“数学”简介含义起源 历史与发展

合集下载

数的发展简史

数的发展简史

数的发展简史引言概述:数是人类文明的重要组成部分,它伴随着人类社会的发展而不断演变。

本文将从数的起源开始,分四个部分介绍数的发展简史。

一、起源与原始数系统1.1 早期人类的数的概念:早期人类开始使用手指和物体来计数,这是最早的数的概念。

1.2 原始数系统的发展:原始社会逐渐发展出基于十进制的数系统,使用简单的符号和记数方法进行计数。

1.3 原始数系统的局限性:原始数系统存在局限性,无法进行复杂的计算和表示,对大量数据的处理能力有限。

二、古代数学的发展2.1 古代数学的兴起:古代文明如古埃及、古希腊和古印度等开始研究数学,发展出更为复杂的数系统和计算方法。

2.2 数学符号的引入:古希腊数学家引入字母符号表示数,这一创新大大简化了数学表达和计算过程。

2.3 数学的应用拓展:古代数学家开始将数学应用于几何学、天文学和物理学等领域,推动了数学的发展。

三、十进制数系统的确立3.1 十进制数系统的起源:十进制数系统起源于古印度,通过使用数字0-9的符号表示不同数值,形成了现代数学中常用的数系统。

3.2 十进制数系统的优势:十进制数系统具有简单易懂、易于计算和适应人类思维等优势,成为全球广泛应用的数系统。

3.3 十进制数系统的发展:随着数学理论的发展和计算工具的进步,十进制数系统逐渐完善,并成为现代科学和工程领域的基础。

四、数的抽象与数学的发展4.1 数的抽象概念的出现:数的抽象概念在古希腊数学中首次出现,数不再仅仅代表物体的数量,而是成为一种独立的概念。

4.2 数学的形式化:数学逐渐发展为一门独立的学科,通过形式化的符号和逻辑规则来推导和证明数学定理。

4.3 数学的应用与发展:数学在现代科学、工程、经济等领域发挥着重要作用,不断推动着数学理论的发展和创新。

结论:数的发展经历了起源与原始数系统、古代数学的发展、十进制数系统的确立以及数的抽象与数学的发展等阶段。

数的不断演变和数学的发展为人类社会的进步提供了重要的基础和工具。

数学的由来简单介绍

数学的由来简单介绍

数学的由来简单介绍
数学的由来:
1、从人类的角度:
数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题。

从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献。

2、从时间的角度:
数学起源于公元前4世纪。

公元前6世纪前,数学主要是关于“数”的研究。

这一时期在古埃及、巴比伦、印度与中国等地区发展起来的数学,主要是计数、初等算术与算法,几何学则可以看作是应用算术。

扩展资料:
数学的发展史:
1、从公元前6世纪开始,希腊数学的兴起,突出了对“形”的研究。

数学于是成为了关于数与形的研究。

公元前4世纪的希腊哲学家亚里士多德将数学定义为“数学是量的科学。


2、直到16世纪,英国哲学家培根将数学分为“纯粹数学”与“混合数学”。

在17世纪,笛卡儿认为:“凡是以研究顺序和度量为目的科学都与数学有关。


3、在19世纪,根据恩格斯的论述,数学可以定义为:“数学是研究现实世界的空间形式与数量关系的科学。


4、从20世纪80年代开始,学者们将数学简单的定义为关于“模式”的科学:“数学这个领域已被称为模式的科学,其目的是要揭示人们从自然界和数学本身的抽象世界中所观察到的结构和对称性。


5、现代数学已包括多个分支,数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等。

数学在这些领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促成全新数学学科的发展。

虽然有许多工作以研究纯数学为开端,但之后也许会发现合适的应用。

数学的起源和发展

数学的起源和发展

一般认为,从远古到现在,数学经历了五个历史阶段:数学萌芽时期(公元6世纪以前)初等数学时期(从公元前5世纪到公元17世纪)变量数学时期(17世纪上半叶-19世纪20年代)近代数学时期(19世纪20年代-20世纪40年代)现代数学时期(20世纪40年代以来)一、数学萌芽时期(公元6世纪以前)在人类历史上,这是原始社会和奴隶社会的初期。

