2020年中考数学总复习初中数学必考知识点中考总复习总结归纳(全套精华版)

合集下载

中考数学复习知识点归纳总结7篇

中考数学复习知识点归纳总结7篇

中考数学复习知识点归纳总结7篇篇1一、数与代数(一)数的认识1. 自然数的认识:自然数是指用以计量事物的件数或表示事物次序的数。

即用数码0,1,2,3,4……所表示的数。

中考中可能会涉及自然数的连续性及自然数的个数等问题。

复习时需要注意对自然数概念的理解及运用。

2. 整数的认识:整数包括正整数、零和负整数。

在中考复习中,需要掌握整数的性质、运算规则以及与分数的区别等知识点。

(二)代数式与方程1. 代数式的认识:代数式是由数字、字母和数学符号组成的一种数学表达式。

在中考复习中,需要掌握代数式的简化、代入计算等知识点。

同时还需要加强对代数式在实际问题中应用的能力培养。

如与面积计算、路程问题等结合出题的情况很常见。

例如“给出多边形的一条边长为a米,与其相邻的两边之差的代数式是:______________”。

因此类题目较为灵活,需要考生具备一定的数学思维和解题技巧。

(三)数的运算与性质篇2一、数与代数(一)数的认识1. 自然数的认识:自然数是指用以计量事物的件数或表示事物次序的数。

即用数码0,1,2,3,4……所表示的数。

2. 整数的认识:整数是自然数中的一部分,包括正整数和负整数。

它们在日常生活中的应用非常广泛。

3. 小数、分数与百分数的认识:熟练掌握小数、分数与百分数的概念及其相互转化,对于数学计算和应用题的解答至关重要。

(二)代数知识1. 代数式的认识与运算:掌握代数式的概念、性质及运算规则,能够熟练进行代数式的化简、求值等。

2. 方程与不等式的应用:掌握一元一次方程、不等式及其解法,能够灵活运用方程与不等式解决实际问题。

二、几何知识(一)平面几何1. 图形的认识:熟练掌握各种基本图形的性质、分类及相互之间的关系。

2. 图形的测量:掌握各种图形的周长、面积等测量方法,能够熟练计算图形的面积和周长。

3. 图形的变换:了解图形的平移、旋转、翻折等变换方式,掌握其性质和应用。

(二)立体几何1. 长方体与正方体的认识:掌握长方体与正方体的性质、体积和表面积的计算方法。

中考数学知识点总结归纳完整版

中考数学知识点总结归纳完整版

中考数学知识点总结归纳完整版数学是一门基础学科,也是中考必考科目之一、掌握中考数学的知识点对于考生来说非常重要。

下面将对中考数学的知识点进行归纳总结。

1.数的认识与数制转换-自然数、整数、有理数、实数、复数的概念和性质-十进制数、二进制数、八进制数和十六进制数的相互转换-百分数、百分数的基本关系和计算-科学计数法的表示和应用2.代数基础-代数式的概念、分类和性质-代数式的加减法、乘法和除法-一元一次方程、一元一次方程组的解法3.几何知识-二维几何图形的基本概念和性质,如点、线、角等-三角形、四边形、圆的面积和周长的计算-各种三角形的性质,如等边三角形、等腰三角形等-直角三角形的性质和勾股定理的应用-平行线、相交线和角平分线的性质-圆的基本性质和常见定理,如切线定理、弦切角定理等-三视图的绘制和三视图间的关系4.函数与方程-函数的概念和性质,如定义域、值域等-一次函数、二次函数的概念、图像和性质-初等函数的性质和应用,如指数函数、对数函数等-一元二次方程和一元一次不等式的解法5.统计与概率-样本、频数、频率的概念和统计图的制作与分析-可能性、事件和概率的基本概念和计算方法-正态分布、平均值和标准差的概念和计算方法6.运算与推理-分数的四则运算和混合运算-百分数的四则运算和混合运算-数列的概念和性质,如公差、通项等-算术平均数、加权平均数的概念和计算方法-推理和证明的基本方法和步骤以上是中考数学的主要知识点。

中考数学不仅考察了基本知识的掌握程度,还会涉及到应用能力和解决问题的能力。

因此,考生在备考过程中还应注重练习题的多样性和难度的提升,培养灵活思维和解决问题的能力。

同时,考生在备考过程中也要注意复习方法的正确性和科学性,合理安排时间,掌握好知识点的学习重点和难点,通过多种途径进行知识的巩固和强化,以提高备考效果。

最后,考生还要注意备考的心态和态度,保持冷静、积极的心态,相信自己的实力,坚持努力,相信自己一定可以取得好成绩。

最新推荐中考数学总复习知识点总结2020

最新推荐中考数学总复习知识点总结2020

最新推荐中考数学复习资料第一章实数考点一、实数的概念及分类1、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等;(3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o等考点二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a= - b ,反之亦成立。

