ANSYS使用简介

合集下载

ANSYS基本操作

ANSYS基本操作

ANSYS基本操作第1章开始使用ANSYS1.1完成典型的ANSYS分析ANSYS软件具有多种有限元分析的能力,包括从简单线性静态分析到复杂的非线性瞬态动力学分析。

在ANSYS分析指南手册中有关于它开展不同工程应用领域分析的具体过程。

本章下面几节中描述了对绝大多数分析皆适用的一般步骤。

一个典型的ANSYS分析过程可分为三个步骤:·建立模型·加载并求解·查看分析结果1.2建立模型与其他分析步骤相比,建立有限元模型需要花费ANSYS用户更多时间。

首先必须指定作业名和分析标题,然后使用PREP7前处理器定义单元类型、单元实常数、材料特性和几何模型。

1.2.1指定作业名和分析标题该项工作不是强制要求的,但ANSYS推荐使用作业名和分析标题。

1.2.1.1定义作业名作业名是用来识别ANSYS作业。

当为某项分析定义了作业名,作业名就成为分析过程中产生的所有文件名的第一部分(文件名)。

(这些文件的扩展名是文件类型的标识,如 .DB)通过为每一次分析给定作业名,可确保文件不被覆盖。

如果没有指定作业名,所有文件的文件名均为FILE或file(取决于所使用的操作系统)。

可按下面方法改变作业名。

·进入ANSYS程序时通过入口选项修改作业名。

可通过启动器或ANSYS执行命令。

详见ANSYS操作指南。

·进入ANSYS程序后,可通过如下方法实现:命令行方式:/FILENAME菜单方式:Utility Menu>File>Change Jobname/FILENAME命令仅在Begin level(开始级)才有效,即使在入口选项中给定了作业名,ANSYS仍允许改变作业名。

然而该作业名仅适用于使用/FILNAME后打开的文件。

使用/FILNAME命令前打开的文件,如记录文件Jobname.LOG、出错文件Jobname.ERR等仍然是原来的作业名。

1.2.1.2定义分析标题/TITLE命令 (Utility Menu>File>Change Title)可用来定义分析标题。

学会使用ANSYS进行工程仿真分析

学会使用ANSYS进行工程仿真分析

学会使用ANSYS进行工程仿真分析第一章:ANSYS工程仿真分析的基础知识ANSYS是目前世界上广泛使用的一种工程仿真分析软件,它可以用于各种不同领域的工程分析和设计。