这个时期数学的成就以巴比伦、埃及和中国的数学为代表。

古巴比伦是位于幼发拉底河和底格里斯河两河流域的一个文明古国。

巴比伦王国形成于约公元前19世纪,从出土的古巴比伦的泥板上的楔形文字中发现,古巴比伦人具有算术和代数方面的知识,建立了60进位制的记数系统,掌握了自然数的四则运算,广泛使用了分数,能进行平方、立方和简单的开平方、开立方运算。

他们迈出了代数的第一步,能用一些特别的术语和符号代表未知数,能解特殊的几种一元一次、二元一次方程和一元二次方程,甚至某些三次、四次(可化为二次的)和个别指数方程,并且能够把它们应用于天文学和商业等实际问题中去。

几何方面掌握了简单平面图形的面积和简单立体体积的计算方法。

二、初等数学时期(从公元前5世纪到公元17世纪)在人类历史上,这是发达的奴隶社会和整个封建社会时期。

这个时期外国数学发展的中心先在古希腊,后在印度和阿拉伯国家,之后又转到西欧诸国。

这时期的中国数学独立发展,在许多方面居世界领先地位。

在数学内容上,2世纪以前是几何优先发展阶段,2世纪以后是代数优先发展阶段。

如果说古希腊的几何证明的较突出,则中国和印度的代数计算可与其媲美。

这个时期的数学发生了本质的变化,数学(主要是几何学)由具体的、实用阶段发展到抽象的、理论阶段;从以实验和观察为依据的经验学科过渡到演绎的科学,并形成了自己的体系,初等几何、算术、初等代数和三角学都已成为独立的学科。