2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。

零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。

正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

考点三、平方根、算数平方根和立方根1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方根)。

一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。

正数a 的平方根记做“a ”。

2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。

正数和零的算术平方根都只有一个,零的算术平方根是零。

a (a0)0a aa2;注意a 的双重非负性:-a (a <0)a3、立方根如果一个数的立方等于a ,那么这个数就叫做 a 的立方根(或 a 的三次方根)。

一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

注意:33a a,这说明三次根号内的负号可以移到根号外面。

中考数学必背知识点(精简必背)

中考数学必背知识点(精简必背)

中考数学必背知识点(精简必背)中考数学必背知识点一、不为零的量1.分式 $\frac{A}{B}$,分母 $B\neq 0$;2.二次方程 $ax^2+bx+c=0$($a\neq 0$);3.一次函数 $y=kx+b$($k\neq 0$);4.反比例函数 $y=\frac{k}{x}$($k\neq 0$);5.二次函数 $y=ax^2+bx+c=0$($a\neq 0$)。

二、非负数1.$|a|\geq 0$;2.$a\geq 0$($a\geq 0$);3.$a^{2n}\geq 0$($n$ 为自然数)。

三、绝对值:$|a|=\begin{cases}a。

& a\geq 0\\-a。

& a<0\end{cases}$四、重要概念1.平方根与算术平方根:如果 $x^2=a$($a\geq 0$),则称 $x$ 为 $a$ 的平方根,记作:$x=\pm\sqrt{a}$,其中$x=\sqrt{a}$ 称为 $x$ 的算术平方根;2.负指数:$a^{-p}=\frac{1}{a^p}$;3.零指数:$a=1$($a\neq 0$);4.科学计数法:$a\times 10^n$($n$ 为整数,$1\leqa<10$)。

五、重要公式一)幂的运算性质1.同底数幂的乘法法则:$a^m\timesa^n=a^{m+n}$($a\neq 0$,$m$,$n$ 都是正数);2.幂的乘方法则:$(a^m)^n=a^{mn}$($m$,$n$ 都是正数);3.积的乘方法则:$(ab)^n=a^n\times b^n$($n$ 为正整数);4.同底数幂的除法法则:$\frac{a^m}{a^n}=a^{m-n}$($a\neq 0$,$m$,$n$ 都是正数,且 $m>n$)。

二)整式的运算1.平方差公式:$(a+b)(a-b)=a^2-b^2$;2.完全平方公式:$(a\pm b)^2=a^2\pm 2ab+b^2$。

中考数学知识点复习 总复习资料大全(精华版)

中考数学知识点复习 总复习资料大全(精华版)

中考数学总复习资料大全第一章 实数★重点★ 实数的有关概念及性质,实数的运算 ☆内容提要☆ 一、 重要概念 1.数的分类及概念 数系表:说明:“分类”的原则:1)相称(不重、不漏) 2)有标准2.非负数:正实数与零的统称。

(表为:x ≥0) 常见的非负数有:性质:若干个非负数的和为0,则每个非负担数均为0。

3.倒数: ①定义及表示法②性质:A.a ≠1/a (a ≠±1);B.1/a 中,a ≠0;C.0<a <1时1/a >1;a >1时,1/a <1;D.积为1。

4.相反数: ①定义及表示法②性质:A.a ≠0时,a ≠-a;B.a 与-a 在数轴上的位置;C.和为0,商为-1。

5.数轴:①定义(“三要素”)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。

6.奇数、偶数、质数、合数(正整数—自然数) 定义及表示: 奇数:2n-1偶数:2n (n 为自然数) 7.绝对值:①定义(两种): 代数定义:几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。

②│a │≥0,符号“││”是“非负数”的标志;③数a 的绝对值只有一个;④处理任何类型的题目,实数 无理数(无限不循环小数)有理数 正分数 负分数 正整数0 负整数 (有限或无限循环性数) 整数 分数 正无理数负无理数0 实数 负数整数分数 无理数有理数 正数 整数 分数无理数有理数│a │ 2a a (a ≥0) (a 为一切实数)a(a≥0)-a(a<0)│a │=只要其中有“││”出现,其关键一步是去掉“││”符号。

