ANSYS CFD简介
流体动力学(CFD)分析.

Page 12
Intro-12
层流分析
T-2. FLOTRAN 分析的种类
Objective
层流中的速度场都是平滑而有序的,高粘性流体(如石油等)的低 速流动就通常是层流。
Page 13
Intro-13
紊流分析
T-2. FLOTRAN 分析的种类
Objective
紊流分析用于处理那些由于流速足够高和粘性足够低从而引起紊流 波动的流体流动情况,ANSYS中的二方程紊流模型可计及在平均 流动下的紊流速度波动的影响。 如果流体的密度在流动过程中保 持不变或者当流体压缩时只消耗很少的能量,该流体 就可认为是 不可压缩的,不可压缩流的温度方程将忽略流体动能的变化和粘 性耗散。
Page 8
Intro-8
第一章
FLOTRAN 计算流体动力 学(CFD)分析概述
Page 9
Intro-9
目标
Module Objective
在完成本章学习后,我们应该对流体动力学分析的基本概念 有所了解,并知道它的基本分类。
Lesson Objectives
第一讲、FLOTRAN CFD 分析的概念 第二讲、 FLOTRAN 分析的种类 第三讲、层流分析 第四讲、紊流分析 第五讲、热分析 第六讲、可压缩流分析 第七讲、非牛顿流分析 第八讲、多组份传输分析
六、 FLOTRAN分析过程中应处理的问题
七、对一个FLOTRAN分析进行评价
八、验证结果
Page 3
目录
Guidelines
第三章 FLOTRAN设置命令
一、FLOTRAN求解控制命令
二、FLOTRAN执行及输出控制命令 稳态控制参数设置
三、FLOTRAN执行及输出控制命令 瞬态控制参数设置
Ansys12-新功能ANSYS ICEM CFD

广州分公司 电话: 86-20-38102018 传真: 86-20-38102010
武汉分公司 电话: 86-27-87259015/6/7 传真:86-27-87259015/6/7-168
西安分公司 电话: 86-29-88348317 传真: 86-29-88348275
南京分公司 电话: 86-25-84677666 传真: 86-25-84677573
■ 几何功能
● 创建基本的几何元:点,线,面,体素 ● 投影方法创建点和曲线 ● 几何变换:平移、旋转、镜面与缩放 ● 布尔运算:相交、相加、切分、裁剪等 ● 自动搜索几何拓扑关系,检查几何缺陷 ● 方便几何修复:拓扑重建、填充孔、清除孔、闭合缝隙、
缝合装配边界、延伸面、劈分折叠面、面法向调整等等 ● 抽取中面:快速抽取,自动记忆厚度信息 ● 几何特征的检测与修改
隐式/显式结构分析所需的各种六面体网格模型、板壳网格模型
快速修复几何缺陷 方便的几何修补方法
复杂几何
定义截面几何
抽取中面
负责几何模型的抽取中面,自动记忆厚度信息
灵活的几何特征修改功能
ANSYS ICEM CFD
3
■ 网格划分
● 学科及单元类型 - 几乎所有学科:结构、流体、电磁 - 任何单元类型:实体、壳、梁
Input: 170 CATIA 零件模型 Output: NASTRAN 数据文件 Time to mesh (batch): 8小时(HP p1130 workstation) Quality: 90% 满足精度需求 Assembly & Welding: 采用交互式处理 Interactive time: 3天完成交互式处理
ANSYS CFD Solution

同大多数先进技术一样,CFD从起初到如今集成到SPDP过程 中,也经历了长期的发展。ANSYS如今不仅仅提供数值流场求解 器,而是把流动模型和其他物理场模拟技术无缝集成,形成多物理 场仿真方法。ANSYS的目标很明确:通过使用灵活而统一的ANSYS W o r k b e n c h架构,提供高可信度的多物理场系统工具,从而真正实 现SPDP。ANSYS Workbench平台集成了大量的仿真技术以满足不 同的需求,同时确保协同工作的实现。这些仿真技术包括了A N S Y S 非常广泛的流体仿真产品线,分为两类:通用流体分析和专业仿真工 具。ANSYS流体动力学产品系列的广度和深度都是无与伦比的。