这个时期的研究内容是常量和不变的图形,因此又称为常量数学。

从公元前6世纪到公元前3世纪是希腊数学的古典时期。

数学发展历程简要介绍

数学发展历程简要介绍

数学发展历程简要介绍数学作为一门古老而又充满魅力的学科,经历了漫长的发展过程。

从古代的埃及和巴比伦到现代的计算机时代,数学在人类思维和社会发展中发挥了巨大的作用。

本文将以简要的方式介绍数学的发展历程。

1. 古代数学数学的历史可以追溯到远古时代。

古代的埃及和巴比伦是数学的起源地之一。

埃及人和巴比伦人使用数学来解决土地测量、纳税和商业交易等实际问题。

埃及人还使用几何学来建造金字塔,并开发出了一套复杂的分数系统。

另一个重要的古代数学文化是古希腊。

希腊人在几何学方面取得了重大突破,欧几里德的《几何原本》是古代几何学的经典之作。

希腊人还研究了无理数,并建立了一套严密的逻辑推理。

2. 中世纪和文艺复兴时期的数学中世纪欧洲的数学发展相对较慢,但在文艺复兴时期出现了一系列重要的数学发现。

意大利数学家斯卡拉蔡在13世纪开创了代数学的先河,他提出了使用字母表示未知数的思想,并发展了求解方程的方法。

文艺复兴时期的数学家卡尔丹提出了无穷级数的概念,并解决了许多几何和代数问题。

同时,卡尔丹的学生费马提出了著名的费马大定理,引发了数学界几个世纪的研究热潮。

3. 近代数学17世纪是数学发展的重要转折点。

牛顿和莱布尼茨同时独立发明了微积分学,为物理学和工程学等应用学科提供了坚实的数学基础。

微积分的发展不仅丰富了数学理论,还在研究天体运动和物体运动等领域发挥了重要作用。

18世纪的数学史上最重要的事件之一是欧拉的工作。

欧拉是一位多产的数学家,他在分析学、数论、几何学等领域都有重要贡献。

19世纪是数学发展的繁荣时期。

高斯、拉格朗日、阿贝尔等杰出的数学家出现,并在代数、数论和几何学等领域取得突破性进展。

数学的抽象化程度越来越高,从而推动了现代数学的诞生。

4. 现代数学20世纪以来,数学的发展进入了一个全新的阶段。

在此期间,数学分支不断扩张,涉及到概率论、拓扑学、数理逻辑、组合数学等领域。

计算机的发明也催生了计算数学学科的诞生。

数学的发展并不仅限于理论层面,它也在科学、工程和金融等领域产生了广泛的应用。

关于数学的由来简介

关于数学的由来简介

关于数学的由来简介数学是一门源远流长、广泛应用的学科,它以研究数量、结构、变化和空间等概念为基础,可以追溯到数千年前的古代文明。

人类对数学的认知始于追求实用性的需要,随着时间的推移,数学逐渐发展成为一门独立的学科,并为人类的生活和科学研究做出了巨大贡献。

数学的起源可以追溯到早期人类社会的日常生活。

在远古时期,人类发现了数字的存在和作用,用以计数各种东西,例如动物的数量、食物的存储等。

这种追求数量的需求推动了人们对数学的探索与研究。

最早的数学系统可以追溯到古代的巴比伦、埃及、印度和中国等文明。

在巴比伦,人们开始使用类似于60进制的计数系统,并发展了一套解决代数和几何问题的方法。

在埃及,人们将数学用于土地测量、建筑和纳税等领域。

古印度数学家发展了一套复杂的数字系统,并进行了广泛的几何研究。

而古代中国不仅有出色的数学家,还发展了诸多重要的数学理论和应用科学。

同时,古希腊文明也对数学的发展做出了巨大贡献。

古希腊数学家始于毕达哥拉斯,他提出了著名的毕达哥拉斯定理,奠定了几何学的基础。

欧几里得则将几何学整合成一套完整的体系,并在其著作《几何原本》中展示了他的理论和证明方法。

这些贡献对于后来数学的发展产生了深远的影响。

古代数学的发展在中世纪逐渐衰落,但在伊斯兰世界的贡献却不容忽视。

伊斯兰数学家在代数、几何、三角学等领域做出了重要贡献,他们的研究成果通过翻译传入欧洲,并促进了文艺复兴时期欧洲数学的发展。

进入近代,数学的发展进入了一个全新的时代。

17世纪的科学革命为数学研究提供了新的动力和平台。

伟大的科学家牛顿和莱布尼兹分别独立地发明了微积分,为数学的进一步发展打下了基础。

微积分的发展不仅对物理学、工程学和经济学等学科产生了深远影响,也为后来的数学家们提供了新的研究方向。

19世纪,数学的研究逐渐扩展到了更为抽象和复杂的领域,如群论、拓扑学、集合论等。

这些新的分支使得数学更加丰富和多样化,也为其他学科的发展提供了有力的工具和思想支持。

关于数学的由来简介3篇

关于数学的由来简介3篇

关于数学的由来简介第一篇:数学的起源和发展数学作为一门学科,其起源可以追溯到古代。

在人类的文明历程中,各个文明古国都有自己的数学思想和数学成果,如古埃及、古印度、古希腊、古罗马等。

科学技术的进步推动了数学的飞速发展,数学也成为了现代科学的基础和重要组成部分。

首先,古埃及是世界上最早的数学文明之一,其数学成就主要表现在测量、几何和代数方面。

例如,古埃及人使用极其简单的方法进行高精度的土地测量。

他们还学会了推导和使用勾股定理,以及计算圆周率等。

古印度数学发展的历史同样悠久,隋末唐初,印度《一百至一千的称数》和《大乘法经》广传中国。

印度数学家阿耳戈摩哥的《九章算术》对中国《九章算术》也有很大的影响。

印度数学的代表成就之一是无穷级数的概念,还有计算出了$2^{216}-1$为质数。

其次,古希腊的数学成就尤为显著,视为世界上最早的发扬光大的数学文明。

希腊数学的代表人物是欧几里得,他所创立的《几何原本》被视为数学史上的里程碑。

对几何的研究,让古希腊数学家不断地发现新的定理和方法,打下了一定的代数基础。

此外,希腊人还发明了一些几何工具,如竖劈仪、刻度尺等,用于测量距离、角度等。

古罗马数学的贡献主要体现在实用性方面。

罗马人对数字的发明使用、商业计算都有极其扎实的功底,达到了非常高的精度。

再者,中世纪欧洲的数学发展又格外活跃。

欧洲学者将古代各国的数学思想和成果进行整理、推广和吸收,开展了广泛而深入的数学研究,如对等式、代数式、解析几何等的深入探究,推进了几何、代数、微积分、数论等数学领域的发展。