二、 实数的运算 1. 运算法则(加、减、乘、除、乘方、开方) 2. 运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]分配律) 3.运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”到“右”(如5÷51×5);C.(有括号时)由“小”到“中”到“大”。

2020年中考数学总复习初中数学必考基础知识全套总结汇编(精华版)

2020年中考数学总复习初中数学必考基础知识全套总结汇编(精华版)

汇编(精华版)第一章 实数考点一、实数的概念及分类 (3分)1、实数的分类正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数 2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数,如sin60o 等考点二、实数的倒数、相反数和绝对值 (3分)1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。

2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。

零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。

正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

考点三、平方根、算数平方根和立方根 (3—10分)1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。

一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。

正数a 的平方根记做“a ±”。

2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。

正数和零的算术平方根都只有一个,零的算术平方根是零。

a (a ≥0)0≥a==a a 2 ;注意a 的双重非负性:汇编(精华版)-a (a <0) a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。

一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

中考数学必考知识点归纳整理

中考数学必考知识点归纳整理

中考数学必考知识点归纳整理一、整数与有理数1.整数的概念及性质:整数的定义、相反数、绝对值、大小比较等。

2.有理数的概念及性质:有理数的定义、分数与小数的关系等。

3.整数与有理数的四则运算:加法、减法、乘法、除法的运算法则和性质。

4.整数与有理数的混合运算:根据题目要求进行整数与有理数的混合运算。

二、代数式与方程式1.代数式的概念及性质:代数式的定义、项、系数、次数等。

2.代数式的运算:加法、减法、乘法、除法、乘方等运算法则。

3.一元一次方程及其应用:方程的定义、基本性质、解方程的方法及应用。

4.一元一次不等式及其应用:不等式的定义、基本性质、解不等式的方法及应用。

三、平面图形与尺规作图1.平面图形的基本概念与性质:点、线、面的定义及性质。

2.四边形的性质:平行四边形、矩形、正方形、菱形、长方形的性质与判定等。

3.三角形的性质:等边三角形、等腰三角形、直角三角形的性质与判定等。

4.尺规作图:已知条件作图、已知作图求解等。

四、数据与统计1.数据的收集与整理:问卷调查、实验等方式收集数据,并对数据进行整理与分类。

2.数据的表示与分析:数据的图表表示,如条形图、折线图等,以及对数据的分析与解读。

3.统计相关性与预测:根据数据的相关性进行预测与判断。

五、几何变换1.平移、旋转、翻转的概念与性质:几何图形进行平移、旋转、翻转时的性质与规律。

2.平移、旋转、翻转的判定与作图:根据题目要求判断是否满足平移、旋转、翻转的条件,并进行作图。

六、函数与图像1.函数的概念与性质:函数的定义、自变量、因变量、函数值等。

2.函数的表示与性质:函数的图像、函数的单调性、函数的奇偶性等。

3.函数的运算:函数的加减乘除、函数的复合等运算法则。

4.函数的应用:函数的实际问题应用,如函数的最值、函数的变化规律等。

七、比例与相似1.比例的概念与性质:比例的定义、比例的性质、比例的性质与判定等。

2.比例的运算:比例的加减乘除、比例的复合等运算法则。

初中数学中考知识点总结归纳完整版

初中数学中考知识点总结归纳完整版

初中数学中考知识点总结归纳完整版一、数的基本运算1.整数的加减乘除运算及应用2.分数的加减乘除运算及应用3.小数的加减乘除运算及应用二、数的性质与计算1.数的整除关系与最大公约数、最小公倍数2.约分与通分3.数的相反数、绝对值及其性质三、代数式与方程式1.字母代数式与值的计算2.解方程与方程的应用3.利用代数式解决实际问题的能力四、平面图形的认识与计算1.平面图形的名称与性质2.几何体的名称与性质3.平移、旋转、对称变换的认识与应用五、分析与统计1.折线图与旋转对称图形2.数据的收集与整理3.数据的分析与应用六、空间与三维图形1.几何体与其中特殊点的认识2.几何体间的位置关系及刻画3.解决空间问题的应用能力七、比例、百分数与利率1.比例与比例的应用2.百分数与百分数的应用3.利率与利率的应用总结:初中数学中考要求学生掌握数的基本运算、数的性质与计算、代数式与方程式、平面图形的认识与计算、分析与统计、空间与三维图形、比例、百分数与利率等知识点。