目前应用最广泛的专用流体分析
工具之一,这是因为大量的旋转
ANSYS CFX软件模拟航空发动机内的复杂流场
机械其几何模型和物理过程有很 强的相似性。ANSYS 的旋转机
械专用流体分析工具包含了从几
何、网格到特定物理模型的全套仿真工具。
ANSYS Icepak软件是面向电子设计和封装的专用散热工具。在设 计和优化冷却系统时,为了提高电路板或其他部件的性能,延长使用时 间。使用ANSYS Icepak计算电子设备或计算机内的流场、温度场很有 必要。
CFD-CFD-S09
info@
北京分公司
电话: 86-10-65388718 传真: 86-10-65388719
上海分公司
电话: 86-21-58403100 传真: 86-21-58403099
成都分公司
电话: 86-28-86671505 传真: 86-28-86669252
ansys_CFX稳态仿真

稳态仿真流体力学仿真CFD(computational fluid dynamics)可分为稳态仿真(输入量恒定)和瞬态仿真(输入量随时间变化),其中瞬态仿真是在稳态仿真的基础上进行的,稳态仿真为瞬态仿真的初值。
这里我们首先进行稳态仿真,具体步骤为:一、软件启动1、单击开始---程序---Ansys14.0---Workbench(双击启动);2、双击屏幕左侧控制树中的CFX(因为我们的网格由外部导入,所以选择component systems中的cfx),此时在主窗口中显示CFX流程模块。
流程模块双击控制树中的cfx二、CFX-Pre1、双击流程模块中set up栏,进入CFX的前处理模块;2、首先导入mesh:左键单击File---Import---Mesh---文件project.cfx5,注意导入时单位为mm。
如下图:单击file单位选mm选中cfx5文件,注意文件类型为ICEM CFD3、定义血液:(1)控制树中的materials右键单击---Insert---material,输入名称blood(任定),(2)特性参数material properties设定中equation of state选value,摩尔质量molar mass(1.0千克每摩尔)、密度density(1.1克/立方厘米);比热容specific heat capacity 选项的选择value,比热容specific heat capacity(4000焦耳/千克);transport properties选择动态粘度dynamic viscosity(选择value),值为0.0004Pa S;(3)单击ok运行。
如下图:特性参数material properties摩尔质量比热容动态粘度4、定义计算域条件:analysis type默认为稳态不用设定,直接设定default domain。
(1)双击控制树中的default domain图标,启动参数设置栏;(2)在基本设定basic settings中,在fluid1的material选择设定好的血液blood,其他值不变;在fluid models中热传递heat transfer(选择none),湍流形式turbulence(选择稳流laminar)注:稳流与湍流的划分依据雷诺系数(/2000/4000/);在初始化initialization中选择domain initialization,在velocity type选择cartesian坐标系,并设定xyz坐标为都为0米每秒,静态压选项选择automatic with value相对值relative pressure定为0帕;(4)单击ok。
ANSYS流体分析CFD

