高中数学 第七课时 1.5数据的数字特征教案 北师大版必修3
高中数学必修三:1.4数据的数字特征(2)+教案

1.4 数据的数字特征【教材版本】北师大版【教材分析】本节课的教学内容是高中数学《数学3》第一章§4数据的数字特征,教学课时为1课时.数据的信息除用统计图、统计表整理和分析之外,还可以用一些统计量来描述,也就是将多个数值转化为一个数值,使这个数值能够反映这组数据的某些重要的特征,这个数值就被称为数据的数字特征.在初中阶段,学生已经学习了反映数据集中程度的数字特征:平均数、中位数、众数;也学习了反映数据离散程度的数字特征:极差、方差,并简单提及标准差.本节课首先在学生已有的认知基础上,让学生在实际问题中复习上述统计量的概念,明确其计算方法.其次着重通过实例让学生理解数据标准差的意义和作用,学会计算数据的标准差,提高学生的运算能力.使学生理解不同数字特征所表达的意义,能够根据问题需要选择适当的数字特征来表达数据的信息.从而体会数学语言应用的多样性、简洁性,体会数学语言在实际生活中的应用.上节课学生从“形”上反映数据信息,本节课从“量”上反映数据信息的数字特征,锻炼了学生有意识地从“形”与“量”两个方面挖掘数据信息的能力,而且为后续学习用样本的基本数字特征来刻画反映总体的数字特征、从样本数据推断总体信息打下坚实的基础.【学情分析】对于学生而言,平均数、中位数、众数以及极差、方差等概念早已植根于学生已有的认知结构.学生在初中八年级上下学期陆续学习了上述的概念,不仅可以用笔计算一些给定数据的上述统计量,而且学生对于借助计算机、计算器等工具计算平均数、方差等一些统计量有了一定的学习和了解.但是学生在数字特征的掌握上还存在着一些问题:一方面在这些数字特征的意义掌握上还存在着一些问题.在上述数字特征的把握上精力分配上容易流于计算,不能真正地理解和明确不同数字特征所反映的数据的信息.另一方面,对于标准差的学习有待进一步深化.此节课的学习将在教师问题情境的精心选择上,通过实际题目的的计算和问题回答通过激发学生自主探究,积极思考,交流合作,配合教师的适时总结,不断完善学生对于不同数字特征概念以及意义的认识和理解,进而培养和锻炼能在具体的数据面前选用合适的数字特征来刻画数据的信息能力.提高学生合理应用数学语言表达统计相关问题,揭示其内部关系的能力.【教学目标】1.知识与技能(1)明确平均数、中位数、众数,极差、方差的概念和计算方法.掌握标准差的概念和计算方法.学会合理应用相关符号语言表示数据信息和特征,体会数字特征就是一种数学语言.(2)能够理解不同数字特征所表达的意义,能够根据问题需要选择适当的数字特征来表达数据的信息.能够准确合理地应用数学语言表示统计的数字特征.2.过程与方法教师通过选择具有代表性的例子,引导学生回顾和思考已学的数字特征的知识,在解决具体问题的基础上,引导学生通过合作交流探究给定的问题,自我总结各个数字特征的计算方法和所表达的数据的意义.搭配学生积极地思考,辅助教师的及时指导归纳,可以使学生主动地整理、完善和优化自身的关于数字特征的认知结构.体会对数学语言的合理应用,为后续的学习打下坚实的基础.3.情感、态度与价值观在教学过程中让学生经历从数据中提取信息,进行估计,做出推断的全过程.体会用数字特征来描述纷繁的数据的统计学意义.培养学生用数据说话的理性精神,选用合理数学语言准确地挖掘和解释数据信息的能力.教学过程中,通过学生主动思考和回答问题的方式,培养自我总结能力,合作交流的意识和能力,以及准确使用数学语言的能力.【重点难点】本节课的教学重点是数、中位数、众数、极差、方差、标准差的计算、意义和作用.本节课的教学难点是运用数据的数字特征表达数据的信息,能够通过问题的实际需要,选择合适的数字特征表达数据的信息进而解决问题.【教学过程】1.