伟大的意大利数学家菲波那契在欧洲广泛传播印度阿拉伯算术之后,自创了一套计算工具,被誉为欧洲数学的重要里程碑,菲波那契数列至今仍是数学研究的重要问题之一。

总的来说,数学在不同时期有着不同的发展阶段和成就,但它作为一门高度抽象、逻辑精密的学科,在实践和理论中不断提高人类的认知水平和创造力,并且在现代社会中发挥了重要的作用,也为科学技术的进步提供了强有力的支持。

数学发展的历史介绍

数学发展的历史介绍

引言概述:数学作为一门古老而且普遍存在的学科,在人类文明发展的过程中扮演着重要的角色。

数学的发展历史可以追溯到古代文明,并随着时间的推移逐渐演化和发展。

本文将介绍数学的历史发展,从古代数学的起源开始,逐步展开正文,分五大点来阐述数学的进展与演化。

正文内容:一、古代数学的起源1.原始数学:人类最早的数学思想主要是基于实际需求的,主要应用于计数和测量。

2.古代数学的典范:古埃及的几何学和古代巴比伦的代数学。

3.古希腊数学的诞生:毕达哥拉斯定理和欧几里得的几何学。

二、中世纪数学的发展1.印度数学的传播:阿拉伯数学家将印度数字系统和代数学引入欧洲。

2.贝克勒尔学派:贝克勒尔、纳西尔丁·图西和奥马尔·海亚姆等数学家对代数和几何学作出了重要贡献。

3.罗益席尔皮和方程的大发现:罗益席尔皮在解决高次方程时提出了新的解法。

三、现代数学的崛起1.十七世纪的数学革命:笛卡尔几何学的诞生和数学分析的发展。

2.牛顿和莱布尼茨的微积分学:微积分的发明进一步推动了数学的进步。

3.概率论与统计学的兴起:贝努利家族和拉普拉斯等人对概率论和统计学的贡献。

四、数学的现代化与应用1.抽象代数学的兴起:伽罗华和埃尔米特等人将代数学从具体问题中抽象出来。

2.黎曼几何学:黎曼将几何学从平面拓展到曲面,为现代几何学奠定了基础。

3.数学与信息科学的结合:在计算机科学和密码学领域,数学的应用越来越广泛。

五、当代数学的发展1.数学的交叉学科:数学与物理学、工程学等学科的交叉研究成为当代数学的一个重要方向。

2.数学的开放性问题:著名的费马猜想和黎曼猜想等问题一直未能得到证明。

3.数学的计算机辅助研究:计算机技术的进步使得数学研究更加高效和精确。

总结:数学发展的历史演化是一段源远流长的故事。

从原始数学到古代数学的起源,再到中世纪数学的发展,数学以其独特的逻辑和思维方式为人类文明进程提供了重要的支撑。

现代数学的崛起与应用为科学技术的发展和社会进步提供了坚实的基础。

数的发展简史

数的发展简史

数的发展简史引言概述:数是人类社会发展的基础,它伴随着人类文明的进步而不断演变。

本文将从数的起源开始,概述数的发展简史,并详细阐述数的发展过程中的五个重要部分。

一、原始数的起源1.1 数的概念的初现:原始人类利用手指、石头等物体进行计数,开始形成了数的概念。

1.2 原始数的表示方式:原始人类通过刻画符号或石头堆叠等方式来表示数量。

1.3 原始数的应用:原始人类利用数来记录狩猎收获、家畜数量等,满足生产和生活的需求。

二、古代数学的发展2.1 古埃及数学:古埃及人发展了一套独特的数学体系,主要应用于土地测量、建筑等领域。

2.2 古希腊数学:古希腊人在几何学方面取得了重要突破,提出了许多重要的数学定理和公理。

2.3 古印度数学:古印度人发展了十进制数制,并创造了零的概念,对后来的数学发展产生了深远影响。

三、中世纪数学的进展3.1 阿拉伯数学:阿拉伯学者通过翻译古希腊和古印度的数学著作,将这些知识传播到欧洲,并引入了阿拉伯数字系统。