熟练掌握ANSYS的使用方法对于工程师来说至关重要。

本章将介绍ANSYS的基础知识,包括软件的安装和启动、用户界面的介绍以及基本操作方法等。

首先,安装ANSYS软件是使用它的前提。

用户可以从ANSYS 官方网站上下载安装文件,并按照安装向导的步骤进行安装。

安装完成后,可以通过点击桌面上的图标来启动ANSYS。

启动后,会出现ANSYS的用户界面。

用户界面通常由菜单栏、工具栏、主窗口和命令窗口等组成。

菜单栏上包含了各种功能的菜单,用户可以通过点击菜单来选择所需的功能。

工具栏上则包含了一些常用的工具按钮,可以方便地进行操作。

主窗口用于显示分析结果和编辑模型等。

命令窗口则用于输入命令进行操作,这在一些高级功能中会用到。

在进行工程仿真分析之前,需要先创建一个模型。

ANSYS提供了多种建模工具,例如几何建模工具和计算网格生成工具等。

可以根据需要选择合适的建模工具,并按照提示进行操作。

在建模完成后,可以对模型进行网格生成,即将模型划分为小块,并计算各个小块上的分析参数。

第二章:结构分析结构分析是ANSYS中的一个重要模块,用于对各种结构件进行强度、刚度和模态等分析。

本章将介绍ANSYS中常用的结构分析方法和技巧。

在进行结构分析之前,需要先定义结构的边界条件和加载条件。

边界条件包括约束条件和支撑条件等,而加载条件则包括外力和内力等。

用户可以通过ANSYS提供的工具来定义这些条件,并将其应用于模型中。

在进行结构分析时,可以选择合适的分析方法。

ANSYS提供了多种分析方法,例如静力分析、动力分析和模态分析等。

用户可以根据具体的分析要求选择合适的方法,并设置相应的分析参数。

在进行结构分析时,还可以使用ANSYS的后处理功能来查看分析结果。

后处理功能可以用于绘制应力云图、位移云图和动力响应曲线等。

ANSYS新手入门手册(完整版)超值上

ANSYS新手入门手册(完整版)超值上

ANSYS 基本分析过程指南目录第 1 章开始使用 ANSYS1.1 完成典型的 ANSYS 分析1.2 建立模型第2章加载2.1 载荷概述2.2 什么是载荷2.3 载荷步、子步和平衡迭代2.4 跟踪中时间的作用2.5 阶跃载荷与坡道载荷2.6 如何加载2.7 如何指定载荷步选项2.8 创建多载荷步文件2.9 定义接头固定处预拉伸第 3 章求解3.1 什么是求解3.2 选择求解器3.3 使用波前求解器3.4 使用稀疏阵直接解法求解器3.5 使用雅可比共轭梯度法求解器(JCG)3.6 使用不完全乔列斯基共轭梯度法求解器(ICCG)3.7 使用预条件共轭梯度法求解器(PCG)3.8 使用代数多栅求解器(AMG)3.9 使用分布式求解器(DDS)3.10 自动迭代(快速)求解器选项3.11 在某些类型结构分析使用特殊求解控制3.12 使用 PGR 文件存储后处理数据3.13 获得解答3.14 求解多载荷步3.15 中断正在运行的作业3.16 重新启动一个分析3.17 实施部分求解步3.18 估计运行时间和文件大小111 2323 23 24 25 26 27 6877 788584 84 85 86 86 86 86 87 8888 89 92 9697 100 100 111 1133.19 奇异解第 4 章后处理概述4.1 什么是后处理4.2 结果文件4.3 后处理可用的数据类型第5章5.1 概述5.2 将数据结果读入数据库5.3 在 POST1 中观察结果5.4 在 POST1 中使用 PGR 文件5.5 POST1 的其他后处理内容第 6 章时间历程后处理器(POST26)6.1 时间历程变量观察器6.2 进入时间历程处理器6.3 6.4 6.5 6.6 6.7定义变量处理变量并进行计算数据的输入数据的输出变量的评价通用后处理器(POST1)1141161161171171181181181271521601741741761771791811831841871901901901941956.8 POST26 后处理器的其它功能第 7 章选择和组件7.1 什么是选择7.2 选择实体7.3 为有意义的后处理选择7.4 将几何项目组集成部件与组件第 8 章图形使用入门8.1 概述8.2 交互式图形与“外部”图形8.3 标识图形设备名(UNIX 系统)8.4 指定图形显示设备的类型(WINDOWS 系统)198198 198 198 2018.5 与系统相关的图形信息8.6 产生图形显示8.7 多重绘图技术第 9 章通用图形规范9.1 概述9.2 用 GUI 控制显示9.3 多个 ANSYS 窗口,叠加显示9.4 改变观察角、缩放及平移9.5 控制各种文本和符号9.6 图形规范杂项9.7 3D 输入设备支持第 10 章增强型图形10.1 图形显示的两种方法10.2 POWERGRAPHICS 的特性10.3 何时用 POWERGRAPHICS10.4 激活和关闭 POWERGRAPHICS10.5 怎样使用 POWERGRAPHICS10.6 希望从 POWERGRAPHICS 绘图中做什么第 11 章创建几何显示11.1 用 GUI 显示几何体11.2 创建实体模型实体的显示11.3 改变几何显示的说明第 12 章创建几何模型结果显示12.1 利用 GUI 来显示几何模型结果12.2 创建结果的几何显示12.3 改变 POST1 结果显示规范12.4 Q-SLICE 技术12.5 等值面技术12.6 控制粒子流或带电粒子的轨迹显示202 205 207210210 210 210 211 214 217 218219219 219 219 220 220 220223223 223 224233233 233 235 238 238 239第 13 章生成图形24013.1 使用 GUI 生成及控制图13.2 图形显示动作13.3 改变图形显示指定第 14 章注释注释概述二维注释为 ANSYS 模型生成注释三维注释三维查询注释240 240 24124514.1 14.2 14.3 14.4 14.5245 245 246 246 247第 15 章动15.1 动画概述画24824824824824924925025115.2 在 ANSYS 中生成动画显示15.3 使用基本的动画命令15.4 使用单步动画宏15.5 离线捕捉动画显示图形序列15.6 独立的动画程序15.7 WINDOWS 环境中的动画第 16 章外部图形25316.1 外部图形概述16.2 生成中性图形文件16.3 DISPLAY 程序观察及转换中性图形文件16.4 获得硬拷贝图形第 17 章报告生成器17.1 启动报告生成器17.2 抓取图象17.3 捕捉动画17.4 获得数据表格17.5 获取列表17.6 生成报告253 254 255 258259259 260 260 261 264 26417.7 报告生成器的默认设置第 18 章 CMAP 程序18.1 CMAP 概述18.2 作为独立程序启动 CMAP 18.3 在 ANSYS 内部使用 CMAP 18.4 用户化彩色图第 19 章文件和文件管理267 269269 269 271 27127419.1 文件管理概述19.2 更改缺省文件名19.3 将输出送到屏幕、文件或屏幕及文件19.4 文本文件及二进制文件19.5 将自己的文件读入 ANSYS 程序19.6 在 ANSYS 程序中写自己的 ANSYS 文件19.7 分配不同的文件名19.8 观察二进制文件内容(AXU2)19.9 在结果文件上的操作(AUX3)19.10 其它文件管理命令第 20 章内存管理与配置20.1 内存管理20.2 基本概念20.3 怎样及何时进行内存管理20.4 配置文件274274 275 275 278 279 280280 280280 282282 282 283 286第1章开始使用 ANSYS1.1 完成典型的 ANSYS 分析ANSYS 软件具有多种有限元分析的能力,包括从简单线性静态分析到复杂的非线性瞬态动力学分析。