第一章 FLOTRAN 计算流体动力学(CFD)分析概述FLOTRAN CFD 分析的概念ANSYS程序中的FLOTRAN CFD分析功能是一个用于分析二维及三维流体流动场的先进的工具,使用ANSYS中用于FLOTRAN CFD分析的FLUID 141和FLUID 142 单元,可解决如下问题:∙作用于气动翼(叶)型上的升力和阻力∙超音速喷管中的流场∙弯管中流体的复杂的三维流动同时,FLOTRAN还具有如下功能:∙计算发动机排气系统中气体的压力及温度分布∙研究管路系统中热的层化及分离∙使用混合流研究来估计热冲击的可能性∙用自然对流分析来估计电子封装芯片的热性能∙对含有多种流体的(由固体隔开)热交换器进行研究FLOTRAN 分析的种类FLOTRAN可执行如下分析:∙层流或紊流∙传热或绝热∙可压缩或不可压缩∙牛顿流或非牛顿流∙多组份传输这些分析类型并不相互排斥,例如,一个层流分析可以是传热的或者是绝热的,一个紊流分析可以是可压缩的或者是不可压缩的。
层流分析层流中的速度场都是平滑而有序的,高粘性流体(如石油等)的低速流动就通常是层流。
紊流分析紊流分析用于处理那些由于流速足够高和粘性足够低从而引起紊流波动的流体流动情况,ANSYS中的二方程紊流模型可计及在平均流动下的紊流速度波动的影响。
如果流体的密度在流动过程中保持不变或者当流体压缩时只消耗很少的能量,该流体就可认为是不可压缩的,不可压缩流的温度方程将忽略流体动能的变化和粘性耗散。
热分析流体分析中通常还会求解流场中的温度分布情况。
如果流体性质不随温度而变,就可不解温度方程。
在共轭传热问题中,要在同时包含流体区域和非流体区域(即固体区域)的整个区域上求解温度方程。
在自然对流传热问题中,流体由于温度分布的不均匀性而导致流体密度分布的不均匀性,从而引起流体的流动,与强迫对流问题不同的是,自然对流通常都没有外部的流动源。
可压缩流分析对于高速气流,由很强的压力梯度引起的流体密度的变化将显著地影响流场的性质,ANSYS对于这种流动情况会使用不同的解算方法。
ANSYSCFD软件介绍——石油天然气管道局

ANSYSCFD软件介绍——石油天然气管道局ANSYS CFD是一种基于数值计算的工程仿真软件,能够对流体的流动、传热、传质等现象进行模拟和分析。
它利用Navier-Stokes方程和其它相关数学模型,通过离散化将连续的物理过程转化为离散的计算问题,然后利用高性能计算机进行求解。
ANSYS CFD软件提供了强大的建模和仿真工具,能够精确地模拟和分析各种复杂的流体流动问题,包括内部流动、外部流动、湍流、多相流、传热等现象。
1.强大的前后处理功能:ANSYSCFD软件提供了丰富的建模和网格生成工具,用户可以方便地创建各种复杂的几何模型,并自动生成适应性网格。
此外,软件还提供了直观的后处理工具,可以用于可视化仿真结果、生成报告以及进行参数优化。
2.多物理场的耦合分析:ANSYSCFD软件支持多个物理场之间的耦合分析,可以模拟和分析流体流动、传热、传质等多种现象的相互作用。
例如,在石油天然气管道局中,可以通过ANSYSCFD软件模拟管道中的气体流动、石油液体混合物的流动以及换热过程,以评估管道的安全性和性能。
3.多种物理模型和数值方法:ANSYSCFD软件提供了多种物理模型和数值方法,可根据具体问题选择合适的模型和方法。
例如,对于湍流流动,可以选择k-ε模型、RNGk-ε模型、SSTk-ω模型等,并使用合适的离散化方法求解。
4.丰富的边界条件:ANSYSCFD软件支持多种边界条件的设定,包括壁面摩擦、入口边界条件、出口边界条件等。
用户可以根据实际情况设置合适的边界条件,以准确模拟并预测流体流动的行为。
5.可扩展性和并行计算:ANSYSCFD软件利用并行计算技术,可以充分利用多核处理器和集群计算机的性能,提高计算效率和准确性。
软件还提供了可扩展的模型库和算法,可以模拟各种复杂流动问题。
在石油天然气管道局中,ANSYSCFD软件可以应用于多个方面,例如:1.管道设计和优化:通过ANSYSCFD软件的模拟和分析功能,可以评估不同管道几何形状、流体输送方案对流量、压力损失、换热效率等参数的影响,从而优化管道设计。
ANSYSFLUENT介绍