导入新课上两节课我们学习了用统计图表来整理和分析数据,今天我们将利用给定的数据计算一些“量”(统计量)来挖掘数据的信息,它们可以反映数据的集中程度或者离散状况.因为这些量能够反映数据的特点,我们把它们也叫做数据的数字特征.除过大家比较熟悉的那五种之外,我们今天还会学习到刻画数据离散程度较好的另一个数字特征—“标准差”.我们这节课的主要目标不光是要会计算这些“量”,更重要的是能够理解不同数字特征所表达的意义,能够根据问题需要选择适当的数字特征来表达数据的信息(出示课题)2.提出问题,温故求新2.1问题引入教师展现课件题目,以分析和评价考试成绩来激发学生的认知需要,然后在此基础上回忆复习数据的数字特征的概念、计算方法和意义.学生以小组讨论的形式思考交流.每次考完试后各科老师都要对班里学生的成绩进行分析,从中分析学生学习的情况,并与同级的其他班级作比较,进而为后续的教学提供指导.面对貌似杂乱的数据,我们运用所学的数字特征的知识能够让这些数据告诉我们什么有用的信息呢?回忆总结数据数字特征的计算方法和表达的意义,学生发言,教师总结.2.2 复习旧知平均数:一组数据的和与这组数据的个数的商称为这组数据的平均数.数据12,n x x x ⋅⋅⋅的平均数为121()n x nx x x =++⋅⋅⋅+ .平均数对数据有“取齐”的作用,代表该组数据的平均水平.中位数:一组数据按从小到大的顺序排成一列,处于中间位置的数称为这组数据的中位数.一组数据的中位数是唯一的,反映了数据的集中趋势.众数:一组数据中出现次数最多的数称为这组数据的众数.一组数据中的众数可能不止一个,也可能没有,反映了数据的集中趋势.极差:一组数据的最大值与最小值的差称为这组数据的极差,表示该组数据之间的差异情况.方差:方差是样本数据到平均数的平均距离,一般用s 2表示,通常用公式2222121[()()()]n s x x x x x x n=-+-+⋅⋅⋅+-来计算.反映了数据的离散程度.方差越大,数据的离散程度越大.方差越小数据的离散程度越小.标准差:标准差等于方差的正的平方根,即s =据围绕平均数的波动程度的大小.3. 深化认知例1 某公司员工的月工资情况如表所示:(1)分别计算该公司员工月工资的平均数、中位数、和众数.(2)假设个别人的工资从8 000元提升到20 000元,从5000元提升到10 000元,那么新的平均数、中位数、众数又是多少?(3)公司经理会选取上面哪个数来代表该公司员工的月工资情况?税务官呢?工会领导呢?解:(1)经计算可以得出:该公司员工月工资的平均数为1373元,中位数为800元,众数为700元.(2)经计算可以得出:该公司员工月工资的平均数为1740元,中位数为800元,众数为700元.(3)公司经理为了显示本公司员工的收入高,采用平均数;而税务官希望取中位数,以便知道目前的所得税率对该公司的多数员工是否有利;工会领导则主张用众数,因为每月拿700元的员工最多.说明:问题(3)的回答不仅要能选对数字特征,还要引导学生反思为什么?知其然更要知其所以然.小组讨论后,由小组代表给出解释.最后由教师总结.对于学生来说,计算数值、以及数字的选取都不会有太大的障碍,主要问题在于学生的回答是否完整、准确,这是学生常犯的错误,故在这里老师要给出完整答案,作出示范.点评:平均数是将所有的数据都考虑进去得到的度量,它是反映数据平均水平最常用的统计量;对于非对称的数据集,中位数更实际地描述了数据的中心,中位数不受少数几个极端数据(即排序靠前或靠后的数据)的影响,在存在一些错误数据时,应该利用抗极端性很强的中位数来表示数据的中心值;众数通常用来表示分类变量的中心值.例2在上一节中,从甲、乙两个城市随机抽取的16台自动售货机的销售额可以用茎叶图表示,如图(1)甲乙两组数据的中位数、众数、极差分别是多少?(2)你能从图中分别比较甲乙两组数据平均数和方差的大小吗?