ansys 介绍

ansys 介绍

如图6-14所示,菜单路径 Utility Menu > File > Import,其下的子菜单是 分别导入IGES文件、 CATIA文件、CATIA V5 文件、Pro/E文件、UG文 件、SAT文件、PARA文件 和CIF文件。
图6-14 导入几何文件
如图所示,菜单路径Utility Menu > File > Export,其下用 于输出IGES Version 5.1文件。
第1章 ANSYS软件简介
1.1 ANSYS概述
1.2 ANSYS启动、退出与GUI环境
1.3 ANSYS常用菜单与对话框操作 1.4 ANSYS文件操作 1.5 ANSYS的坐标系与工作平面 1.6 ANSYS标准有限元分析过程
1.1 ANSYS概述
ANSYS软件是融结构、流体、电场、磁场、声场和耦 合场分析于一体的大型通用有限元分析软件。它能与多数 CAD软件接口,实现数据的共享和交换,如Pro/E、UG及 AutoCAD等,是现代产品设计中的高级CAD工具之一。
文件操作菜单
一、新分析相关文件及其操作
在进行新分析时,选择菜单路径Utility Menu > File, 利用其下的子菜单项进行相关文件操作: Clear & Start New:清除数据库并开始新分析。 Change Jobname:定义新的工作文件名。 Change Directory:定义新的工作路径。 Change Title:定义新的分析标题。 Resume Jobname.db:恢复当前工作文件名的 Jobname.db数据库文件。 Resume from:恢复用户选定某个数据文件,一般工作 名不是Jobname.db时使用。
标准的ANSYS有限元分析过程一般包括以下四个步骤: 1.ANSYS分析的开始准备工作 2.建立模型 3.施加载荷并求解 4.查看分析结果

ANSYS基本操作精讲

ANSYS基本操作精讲

ANSYS基本操作精讲
1. 新建项目:启动ANSYS后,点击“File -> New -> Project…”,输入项目名称和存储路径,选择适当的单位系统和求解器类型,然后点击“OK”按钮。