ANSYSFLUENT介绍ANSYSFLUENT是ANSYS公司的一款计算流体力学(CFD)软件,它是一种用于模拟和分析流体行为和流动现象的工程仿真软件。
ANSYSFLUENT具有丰富的功能和强大的计算能力,在各种工程领域中得到了广泛的应用,包括汽车设计、航空航天工程、能源领域、生物医学工程等。
本文将对ANSYSFLUENT的特点、适用领域、功能以及其在工程领域的应用进行详细介绍。
1.多物理场耦合:ANSYSFLUENT可以同时模拟多种物理现象,包括流体流动、热传导、传质、化学反应等。
它可以模拟多相流动、湍流流动、多组分混合等复杂情况,能够模拟各种真实世界中的复杂流体行为。
2.强大的计算能力:ANSYSFLUENT采用了先进的数值计算方法和高效的求解算法,能够处理大规模的流体力学问题。
它支持并行计算,可以利用多个计算节点进行并行求解,提高计算速度和效率。
3.用户友好的界面:ANSYSFLUENT具有直观易用的界面,用户可以通过图形界面进行建模、设置求解参数和后处理数据。
它还提供了丰富的教程和帮助文档,帮助用户快速上手并解决实际问题。
4.多种数据输出和后处理功能:ANSYSFLUENT可以输出各种流动参数和数据,如速度、压力、温度、浓度等。
它还提供了强大的后处理功能,可以进行可视化分析、动画显示、流线追踪等,方便用户对模拟结果进行分析和评估。
1.汽车设计:ANSYSFLUENT可以模拟汽车的空气动力学性能,如空气阻力、气动噪声、冷却系统效果等。
它能够帮助设计师优化汽车外形和气动布局,提高汽车的性能和燃油效率。
2.航空航天工程:ANSYSFLUENT可以模拟飞机、火箭等飞行器的气动特性,如升力、阻力、空气动力学热效应等。
它可以帮助航空航天工程师优化飞行器的设计,提高飞行器的性能和安全性。
3.能源领域:ANSYSFLUENT可以模拟火力发电厂、核电站、风力发电机等能源设备的热流体特性,如燃烧过程、热传导、流动分布等。
ANSYS流体分析CFD

ANSYS流体分析CFD
ANSYSCFD的优点是能够提供详尽准确的流场和温度场分布,解释物理过程并了解产品性能,从而改进设计。
它还可以提供对流体流动和传热性能进行优化的机会,以便实现更高效、更可靠和更经济的设计。
在各行各业中,如汽车、航空航天、能源、化工等领域,ANSYSCFD已经成为设计过程中不可或缺的一部分。
ANSYSCFD分析支持各种复杂的物理模型,包括不可压缩流体流动、可压缩流体流动、多相流、湍流流动和传热等问题。
它还通过使用适当的数值方法和离散化技术来求解流动方程和边界条件,以确保计算结果的准确性和可靠性。
1.建模:这一步骤包括将设计或物体转化为几何模型,并设定适当的边界条件和初始条件。
2.离散化:在这一步骤中,将几何模型离散化为网格,以便对流场进行数值计算。
网格的生成是一个关键步骤,对结果的准确性和计算效率有重要影响。
3.物理建模和数值求解:在这一步骤中,根据具体问题,选择适当的物理模型和数值求解方法,对流体流动和传热进行数值计算。
4.后处理与结果分析:完成数值计算后,需要对结果进行后处理和分析。
这可能包括生成流场图、剖面分析、计算参数提取等。
综上所述,ANSYSCFD是一种强大的工具,可用于解决各种涉及流体流动和传热的工程问题。
它提供了详尽准确的流场和温度场分布,帮助工程师理解和改进设计,并优化产品性能。
通过使用ANSYSCFD,工程师可以更好地满足产品的要求和设计目标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• Remove unnecessary features that would complicate
•
meshing (fillets, bolts…)? Make use of symmetry or periodicity? – Are both the flow and boundary conditions symmetric / periodic?