说明:引导学生思考如何通过统计图表来获取数据数字特征;以及进一步引导学生反思统计图表和数据数字特征在整理和分析数据信息过程中的不同作用,并且能够根据具体问题有意识地运用这两种工具,即相应的数学语言去刻画和分析数据的信息.例3 甲、乙两台机床同时生产直径是40mm 的零件.为了检验产品质量,从两台机床生产的产品中各抽取10件进行测量,结果如下表所示(1)你能选择适当的数分别表示这两组数据的离散程度吗?(2)分别计算上面从甲、乙两台机床抽取的10件产品直径的标准差解:(1)参见课本27页.(2)经计算可以得出:==40mm x x 甲乙(),.=0161mm s 甲(),.=0077mm s 乙(). 说明:1.充分调动学生的能动性,发挥想象力,体会比较不同的表示方法.以不同方式表示数据的离散程度,选择方法和计算的过程就是应用数学语言来表示相应特征,这是对数学语言的总结和升华.2.体会刻画数据离散程度的三个原则:(1)应充分利用所得到的数据,以便提供更确切的信息;(2)仅用一个数值来刻画数据的离散程度;(3)对于不同的数据集,当离散程度大时,该数值亦大.3.标准差等于方差的正的平方根,即s 平均数的波动程度的大小.方差的单位是原始测量数据单位的平方,对数据中的极值较为敏感,标准差的单位与原始测量数据单位相同,可以减弱极值的影响.标准差更好的体现了数学语言在实际生活方面的联系,体现了数学语言的多个特征.4 巩固练习1、下面是一家快餐店的所有工作人员(共7人)一周的工资表:(1)计算所有人员一周的平均工资.(2)计算出的平均工资能反映所有工作人员这个周收入的一般水平吗?(3)去掉总经理的工资后,再计算剩余人员的平均工资,这能代表一般工作人员的收入水平吗?解:(1)所有人员一周的平均工资:750元.(2)计算出的平均工资不能反映所有工作人员这个周收入的一般水平.(3)去掉总经理的工资后,剩余人员的平均工资是375元,这能代表一般工作人员的收入水平.2、为了考察甲乙两种小麦的长势,分别从中抽取10株苗,测得苗高如下:哪种小麦长得比较整齐?解:因为s 甲=1.90,s 乙=3,97,所以甲种小麦长得比较整齐.5.课堂小结这节课首先带着问题复习了数据的数字特征的计算方法、意义和作用,然后通过不同的数字特征的对比,深化了对于数据数字特征的认识和理解.此节课最主要的目的就是在具体问题情境中理解不同数字特征的作用,能就具体问题选择不同的数字特征提取数据信息.体会数学语言在统计方面的应用.⎧⎨⎩集中趋势:平均数、中位数、众数数据的数字特征离散程度:极差、方差、标准差6.作业: 课本:P31 习题1—4,1、2题.【板书设计】精美句子1、善思则能“从无字句处读书”。
2013北师大版必修三1.5《数据的数字特征》word学案

主备人:张华审核:包科领导:年级主任:使用时间:§4 数据的数字特征【学习目标】1.理解不同数字特征的意义和作用,能根据问题需要选择适当的数字特征来表达数据的信息;2.通过实例分析,结合具体情境理解数据标准差;3.借助信息技术,计算数据的数字特征,培养动手操作实践能力。
【重点难点】重点:平均数、中位数、众数、极差、方差、标准差的意义与作用;难点:根据需要选择数字特征来表达数据的信息。
【使用说明与学法指导】1.预习课本课本25-31页,完成问题导学。
2.用红笔勾画出疑惑点,独立完成导学案并总结归纳。
【问题导学】1.某学习小组在一次数学测验中,得100分的有1人, 95分的有1人,90分的有2人, 85分的有4人,80分和75分的各有1人,则该小组成绩的平均数为,众数为,中位数。
2.在样本数据中,的数据叫众数。
3.将样本数据按大小排列,位于中间的数据叫;如果数据的个数为偶数,则中位数是。
思考:如何求一组数据的平均数、中位数、众数?它们反映了数据的那些特征?4.样本数据中的和的差叫极差。
方差s2= ;标准差s= 。
思考:极差、方差、标准差反映了数据的那些特征?5.已知一个样本的数据是1,3,2,5,x,它的平均数是3,求该样本的标准差。