3.定义材料属性:在材料模块中,可以定义各种材料的物理特性。


择合适的材料模型并输入相应的参数。

可以通过导入材料库或自定义材料
属性来定义材料。

4.设置边界条件:在加载模块中,设置边界条件是非常重要的。

可以
设置约束条件(如固定支撑和约束)和荷载条件(如力、压力和热源)。

通过选择几何模型的面、边或节点,然后定义相应的边界条件。

5.网格划分:网格划分模块(或称为前处理模块)用于将几何模型离
散化为有限元网格。

可以选择适当的网格类型,如三角形网格或四边形网格,并选择合适的网格密度。

6. 运行求解器:在求解模块中,选择适当的求解器和求解方法。


过点击“Solve”按钮,ANSYS将自动进行求解,并输出结果。

可以通过
设置收敛准则、调整步长和监控求解过程来改进求解性能。

7.结果后处理:在后处理模块中,可以对求解结果进行可视化和分析。

可以使用绘图工具绘制各种图表和图形,并对结果进行剪切、比较和动态
显示。

以上是ANSYS的一些基本操作。

除了这些基本操作外,ANSYS还提供
了许多高级功能和工具来解决复杂的工程问题。

为了更好地使用ANSYS,
建议深入学习ANSYS的使用手册和相关教程,并进行实际的案例分析和实
践操作。

ANSYS入门教程

ANSYS入门教程

ANSYS入门教程第一步:了解ANSYS界面打开ANSYS软件后,会看到一个包含各种功能的界面。

主要的界面区域包括:1.工具栏:包含各种工具和快捷键,可以帮助用户进行模型建立、网格划分、求解等操作。

2.操作窗口:显示软件的输出信息和错误提示,以及对模型的操作。

3.图形窗口:用于显示模型的几何形状、网格划分结果和结果解析等。

4.工作区:用于组织和管理模型、网格和结果文件等。

第二步:创建模型在ANSYS的工作区中,点击“Geometry”工具栏上的“New Geometry”按钮,进入模型创建界面。

在模型创建界面中,可以使用各种工具创建几何形状,如直线、圆弧、矩形等。

创建几何形状时,可以使用鼠标绘制,也可以输入具体的坐标和尺寸。

创建完成后,可以使用工具栏上的各种操作来对几何形状进行修整和修改。

例如,可以使用“Trim”工具删除多余的几何形状,使用“Extend”工具延长已有的几何线段等。

第三步:定义材料属性在ANSYS中,需要为模型定义材料属性。

点击工具栏上的“Engineering Data”按钮,进入材料属性定义界面。

在界面中,可以选择不同的材料类型,并输入相应的参数,如杨氏模量、泊松比等。

还可以导入外部材料库中的材料属性数据。

第四步:划分网格在ANSYS中,需要将模型划分为小的网格单元,以便进行后续的有限元分析。

点击工具栏上的“Mesh”按钮,进入网格划分界面。

在界面中,可以选择不同的网格类型,并设置相应的网格参数。

通常,可以选择“Quad”或“Tri”网格类型,并设置网格大小。

完成网格划分后,可以使用工具栏上的网格修整工具来调整和修改网格。

第五步:施加边界条件在ANSYS中,需要为模型施加边界条件和加载。

点击工具栏上的“Solution”按钮,进入边界条件设置界面。

在界面中,可以选择不同的加载类型,并设置相应的加载参数。

例如,可以选择“Force”加载,并输入加载的大小和方向。

还可以选择“Constraint”加载,并设置固定边界条件。

Ansys基础教程

Ansys基础教程
• 在生成线时, 关键点必须存在。
Create > -Lines- Lines
Create > -Lines- Arcs
Create > -Lines- Splines
L,k1,k2
L,k1,k2,k3,radius

• 用由下向上的方法生成面时, 需要的关键点或线必须已经定义。 (A——关键点〔顺序〕、AL——线)
可以根据模型形状选择最佳建模途径.
下面详细讨论建模途径。
实体建模 B. 自顶向下建模
• 自顶向下建模: 首先建立高级图元(体或 面),对这些高级图元(体或面)按一定规 则组合得到最终需要的形状.
• 开始建立的体或面称为图元。 • 生成一种体素时会自动生成所有的从属于
该体素的较低级图元。 • 对几何图元进行组合计算形成最终形状的
ANSYS教程
ANSYS 结构分析
第一章 ANSYS主要功能与模块
• ANSYS是世界上著名的大型通用有 限元计算软件, 它包括热、电、磁、流体和 结构等诸多模块, 具有强大的求解器和前、 后处理功能, 为我们解决复杂、庞大的工程 项目和致力于高水平的科研攻关提供了一 个优良的工作环境, 是一个开放的软件, 支 持进行二次开发。 • 目前主流版本12.0,13.0,14.0,14.5
一、主要功能简介
• 1. 结构分析
• 1) 静力分析 – 求解静力载荷作用下结 构的位移和应力等. 可以考虑结构的线性及 非线性行为。
• ● 线性结构静力分析 (linear)
• ● 非线性结构静力分析 (nonlinear)

