一。

2、指出下列那些运算是二元运算( 3 )4①在整数集Z 上,abba b a +=; ②在有理数集Q 上,ab b a = ; ③在正实数集+R 上,b a b a ln = ;④在集合{}0≥∈n Z n 上,b a b a -= 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1、设G 有6个元素的循环群,a 是生成元,则G 的子集( )是子群。

A 、{}aB 、{}e a ,C 、{}3,a eD 、{}3,,a a e 2、下面的代数系统(G ,*)中,( )不是群A 、G 为整数集合,*为加法B 、G 为偶数集合,*为加法C 、G 为有理数集合,*为加法D 、G 为有理数集合,*为乘法3、在自然数集N 上,下列哪种运算是可结合的?( )A 、a*b=a-bB 、a*b=max{a,b}C 、 a*b=a+2bD 、a*b=|a-b|4、设1σ、2σ、3σ是三个置换,其中1σ=(12)(23)(13),2σ=(24)(14),3σ=(1324),则3σ=( ) A 、12σ B 、1σ2σ C 、22σ D 、2σ1σ5、任意一个具有2个或以上元的半群,它( )。

A 、不可能是群B 、不一定是群C 、一定是群D 、 是交换群二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。

错填、不填均无分。

1、凯莱定理说:任一个子群都同一个----------同构。

2、一个有单位元的无零因子-----称为整环。

3、已知群G 中的元素a 的阶等于50,则4a 的阶等于------。

4、a 的阶若是一个有限整数n ,那么G 与-------同构。

5、A={1.2.3} B={2.5.6} 那么A ∩B=-----。

6、若映射ϕ既是单射又是满射,则称ϕ为-----------------。

7、α叫做域F 的一个代数元,如果存在F 的-----n a a a ,,,10 使得010=+++n n a a a αα 。

8、a 是代数系统)0,(A 的元素,对任何A x ∈均成立x a x = ,则称a 为---------。

9、有限群的另一定义:一个有乘法的有限非空集合G 作成一个群,如果满足G 对于乘法封闭;结合律成立、---------。

10、一个环R 对于加法来作成一个循环群,则P 是----------。

三、解答题(本大题共3小题,每小题10分,共30分)1、设集合A={1,2,3}G 是A 上的置换群,H 是G 的子群,H={I,(1 2)},写出H 的所有陪集。

2、设E 是所有偶数做成的集合,“•”是数的乘法,则“•”是E 中的运算,(E ,•)是一个代数系统,问(E ,•)是不是群,为什么?3、a=493, b=391, 求(a,b), [a,b] 和p, q 。

四、证明题(本大题共2小题,第1题10分,第2小题15分,共25分)1、若<G ,*>是群,则对于任意的a 、b ∈G ,必有惟一的x ∈G 使得a*x =b 。

2、设m 是一个正整数,利用m 定义整数集Z 上的二元关系:a 〜b 当且仅当m ︱a –b 。

近世代数模拟试题三一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1、6阶有限群的任何子群一定不是()。

A、2阶B、3 阶C、4 阶D、 6 阶2、设G是群,G有()个元素,则不能肯定G是交换群。

A、4个B、5个C、6个D、7个3、有限布尔代数的元素的个数一定等于()。

A、偶数B、奇数C、4的倍数D、2的正整数次幂4、下列哪个偏序集构成有界格()A、(N,≤)B、(Z,≥)C、({2,3,4,6,12},|(整除关系))D、 (P(A),⊆)5、设S3={(1),(12),(13),(23),(123),(132)},那么,在S3中可以与(123)交换的所有元素有()A、(1),(123),(132)B、12),(13),(23)C、(1),(123)D、S3中的所有元素二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。

错填、不填均无分。

1、群的单位元是--------的,每个元素的逆元素是--------的。

2、如果f是A与A间的一一映射,a是A的一个元,则()[]=-aff1----------。

3、区间[1,2]上的运算},{min baba=的单位元是-------。

4、可换群G中|a|=6,|x|=8,则|ax|=——————————。

5、环Z8的零因子有 -----------------------。

6、一个子群H的右、左陪集的个数----------。

7、从同构的观点,每个群只能同构于他/它自己的---------。

8、无零因子环R中所有非零元的共同的加法阶数称为R的-----------。

9、设群G中元素a的阶为m,如果ea n=,那么m与n存在整除关系为--------。

三、解答题(本大题共3小题,每小题10分,共30分)1、用2种颜色的珠子做成有5颗珠子项链,问可做出多少种不同的项链?2、S 1,S 2是A 的子环,则S 1∩S 2也是子环。