在数的基本运算方面,要熟练掌握整数、分数和小数的四则运算及其应用;在数的性质与计算方面,要理解数的整除关系,掌握最大公约数和最小公倍数的求解方法;在代数式与方程式方面,要能够理解字母代数式的含义,掌握解方程和利用代数式解决实际问题的能力;在平面图形的认识与计算方面,要了解各种平面图形的名称和性质,掌握平移、旋转和对称变换的应用;在分析与统计方面,要能够收集和整理数据,分析并应用数据解决问题;在空间与三维图形方面,要熟悉几何体的名称和性质,掌握解决空间问题的应用能力;在比例、百分数与利率方面,要理解比例和百分数的概念,能够应用比例和百分数解决问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年中考数学总复习初中数学必考知识点中考总复习总结归纳(全套精华版)第一章有理数考点一、实数的概念及分类(3分)1、实数的分类正有理数有理数零有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等;(3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o 等第二章 整式的加减考点一、整式的有关概念 (3分)1、代数式用运算符号把数或表示数的字母连接而成的式子叫做代数式。

单独的一个数或一个字母也是代数式。

2、单项式只含有数字与字母的积的代数式叫做单项式。

注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如b a 2314-,这种表示就是错误的,应写成b a 2313-。

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

如c b a 235-是6次单项式。

考点二、多项式 (11分)1、多项式几个单项式的和叫做多项式。

其中每个单项式叫做这个多项式的项。

多项式中不含字母的项叫做常数项。

多项式中次数最高的项的次数,叫做这个多项式的次数。

单项式和多项式统称整式。

用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。

注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。

(2)求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入。

2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。

几个常数项也是同类项。

3、去括号法则(1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都不变号。

(2)括号前是“﹣”,把括号和它前面的“﹣”号一起去掉,括号里各项都变号。

4、整式的运算法则整式的加减法:(1)去括号;(2)合并同类项。

第三章一元一次方程考点一、一元一次方程的概念(6分)1、方程含有未知数的等式叫做方程。

2、方程的解能使方程两边相等的未知数的值叫做方程的解。

3、等式的性质(1)等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。

(2)等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式。

4、一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程)0≠=ax叫做一元一次方程的标准形式,a是未+bxa为未知数,(0知数x的系数,b是常数项。

第四章图形的初步认识考点一、直线、射线和线段(3分)1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。

立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。

平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。

2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。

线:面和面相交的地方是线,分为直线和曲线。

面:包围着体的是面,分为平面和曲面。

体:几何体也简称体。

(2)点动成线,线动成面,面动成体。

3、直线的概念一根拉得很紧的线,就给我们以直线的形象,直线是直的,并且是向两方无限延伸的。

4、射线的概念直线上一点和它一旁的部分叫做射线。

这个点叫做射线的端点。

5、线段的概念直线上两个点和它们之间的部分叫做线段。

这两个点叫做线段的端点。

6、点、直线、射线和线段的表示在几何里,我们常用字母表示图形。

一个点可以用一个大写字母表示。

一条直线可以用一个小写字母表示。

一条射线可以用端点和射线上另一点来表示。

一条线段可用它的端点的两个大写字母来表示。

注意:(1)表示点、直线、射线、线段时,都要在字母前面注明点、直线、射线、线段。

(2)直线和射线无长度,线段有长度。

(3)直线无端点,射线有一个端点,线段有两个端点。

(4)点和直线的位置关系有线面两种:①点在直线上,或者说直线经过这个点。

②点在直线外,或者说直线不经过这个点。

7、直线的性质(1)直线公理:经过两个点有一条直线,并且只有一条直线。

它可以简单地说成:过两点有且只有一条直线。

(2)过一点的直线有无数条。

(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。

(4)直线上有无穷多个点。

(5)两条不同的直线至多有一个公共点。

8、线段的性质(1)线段公理:所有连接两点的线中,线段最短。

也可简单说成:两点之间线段最短。

(2)连接两点的线段的长度,叫做这两点的距离。

(3)线段的中点到两端点的距离相等。

(4)线段的大小关系和它们的长度的大小关系是一致的。

9、线段垂直平分线的性质定理及逆定理垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。

线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等。

逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

考点二、角(3分)1、角的相关概念有公共端点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,这两条射线叫做角的边。