3.2 代数学的兴起:中世纪欧洲的数学家开始研究方程和代数学,奠定了现代代数学的基础。

3.3 三角学的发展:三角学的概念和计算方法在中世纪得到了发展和应用,为航海和地理学的进步做出了贡献。

四、近代数学的革新4.1 微积分的发现:牛顿和莱布尼茨独立发现了微积分,这一发现对现代科学产生了深远影响。

4.2 概率论的兴起:概率论的发展为统计学和风险评估提供了理论基础,广泛应用于金融、医学等领域。

4.3 群论的建立:群论的发展为代数学提供了新的研究方法,对数学的发展做出了重要贡献。

五、现代数学的发展5.1 数学分支的多样化:现代数学分支繁多,包括数论、拓扑学、几何学等,各个分支相互交叉,形成了丰富多样的数学体系。

5.2 计算机数学的应用:计算机的发展促进了数学的应用,数学算法和模型在计算机科学中发挥着重要作用。

5.3 数学在现代科学中的地位:数学在物理学、经济学、生物学等现代科学领域中扮演着不可或缺的角色,为科学研究提供了理论支持。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学数学是研究现实世界中数量关系和空间形式的,简单地说,是研究数和形的科学。

由于生活和劳动上的需求,即使是最原始的民族,也知道简单的计数,并由用手指或实物计数发展到用数字计数。

在中国,至迟在商代,即已出现用十进制数字表示大数的方法;又至迟至秦汉之际,即已出现完满的十进位值制。

在成书不迟于1世纪的《九章算术》中,已载有只有位值制才有可能的开平、立方的计算法则,并载有分数的各种运算以及解线性联立方程组的方法,还引入了负数概念。

刘徽在他注解的《九章算术》(3世纪)中,还提出过用十进小数表示无理数平方根的奇零部分,但直至唐宋时期(欧洲则在16世纪S.斯蒂文以后)十进小数才获通用。

在这本著作中,刘徽又用圆内接正多边形的周长逼近圆周长,成为后世求圆周率更精确值的一般方法。

虽然中国从来没有过无理数或实数的一般概念,但在实质上,那时中国已完成了实数系统的一切运算法则与方法,这不仅在应用上不可缺,也为数学初期教育所不可少。

至于继承了巴比伦、埃及、希腊文化的欧洲地区,则偏重于数的性质及这些性质间的逻辑关系的研究。

早在欧几里得的《几何原本》中,即有素数的概念和素数个数无穷及整数惟一分解等论断。

古希腊发现了有非分数的数,即现称的无理数。

16世纪以来,由于解高次方程又出现了复数。

在近代,数的概念更进一步抽象化并依据数的不同运算规律而对一般的数系统进行独立的理论探讨,形成数学中的若干不同分支。

开平方和开立方是解最简单的高次方程。

在《九章算术》中,已出现解某种特殊形式的二次方程。

发展至宋元时代,引进了“天元”(即未知数)的明确观念,出现了求高次方程数值解与求多至四个未知数的高次代数联立方程组的解的方法,通称为天元术与四元术。

与之相伴出现的多项式的表达、运算法则以及消去方法,已接近于近世的代数学。

在中国以外,9世纪阿拉伯的花拉子米的著作阐述了二次方程的解法,通常被视为代数学的鼻祖,其解法实质上与中国古代依赖于切割术的几何方法具有同一风格。

中国古代数学致力于方程的具体求解,而导源于古希腊、埃及传统的欧洲数学则不同,一般致力于探究方程解的性质。

16世纪时,F.韦达以文字代替方程系数,引入了代数的符号演算。

对代数方程解的性质的探讨,则从线性方程组导致行列式、矩阵、线性空间、线性变换等概念与理论的出现;从代数方程导致复数、对称函数等概念的引入以至伽罗瓦理论与群论的创立。