S 1+S 2也是子环吗?3、设有置换)1245)(1345(=σ,6)456)(234(S ∈=τ。

1.求στ和στ-1;2.确定置换στ和στ-1的奇偶性。

四、证明题(本大题共2小题,第1题10分,第2小题15分,共25分)1、一个除环R 只有两个理想就是零理想和单位理想。

2、M 为含幺半群,证明b =a -1的充分必要条件是aba =a 和ab 2a =e 。

一、单项选择题。

1、C ;2、D ;3、B ;4、C ;5、D ;二、填空题(本大题共10小题,每空3分,共30分)。

1、()()()()()(){}1,2,0,2,1,21,1,0,1,1,1--;2、单位元;3、交换环;4、整数环;5、变换群;6、同构;7、零、-a ;8、S=I 或S=R ;9、域;三、解答题(本大题共3小题,每小题10分,共30分)1、解:把σ和τ写成不相杂轮换的乘积:)8)(247)(1653(=σ )6)(57)(48)(123(=τ可知σ为奇置换,τ为偶置换。

σ和τ可以写成如下对换的乘积:)27)(24)(16)(15)(13(=σ )57)(48)(12)(13(=τ2、解:设A 是任意方阵,令)(21A A B '+=,)(21A A C '-=,则B 是对称矩阵,而C 是反对称矩阵,且C B A +=。

若令有11C B A +=,这里1B 和1C 分别为对称矩阵和反对称矩阵,则C C B B -=-11,而等式左边是对称矩阵,右边是反对称矩阵,于是两边必须都等于0,即:1B B =,1C C =,所以,表示法唯一。

3、答:(m M ,m +)不是群,因为m M 中有两个不同的单位元素0和m 。

四、证明题(本大题共2小题,第1题10分,第2小题15分,共25分)1、对于G 中任意元x ,y ,由于e xy =2)(,所以yx x y xy xy ===---111)((对每个x ,从e x =2可得1-=x x )。

2、证明在F 里)0,,(11≠∈==--b R b a b a a b ab有意义,作F 的子集)0,,(≠∈⎭⎬⎫⎩⎨⎧=-b R b a b a Q 所有-Q 显然是R 的一个商域 证毕。

一、单项选择题(本大题共5小题,每小题3分,共15分)。

1、C;2、D;3、B;4、B;5、A;二、填空题(本大题共10小题,每空3分,共30分)。

1、变换群;2、交换环;3、25;4、模n乘余类加群;5、{2};6、一一映射;7、不都等于零的元;8、右单位元;9、消去律成立;10、交换环;三、解答题(本大题共3小题,每小题10分,共30分)1、解:H的3个右陪集为:{I,(1 2)},{(1 2 3 ),(1 3)},{(1 3 2 ),(2 3 )} H的3个左陪集为:{I,(1 2)} ,{(1 2 3 ),(2 3)},{(1 3 2 ),(1 3 )}2、答:(E,•)不是群,因为(E,•)中无单位元。

3、解方法一、辗转相除法。

列以下算式:a=b+102b=3×102+85102=1×85+17由此得到 (a,b)=17, [a,b]=a×b/17=11339。

然后回代:17=102-85=102-(b-3×102)=4×102-b=4×(a-b)-b=4a-5b.所以 p=4, q=-5.四、证明题(本大题共2小题,第1题10分,第2小题15分,共25分)1、证明设e是群<G,*>的幺元。

令x=a-1*b,则a*x=a*(a-1*b)=(a*a-1)*b=e*b=b。

所以,x=a-1*b是a*x=b的解。

若x'∈G也是a*x=b的解,则x'=e*x'=(a-1*a)*x'=a-1*(a*x')=a-1*b=x。

所以,x=a-1*b是a*x=b的惟一解。

2、容易证明这样的关系是Z上的一个等价关系,把这样定义的等价类集合Z记为Zm,每个整数a所在的等价类记为[a]={x∈Z;m︱x–a}或者也可记为a,称之为模m剩余类。

若m︱a–b也记为a≡b(m)。

当m=2时,Z2仅含2个元:[0]与[1]。

一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1、C ;2、C ;3、D ;4、D ;5、A ;二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。

错填、不填均无分。

1、唯一、唯一;2、a ;3、2;4、24;5、;6、相等;7、商群;8、特征;9、n m ;三、解答题(本大题共3小题,每小题10分,共30分)1、解 在学群论前我们没有一般的方法,只能用枚举法。

用笔在纸上画一下,用黑白两种珠子,分类进行计算:例如,全白只1种,四白一黑1种,三白二黑2种,…等等,可得总共8种。

2、证 由上题子环的充分必要条件,要证对任意a,b ∈S1∩S2 有a-b, ab ∈S1∩S2:因为S1,S2是A 的子环,故a-b, ab ∈S1和a-b, ab ∈S2 ,因而a-b, ab ∈S1∩S2 ,所以S1∩S2是子环。

S1+S2不一定是子环。

在矩阵环中很容易找到反例:3、解: 1.)56)(1243(=στ,)16524(1=στ-;2.两个都是偶置换。

四、证明题(本大题共2小题,第1题10分,第2小题15分,共25分)1、证明:假定μ是R 的一个理想而μ不是零理想,那么a 0≠∈μ,由理想的定义μ∈=-11a a ,因而R 的任意元μ∈•=1b b这就是说μ=R ,证毕。

相关文档
最新文档