当角的两边在一条直线上时,组成的角叫做平角。

平角的一半叫做直角;小于直角的角叫做锐角;大于直角且小于平角的角叫做钝角。

如果两个角的和是一个直角,那么这两个角叫做互为余角,其中一个角叫做另一个角的余角。

如果两个角的和是一个平角,那么这两个角叫做互为补角,其中一个角叫做另一个角的补角。

2、角的表示角可以用大写英文字母、阿拉伯数字或小写的希腊字母表示,具体的有一下四种表示方法:①用数字表示单独的角,如∠1,∠2,∠3等。

②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。

③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等。

④用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等。

注意:用三个大写英文字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。

3、角的度量角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”。

把1°的角60等分,每一份叫做1分的角,1分记作“1’”。

把1’的角60等分,每一份叫做1秒的角,1秒记作“1””。

1°=60’=60”4、角的性质(1)角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。

(2)角的大小可以度量,可以比较(3)角可以参与运算。

5、角的平分线及其性质一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。

角的平分线有下面的性质定理:(1)角平分线上的点到这个角的两边的距离相等。

(2)到一个角的两边距离相等的点在这个角的平分线上。

第五章相交线与平行线考点三、相交线(3分)1、相交线中的角两条直线相交,可以得到四个角,我们把两条直线相交所构成的四个角中,有公共顶点但没有公共边的两个角叫做对顶角。

我们把两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角叫做临补角。

临补角互补,对顶角相等。

直线AB,CD与EF相交(或者说两条直线AB,CD被第三条直线EF所截),构成八个角。

其中∠1与∠5这两个角分别在AB,CD的上方,并且在EF的同侧,像这样位置相同的一对角叫做同位角;∠3与∠5这两个角都在AB,CD之间,并且在EF的异侧,像这样位置的两个角叫做内错角;∠3与∠6在直线AB,CD之间,并侧在EF的同侧,像这样位置的两个角叫做同旁内角。

2、垂线两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直。

其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

直线AB,CD互相垂直,记作“AB⊥CD”(或“CD⊥AB”),读作“AB垂直于CD”(或“CD垂直于AB”)。

垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。

性质2:直线外一点与直线上各点连接的所有线段中,垂线段最短。

简称:垂线段最短。

考点四、平行线(3~8分)1、平行线的概念在同一个平面内,不相交的两条直线叫做平行线。

平行用符号“∥”表示,如“AB∥CD”,读作“AB平行于CD”。

同一平面内,两条直线的位置关系只有两种:相交或平行。

注意:(1)平行线是无限延伸的,无论怎样延伸也不相交。

(2)当遇到线段、射线平行时,指的是线段、射线所在的直线平行。

2、平行线公理及其推论平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。

3、平行线的判定平行线的判定公理:两条直线被第三条直线所截,如果同位角相等,那么两直线平行。

简称:同位角相等,两直线平行。

平行线的两条判定定理:(1)两条直线被第三条直线所截,如果内错角相等,那么两直线平行。

简称:内错角相等,两直线平行。

(2)两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。

简称:同旁内角互补,两直线平行。

补充平行线的判定方法:(1)平行于同一条直线的两直线平行。

(2)垂直于同一条直线的两直线平行。

(3)平行线的定义。

4、平行线的性质(1)两直线平行,同位角相等。

(2)两直线平行,内错角相等。

(3)两直线平行,同旁内角互补。

考点五、命题、定理、证明(3~8分)1、命题的概念判断一件事情的语句,叫做命题。

理解:命题的定义包括两层含义:(1)命题必须是个完整的句子;(2)这个句子必须对某件事情做出判断。

2、命题的分类(按正确、错误与否分)真命题(正确的命题)命题假命题(错误的命题)所谓正确的命题就是:如果题设成立,那么结论一定成立的命题。

所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题。

3、公理人们在长期实践中总结出来的得到人们公认的真命题,叫做公理。

4、定理用推理的方法判断为正确的命题叫做定理。

5、证明判断一个命题的正确性的推理过程叫做证明。

6、证明的一般步骤(1)根据题意,画出图形。

(2)根据题设、结论、结合图形,写出已知、求证。

(3)经过分析,找出由已知推出求证的途径,写出证明过程。

考点六、投影与视图(3分)1、投影投影的定义:用光线照射物体,在地面上或墙壁上得到的影子,叫做物体的投影。

平行投影:由平行光线(如太阳光线)形成的投影称为平行投影。

中心投影:由同一点发出的光线所形成的投影称为中心投影。

2、视图当我们从某一角度观察一个实物时,所看到的图像叫做物体的一个视图。

物体的三视图特指主视图、俯视图、左视图。

主视图:在正面内得到的由前向后观察物体的视图,叫做主视图。

俯视图:在水平面内得到的由上向下观察物体的视图,叫做俯视图。

左视图:在侧面内得到的由左向右观察物体的视图,叫做左视图,有时也叫做侧视图。

第六章实数考点二、实数的倒数、相反数和绝对值(3分)1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。

相关文档
最新文档