♦ 几何非线性: 大变形、大应变、
应力强化、旋转软化

♦ 材料非线性: 塑性、粘弹性、粘

ANSYS常用功能

ANSYS常用功能

ANSYS常用功能总结1ANSYS软件的功能简介ANSYS是一个大型通用的商业有限元软件,具有功能完备的前后处理器,强大的图形处理能力,奇特的多平台解决方案,平台支持NT、LINUX、UNIX和异种异构网络浮动,各种硬件平台数据库兼容,功能一致,界面统一。

1.1 前处理功能ANSYS具有强大的实体建模技术。

与现在流行的大多数CAD软件类似。

通过自顶向下或自底向上两种方式,以及布尔运算、坐标变换、曲线构造、蒙皮技术、拖拉、旋转、拷贝、镜射、倒角等多种手段,可以建立真实地反映工程结构的复杂几何模型。

ANSYS提供两种基本网格划分技术:智能网格和映射网格,分别适合于ANSYS初学者和高级使用者。

智能网格、自适应、局部细分、层网格、网格随移、金字塔单元(六面体与四面体单元的过渡单元)等多种网格划分工具,帮助用户完成精确的有限元模型。

另外,ANSYS还提供了与CAD软件专用的数据接口,能实现与CAD软件的无缝几何模型传递。

这些CAD软件有Pro/E、UG、CATIA、lDEAS,Solidwork、Solid edge、lnventor、MDT等。

ANSYS还可以读取SAT、STEP、ParaSolid、lGES 格式的图形标准文件。

此外,ANSYS还具有近200种单元类型,这些丰富的单元特性能使用户方便而准确地构建出反映实际结构的仿真计算模型。

1.2 强大的求解器ANSYS提供了对各种物理场的分析,是目前唯一能融结构、热、电磁、流场、声学等为一体的有限元软件。

除了常规的线性、非线性结构静力、动力分析之外,还可以解决高度非线性结构的动力分析、结构非线性及非线性屈曲分析。

提供的多种求解器分别适用于不同的问题及不同的硬件配置。

1.3 后处理功能ANSYS的后处理用来观察ANSYS的分析结果。

ANSYS的后处理分为通用后处理模块和时间后处理模块两部分。

后处理结果可能包括位移温度应力应变速度以及热流等,输出形式可以是图形显示和数据列表两种。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4 实体模型的建立4.1 实体模型简介在上一章里已介绍了有限的直法建模,但该方法对复杂的结构,建立过程复杂而且容易出错,因此这里引入实体模型的建立,与一般的CAD软件一样,利用点、线、面、体积组合而成。

实体模型几何图形决定之后,由这界来决定网格,即每一线段要分成几个元素或元素的尺寸是多大。

决定了每边元素数目或尺寸大小之后,ANSYS的内建程序即能自动产生网格,即自动产生节点和元素,并同时完成有限元模型。

4.2实体模型的建立方法实体模型建立有下列方法:1)由下往上法(bottom-up Method)由建立最低单元的点到最高单元的体积,即建立点,再由点连成线,然后由线组合成面积,最后由面积组合建立体积。

2)由上往下法(top-down method)及布尔运算命令一起使用此方法直接建立较高单元对象,其所对应的较低单元对象一起产生,对象单元高低顺序依次为体积、面积、线段及点。

所谓布尔运算为对象相互加、减、组合等。

3)混合使用前两种方法依照个人的经验,可结合前两种方法综合运用,但应考虑到要获得什么样的有限元模型,即在网格化分时,要产生自由网格划分或对应网格划分。

自由网格划分时,实体模型的建立比较简单,只要所有的面积或体积能接合成一个体就可以,对应网格划分时,平面结构一定要四边形或三边形面积相接而成,立体结构一定要六面体相接而成。

4.3群组命令介绍表4-1给出了ANSYS中X对象的名称,表4-2中列出了ANSYS中X对象的群组命令,命令参数大部分与节点及元素相似。

以后对组命令不再详述。

表4-1 ANSYS中X对象的名称表4-2 ANSYS中X对象的群组命令4.4 点定义实体模型建立时,点是最小的单元对象,点即为机械结构中一个点的坐标,点与点连接成线也可直接组合成面积及体积。