• Do you have boundary condition information at
• •
these boundaries? Can the boundary condition types accommodate that information? Can you extend the domain to a point where reasonable data exists?
Lecture 01 Introduction to c.
August 1, 2013
Release 14.0
Introduction
Lecture Theme: All CFD simulations follow the same key stages. This lecture will explain how to go from the original planning stage to analyzing the end results
What degree of accuracy is required? How quickly do you need the results?
Is CFD an appropriate tool?
Introduction
5 © 2011 ANSYS, Inc.
CFD Approach
August 1, 2013
Introduction
4 © 2011 ANSYS, Inc.
CFD Approach
August 1, 2013
Pre-Processing
Solution
Post-Processing
Summary
Release 14.0
Step 1. Define Your Modeling Goals
What results are you looking for (i.e. pressure drop, mass flow rate), and how will they be used? What are your modeling options?
– What simplifying assumptions can you make (i.e. symmetry, periodicity)? – What simplifying assumptions do you have to make? – What physical models will need to be included in your analysis
• All algebraic equations are then solved numerically to render the solution field
• FLUENT control volumes are cell-centered (i.e. they correspond directly with the mesh) while CFX control volumes are node-centered
• • • • • Conceptual studies of new designs Detailed product development Optimization Troubleshooting Redesign
CFD analysis complements testing and experimentation by reducing total effort and cost required for experimentation and data acquisition
Introduction
6 © 2011 ANSYS, Inc.
CFD Approach
August 1, 2013
Pre-Processing
Solution
Post-Processing
Summary
Release 14.0
Step 3. Create a Solid Model of the Domain
CFD Approach
August 1, 2013
Pre-Processing
Solution
Post-Processing
Summary
Release 14.0
Step 4. Design and Create the Mesh
What degree of mesh resolution is required in each region of the domain? • Can you predict regions of high gradients?
Unsteady
Convection
Diffusion
Generation
Equation
Continuity X momentum Y momentum Z momentum Energy
f
1 u v w h
• Partial differential equations are discretized into a system of algebraic equations
• Define material properties
– Fluid – Solid – Mixture 燃烧 ,气体
• Select appropriate physical models
For complex problems solving a simplified or 2D problem will provide valuable experience with the models and solver settings for your problem in a short amount of time
What type of mesh is most appropriate? • How complex is the geometry? • Can you use a quad/hex mesh or is a tri/tet or hybrid mesh suitable? • Are non-conformal interfaces needed? Do you have sufficient computer resources? • How many cells/nodes are required? • How many physical models will be used?
• Domain is discretized into a finite set of control volumes
species, etc. are solved on this set of control volumes
Control Volume*
• General conservation (transport) equations for mass, momentum, energy,
Learning Aims: You will learn: The basics of what CFD is and how it works The different steps involved in a successful CFD project
Learning Objectives: When you begin your own CFD project, you will know what each of the steps requires and be able to plan accordingly
To predict these phenomena, CFD solves equations for conservation of mass, momentum, energy etc..
CFD is used in all stages of the engineering process:
– The mesh must resolve geometric features of interest and capture gradients of concern, e.g. velocity, pressure, temperature gradients
• Will you use adaption to add resolution?
Introduction
8 © 2011 ANSYS, Inc.
CFD Approach
August 1, 2013
Pre-Processing
Solution
Post-Processing
Summary
Release 14.0
Step 5: Set Up the Solver
For a given problem, you will need to:
Introduction
3 © 2011 ANSYS, Inc.
CFD Approach
August 1, 2013
Pre-Processing
Solution
Post-Processing
Summary
Release 14.0
How Does CFD Work?
ANSYS CFD solvers are based on the finite volume method