而近代极为活跃的代数几何,则无非是高次联立代数方程组解所构成的集体的理论研究。

形的研究属于几何学的范畴。

古代民族都具有形的简单概念而往往以图画来表示,形之成为数学对象是由工具的制作与测量的要求所促成。

规矩以作圆方,中国古代夏禹治水时即已有规、矩、准、绳等测量工具。

《墨经》中对一系列的几何概念,有抽象概括,作出了科学的定义。

《周髀算经》与刘徽《海岛算经》给出了用矩观天测地的一般方法与具体公式。

在《九章算术》及刘徽注解的《九章算术》中,除勾股理论外,还提出了若干一般原理以解多种问题。

例如出入相补原理以求任意多边形面积;阳马鳖臑的二比一原理(刘徽原理)以求多面体的体积;5世纪祖暅提出“幂势既同则积不容异”的原理以求曲形体积特别是球的体积;还有以内接正多边形逼近圆周长的极限方法(割圆术)。

但自五代(约10世纪)以后,中国在几何学方面的建树不多。

中国几何学以测量与面积体积的量度为中心,古希腊的传统则重视形的性质与各种性质间的相互关系。

欧几里得的《几何原本》,建立了用定义、公理、定理、证明构成的演绎体系,成为近代数学公理化的楷模,影响及于整个数学的发展。

特别是平行公理的研究,导致了19世纪非欧几里得几何学的产生。

欧洲自文艺复兴时期起出现了射影几何学。

18世纪,G.蒙日应用分析方法于形的研究,开微分几何学的先河。

C.F.高斯的曲面论与(G.F.)B.黎曼的流形理论开创了脱离周围空间以形作为独立对象的研究方法;19世纪(C.)F.克莱因以群的观点对几何学进行统一处理。

此外,如G.(F.P.)康托尔的点集理论扩大了形的范围;(J.-)H.庞加莱创立了拓扑学,使形的连续性成为几何研究的对象。

这些都使几何学面目一新。

在现实世界中,数与形,如影之随形,难以分割。

中国的古代数学反映了这一客观实际,数与形从来就是相辅相成,并行发展的。

例如勾股测量提出了开平方的要求,而开平、立方的方法又奠基于几何图形的考虑。

二次、三次方程的产生,也大都来自几何与实际问题。

至宋元时代,由于天元与相当于多项式概念的引入,出现了几何代数化。

在天文与地理中的星表与地图的绘制,已用数来表示地点,不过并未发展到坐标几何的地步。

在欧洲,14世纪N.奥尔斯姆的著作中已有关于经纬度与函数图形表示的萌芽,而17世纪R.笛卡儿提出了系统的把几何事物用代数表示的方法及其应用,在其启迪之下,经G.W.莱布尼茨、I.牛顿等的工作,发展成了现代形式的坐标制解析几何学,使数与形的统一更臻完美,不仅改变了几何证题过去遵循欧几里得几何的老方法,还引起了导数的产生,成为微积分学产生的根源。

这是数学史上的一件大事。

在20世纪中,由于科学与技术上的要求促使数学家们研究运动与变化,包括量的变化与形的变换(如投影),还产生了函数概念和无穷小分析即现在的微积分,使数学从此进入了一个研究变量的新时代。