点的建立按实体模型的需要而设定,但有时会建立些辅助点以帮助其它命令的执行,如圆弧的建立。

相关命令:K,NPT,X,Y,Z建立点(Keypoint)坐标位置(X,Y,Z)及点的号码NPT时,号码的安排不影响实体模型的建立,点的建立也不一要连号,但为了数据管理方便,定义点之前先规划好点的号码,有利于实体模型的建立。

在圆柱坐标系下,X,Y,Z对应于R,θ,Z,球面坐标下对应着R,θ,Ф。

Menu Paths:Main Menu>Preprocessor>Create>Key Point>In Active CsMenu Paths:Main Menu>Preprocessor>Create>Key Point>On Working PlaneKFILL,NP1,NP2,NFILL,NSTRT,NINC,SPACE点的填充命令是自动将两点NP1,NP2间,在现有的坐标系下填充许多点,两点间填充点的个数(NFILL)及分布状态视其参数(NSTRT,NINC,SPACE)而定,系统设定为均分填充。

如语句FILL,1,5,则平均填充3个点在1 和5 之间。

如图4-1所示。

Menu Paths:Main Menu>Preprocessor>Create>Key Point>FillKNODE,NPT,NODE定义点(NPT)于已知节点上Menu Paths:Main Menu>Preprocessor>Create>Keypoint>On Node4.5 线段定义建立实体模型时,线段为面积或体积的边界,由点与点连接而成,构成不向种类的线段,例如直线、曲线、BSPLIN、圆、圆弧等,也可直接由建立面积或体积而产生。

线的建立与坐标系统有关,直角坐标系为直线,圆柱坐标下曲线。

相关命令L,P1,P2,NDIV,SPACE,XV1,YV1,ZV1,XV2,YV2,ZV2此命令是用两个点来定义线段,此线段的形状可为直线或曲线,此线段在产生面积之前可做任何修改,但若已成为面积的一部分,则不能再做任何改变,除非先把面积删除。

NDIV指欲进行网格化时所要分的元素数目。

Menu Paths:Main Menu>Preprocessor>Create>Lines>In Active CoordLDIV,NL1,RA TIO,PDIV,NDIV,KEEP此命令是将线分割成数条线,NL1为线段的号码,NDIV为线段欲分的段数(系统默认为两段),在于2 时为均分,RA TIO为两段的比例(NDIV=2时才起作用),KEEP=0时原线段资料将删除,KEP=1则保留。

Menu Paths:Main Menu>Preprocessor>Operate>Divede>(type options)LFILLT,NL1,NL2,RAD,PCENT此命令是在两条相交的线段(NL1,NL2)间产生一条半径等于RAD的圆角线段,同是自动产生三个点,其中两个点在NL1,NL2上,是新曲线与NL1,NL2相切的点,第三个点是新曲线的圆心点(PCENT,若PENT=0则不产生该点),新曲线产生后原来的两条线段会改变,新形成的线段和点的号码会自动编排上去。

如图4-2所示。

Menu Paths:Main Menu>Preprocessor>Create>Line FilletLARC,P1,P2,PC,RAD定义两点(P1,P2)间的圆弧线(Line of Arc),其半径为RAD,若RAD的值没有输入,则圆弧的半径直接从P1,PC到P2自动计算出来。

不管现在坐标为何,线的形状一定是圆的一部分。

PC为圆弧曲率中心部分任何一点,不一定是圆心。

如图4-3所示。

Menu Paths:Main Menu>Preprocessor>Create>Arcs>By End KPs & RadMenu Paths:Main Menu>Preprocessor>Create>Arcs>Through 3 KpsCIRCLE,PCENT,RAD,PAXIS,PZERO,ARC,NSEG此命令会产生圆弧线(CIRCLE Line),该圆弧线为圆的一部分,依参数状况而定,与目前所在的坐标系统无关,点的号码和圆弧的线段号码会自动产生。

PCENT:圆弧中心点坐标号码PAXIS:定义圆心轴正向上任意点的号码。

PZERO:定义圆弧线起点轴上的任意点的号码,此点不一定在圆上。

RAD :圆的半径,若此值不输,则半径的定义为PCENT到PZERO的距离ARC :弧长(以角度表示),若输入为正值,则由开始轴产生一段弧长,若没输和,产生一个整圆。