【合作探究】(1)指出这个问题中的平均数、中位数、众数?(2)在这个问题中,平均数能客观地反映该工厂的工资水平吗?2.某工厂甲、乙两个车间包装同一产品,在自动包装传送带上,每隔30分钟抽一包产品,称其重量是否合格,记录数据如下:甲车间:102,101,99,103,98,99,98;乙车间:110,115,90,85,75,115,110.(1)这种抽样方法是何种抽样方法?(2)估计甲、乙两个车间产品重量的均值与方差,并说明哪个车间产品较稳定?【当堂检测】【归纳小结】。
高中数学必修三北师大版 数据的数字特征教案

1.4数据的数字特征(设计者阜阳三中侯斌斌)【教学背景分析】本节课是高中数学必修3,第一章第4节。
在初中,学生已经学习了平均数、中位数、众数、极差、方差等,并能解决简单的实际问题。
在这个基础上高中阶段还将进一步学习标准差,并在学习中不断地体会它们各自的特点,在具体的问题中根据情况有针对性地选择一些合适的数字特征。
【教学目标】1、知识与技能能结合具体情境理解不同数字特征的意义和作用,并能根据问题的需要选择适当的数字特征表达数据的信息,培养学生解决问题的能力。
2、过程与方法在分析和解决具体实际问题的过程中学会用恰当的统计量表示数据的方法,并能结合统计量对所给数据的分布情况作出合理的解释。
3、情感态度与价值观通过对现实生活和其他学中统计问题的分析和解决,体会用数学知识解决现实生活及各学问题的方法,认识数学的重要性。
【教学重、难点】教学重点:平均数、中位数、众数、极差、方差、标准差的计算、意义和作用。
教学难点:根据问题的需要选择适当的数字特征表达数据的信息。
【教学过程】教学环节一:创设情境引入新课教学内容提出问题:甲、乙两种玉米苗各抽10株,分别测得它们的株高如下(单位:cm)问:(1)哪种玉米的苗长得高?(2)哪种玉米的苗长得齐?教师点出课题:数据的数字特征师生互动:引导学生讨论、质疑、并提出问题设计意图:通过实例引起学生对平均数的实际意义产生质疑从而引出课题,引导学生从多角度观察数据的数字特征。
教学环节二:巩固复习 提出问题1、 什么叫平均数?有什么意义?2、 什么叫中位数?有什么意义?3、 什么叫众数?有什么意义?4、 什么叫极差?有什么意义?5、什么叫方差?有什么意义?讨论结果: 1、一组数据的和与这组数据的个数的商称为这组数据的平均数。
数据12,,,n x x x 的平均数为12nx x x x n+++= 。
平均数代表该组数据的平均水平。
2、一组数据按从小到大的顺序排成一列,处于中间位置的数称为这组数据的中位数。
高中数学 第一章 统计 数据的数字特征课件 北师大版必修3

第四页,共23页。
1、求下列(xiàliè)各组数据的众数
(1)、1 ,2,3,3,3,5,5,8,8,8,9,9
众数(zhònɡ shù) (2)、1 ,2,3,3,3,5,5,8,8是,9:,39和8
2、求下列各组数据的中位数
众数(zhònɡ shù)是:3
(1)、1 ,2,3,3,3,4,6,8,8,8,9,9
数据(shùjù)的数 字特征
第一页,共23页。
在一次射击(shèjī)比赛中,甲、乙两名运动员各 射击(shèjī)10次,命中环数如下﹕
甲运动员﹕7,8,6,8,6,5,8,10,7,4; 乙运动员﹕9,5,7,8,7,6,8,6,7,7.
观察上述样本数据,你能判断哪个运动员发 挥的更稳定些吗?为了从整体上更好地把握总体的规律 ,我们要通过样本的数据对总体的数字特征进行研究。 ——用样本的数字特征估计总体的数字特征
员工 /人
1
2
4
6 12 8 20 5 2
1、计算工资(gōngzī)的平均数、中位数、众数
2、公司经理会选上面哪个(nǎ ge)数代表该公司员工的 月工资情况?税务官呢?工会领导呢?