18世纪以来,以解析几何与微积分这两个有力工具的创立为契机,数学以空前的规模迅猛发展,出现了无数分支。

由于自然界的客观规律大多是以微分方程的形式表现的,微分方程的研究一开始就受到重视。

微分几何基本上与微积分同时诞生,高斯与黎曼的工作又产生了内在的现代微分几何。

19、20世纪之交,庞加莱创立了拓扑学,开辟了对连续现象进行定性与整体研究的途径。

对客观世界中随机现象的分析,产生了概率论。

第二次世界大战军事上的需要以及大工业与管理的复杂化产生了运筹学、系统论、信息论、控制理论与数理统计学等学科。

实际问题要求具体的数值解答,产生了计算数学。

选择最优途径的要求又产生了各种优化的理论、方法。

力学、物理学同数学的发展始终是互相影响互相促进的,特别是相对论与量子力学推动了微分几何与泛函分析的成长。

此外在19世纪还只用到一次方程的化学和几乎与数学无缘的生物学,都已要用到最前沿的一些高深数学。

19世纪后期,出现了集合论,还进入了一个批判性的时代,由此推动了数理逻辑的形成与发展。

也产生了把数学看作一个整体的各种思潮和数学基础学派。

特别是1900年D.希尔伯特关于当代数学重要问题的演讲,以及30年代开拓以结构概念统观数学的法国布尔巴基学派的兴起,对20世纪数学发展的影响至深且巨。

科学的数学化一语也往往为人们所乐道。

数学的外围向自然科学、工程技术甚至社会科学不断渗透扩大并从中吸取营养,出现了一些边缘数学。

数学本身的内部需要也孳生了不少新的理论与分支。

同时其核心部分也在不断巩固提高并有时作适当调整以适应外部需要。

总之,数学这棵大树茁壮成长,既枝叶繁茂又根深蒂固。

本卷详细地介绍了数学的各个分支与各种流派。

在数学的蓬勃发展过程中,数与形的概念不断扩大,日趋抽象化,以至于不再有任何原始计数与简单图形的踪影。

虽然如此,在新的数学分支中仍有着一些对象和运算关系借助于几何术语来表示。

如把函数看成是某种空间的一个点之类。

这种做法之所以行之有效,归根结蒂还是因为数学家们已经熟悉了那种简易的数学运算与图形关系。

而后者又有着长期深厚的现实基础。

而且,即使是最原始的数字如1、2、3、4,以及几何形象如点与直线,也已经是经过人们高度抽象化了的概念。

因此,如果把数与形作为广义的抽象概念来理解,则前面提到的把数学作为研究数与形的科学这一定义,对于现阶段的近代数学,也是适用的。

由于数学研究对象的数量关系与空间形式都来自现实世界,因而数学尽管在形式上具有高度的抽象性,而实质上总是扎根于现实世界。

生活实践与技术需要始终是数学的真正源泉,反过来,数学对改造世界的实践又起着重要的、关键的作用。

理论上的丰富提高与应用的广泛深入在数学史上始终相伴相生,相互促进。

但由于各民族各地区的客观条件不同,数学的具体发展过程是有差异的。

大体说来,古代中华民族以竹为筹,以筹运算,自然地导致十进位值制的产生。

计算方法的优越有助于对实际问题的具体解决。

由此发展起来的数学形成了一个以构造性、计算性、程序化与机械化为其特色,以从问题出发进而解决问题为主要目标的独特体系。

而在古希腊则着重思维,追求对宇宙的了解。

由此发展成以抽象了的数学概念与性质及其相互间的逻辑依存关系为研究对象的公理化演绎体系。

中国的数学体系在宋元时期达到高峰以后,陷于停顿且几至消失。

而在欧洲,经过文艺复兴、宗教革命、资产阶级革命等一系列的变革,导致了工业革命与技术革命。

机器的使用,不论中外都由来已久。

但在中国,则由于明初被帝王斥为奇技淫巧而受阻抑。

在欧洲,则由于工商业的发展与航海的刺激而得到发展,机器使人们从繁重的体力劳动中解放出来,并引导到理论力学和一般的运动和变化的科学研究。

当时的数学家都积极参与了这些变革以及相应数学问题的解决,产生了积极的效果。

解析几何与微积分的诞生,成为数学发展的一个转折点。

17世纪以来数学的飞跃,大体上可以看成是这些成果的延续与发展。

20世纪出现各种崭新的技术,产生了新的技术革命。

特别是计算机的出现,使数学又面临一个新时代。

这一时代的特点之一就是部分脑力劳动的逐步机械化。

与17世纪以来数学之以围绕连续、极限等概念为主导思想与方法不同,由于计算机研制与应用的需要,离散数学与组合数学开始受到重视。

计算机对数学的作用已不限于数值计算,符号运算的重要性日趋明显(包括机器证明等数学研究)。

计算机还广泛应用于科学实验。

为了与计算机更好地配合,数学对于构造性、计算性、程序化与机械化的要求也显得颇为突出。

代数几何是一门高度抽象化的数学,最近出现的计算性代数几何与构造性代数几何的提法,即其端倪之一。

总之,数学正随着新的技术革命而不断发展。

相关文档
最新文档