NSEG :圆弧欲划分的段数,此处段数为线条的数目,非有限元网格化时的数目。

Menu Paths:Main Menu>Preprocessor>Create>Arcs>By End Cent & RadiusMenu Paths:Main Menu>Preprocessor>Create>Arcs>Full Circle【例4-1】练习点和线段的生成/PREP7K,1,5,4 !建立点1坐标(5,4)K,4,-1,2 !建立点4坐标(-1,2)KPLOT !显示点,无号码/PNUM,KP,1KPLOT !显示点,无号码KLIST !列出点的资料K,,2,-2 !建立点2坐标(2,-2),点2是自动获得的最小号码DSYS,1 !改变显示坐标系统为圆柱坐标KLISTDSYS !回复显示卡式坐标系统K,2,,-3 !改变2点的坐标为(0,-3)CSYS,1 !改变坐标系统为圆柱坐标K,,4 !建立点3坐标,半径=4,角度=0K,4,4,30 !建立点4坐标,半径=4,角度=30K,,4,60 !建立点5坐标,半径=4,角度=60KLISTDSYS,1 !改变显示坐标系统为圆柱坐标KLISTCSYS !回复坐标系统为卡式坐标DSYS !回复显示坐标系统为卡式坐标L,3,5 !建立点3至点5的直线段LPLOT !显示线段,无号码/PNUM,LINE,1LPLOT !显示线段,有号码LLIST !列出线段资料L,2,3 !建立点2至点3的直线段CSYS,1 !改变坐标系统为圆柱坐标系统L,2,5 !建立点2至点5的圆柱坐标线段LPLOT !显示线段【例4-2】练习LARC命令产生圆弧线段/PREP7K,1,0K,2,1,2K,3,1,-1/PNUM,KP,1/PNUM,LINE,1KPLOTLARC,1,2,3,2 !建立点1至点2的圆弧,半径为2LARC,1,2,3,4 !建立点1至点2的圆弧,半径为4LARC,1,2,3,-2 !建立点1至点2的圆弧,半径为2,反曲率【例4-3】练习CIRCLE命令产生圆弧线段/PREP7K,1K,2,3K,3,0,3K,4,0,0,3/PNUM,KP,1/PNUM,LINE,1KPLOTCIRCLE,1,2CIRCLE,1,1.5,3,4,135,4 ! 产生一个X-Z平面,135o,4段的圆弧4.6 面积定义实体模型建立时,面积为体积的边界,由经连接而成,面积的建立可由点直接相接或线段围接而成,并构成不同数目边的面积。

也可直接建构体积而产生面积,如要进行对应网格化,则必须将实体模型建构为四边形面积的组合,最简单的面积为3点连接面成,以点围成面积时,点必须以顺时针或逆时针输入,面积的法向按点的顺序依右手定则决定。

相关命令A,P1,P2,P3,P4,P5,P6,P7,P8,P9此命令用已知的一组点(P1~P9)来定义面积(Area),最少使用三个点才能围成面积,同时产生转围绕些面积的线段。

点要依次序输入,输入的顺序会决定面积的法线方向。

如果此面积超过了四个点,则这些点必须在同一个平面上。

如图4-4所示。

Menu Paths:Main Menu>Preprocessor>Create>Arbitrary>Through KPsAL,L1,L2,L3,L4,L5,L6,L7,L8,L9,L10此命令由已知的一组直线(L1, …L10)线段(Lines)围绕而成的面积(Area),至少须要3条线段才能形成平面,线段的号码没有严格的顺序限制,只要它们能完成封闭的面积即可。

同时若使用超过4条线段去定义平面时,所有的线段必须在同一平面上,以右手定则来决定面积的方向。

如图4-5所示。

Menu Paths:Main Menu>Preprocessor>Create>Arbitrary>By LinesAROTAT,NL1,NL2,NL3,NL4,NL5,NL6,P AX1,PAX2,ARC,NSEG建立一组圆柱型面积(Area),产生方式为绕着某轴PAX1,PAX2为轴上的任意两点,并定义轴的方向),旋转一组已知线段(NL1~NL6),以已知线段为起点,旋转角度为ARC,NSEG为在旋转角度方向可分的数目。

相关文档
最新文档