第十页,共23页。
三种数字(shùzì)特征的 优缺1、点众数体现了样本数据(shùjù)的最大集中点,但
它对其它数据(shùjù)信息的忽视使得无法客观地反映总 体特征。
7.39(h)
第八页,共23页。
5.下面是一次考试结果的频数(pín shù)分布图。 估计这ห้องสมุดไป่ตู้考试成绩的中位数、众数和平均数。
10
人8 数6
4 2
0
20
40
60
80
100
高中数学 第一章 统计 1.5.2 估计总体的数字特征教案 北师大版必修3(2021年最新整理)

高中数学第一章统计1.5.2 估计总体的数字特征教案北师大版必修3 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第一章统计1.5.2 估计总体的数字特征教案北师大版必修3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第一章统计1.5.2 估计总体的数字特征教案北师大版必修3的全部内容。
5.2 估计总体的数字特征错误!教学分析教科书通过现实生活中的例子,引导学生认识到:只描述平均位置的特征是不够的,还需要描述样本数据离散程度的特征.通过对如何描述数据离散程度的探索,使学生体验创造性思维的过程.三维目标1.正确理解样本数据标准差的意义和作用,学会计算数据的标准差;能根据实际问题的需要合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并作出合理的解释;会用样本的基本数字特征估计总体的基本数字特征,形成对数据处理过程进行初步评价的意识.2.在解决统计问题的过程中,进一步体会用样本估计总体的思想,理解数形结合的数学思想和逻辑推理的数学方法;会用随机抽样的方法和样本估计总体的思想解决一些简单的实际问题,认识统计的作用,能够辩证地理解数学知识与现实世界的联系.重点难点教学重点:根据实际问题从样本数据中提取基本的数字特征并作出合理解释,估计总体的基本数字特征;体会样本数字特征具有随机性.教学难点:用样本平均数和标准差估计总体的平均数与标准差;能应用相关知识解决简单的实际问题.课时安排1课时错误!导入新课思路1.平均数为我们提供了样本数据的重要信息,但是,有时平均数也会使我们作出对总体的片面判断.如某地区的统计显示,该地区的中学生的平均身高为176 cm,给我们的印象是该地区的中学生生长发育好,身高较高.但是,假如这个平均数是从50万名中学生中抽出的50名身高较高的学生计算出来的话,那么,这个平均数就不能代表该地区所有中学生的身体素质.因此,只有平均数难以概括样本数据的实际状态,于是我们学习从另外的角度来考察样本数据的统计量--标准差.(教师板书课题)思路2。
高中数学 1.4 数据的数字特征一课件 北师大必修3

众数140
分组 频率/组距频率 [122,126) 0.01 0.04 [126,130) 0.0175 0.07 [130,134) 0.02 0.08 [134,138) 0.045 0.18 [138,142) 0.07 0.28 [142,146) 0.0425 0.17 [146,150) 0.0225 0.09 [150,154) 0.0125 0.05 [154,158) 0.01 0.04
提问:1、电视里评委是怎样给选手打分的? 2、为什么这么做?直接取中位数和众数的值不好么?
特征数 特征值
众数 9.3
中位数 9.4
平均数 9.49
去掉一个最高分和 最低分后的平均分
9.42
去掉两个最高分 和最低分后的平 均分
9.44
例2、报纸上招聘栏目内,某电脑销售公 司招聘台前售货员,进货员,售后服务员, 前台经理等多名业务人员,广告打出该公 司月平均工资本950元,小张想找到一分 这样的工作,理想的工资价位是900元应 聘,现请你参考,你怎么样看待这则广告?
应立即劝这位同学查阅一下这所大学招生的其 它信息。查看一下这所大学近几年招生的平均 数,如果平均数低于550分,说明这所大学每 年的招生中,存在只招入少数高分学生的现象, 大部分学生都是低于中位数录取的,可以报报看, 否则不能报。如果能查到该校每年录取的最低 分数线那是最好的
用一个数 a代表n个数 x1,x2,x3, ,xn的值,a怎
例3 某工厂人员及工资构成如下:
人员 周工资 人数 合计
经理 管理人员 高级技工 工人 学徒 合计
2200 250
220
200 100
16
5
10 1 23
2200 1500 1100 2000 100 6900
高中数学 第一章数据的数字特征导学案 北师大版必修3

§4数据的数字特征1.能结合具体情境理解不同数字特征的意义,并能根据问题的需要选择适当的数字特征来表达数据的信息.2.通过实例理解数据标准差的意义和作用,学会计算数据的标准差.1.众数(1)定义:一组数据中出现次数________的数称为这组数据的众数.(2)特征:一组数据的众数可能________个,也可能没有,它反映了该组数据的________.众数体现了样本数据的最大集中点,但它对其他数据信息的忽视使其无法客观地反映总体特征.2.中位数(1)定义:一组数据按从小到大(或从大到小)的顺序排成一列,处于________位置的数称为这组数据的中位数.(2)特征:一组数据中的中位数是________的,反映了该组数据的________.中位数是样本数据所占频率的等分线,它不受少数几个极端值的影响,这在某些情况下是优点,但它对极端值的不敏感有时也会成为缺点.3.平均数(1)定义:一组数据的和与这组数据的个数的商叫做这组数据的平均数,数据x1,x2,…,x n的平均数为x=________________.(2)特征:平均数对数据有“取齐”的作用,代表该组数据的________.任何一个数据的改变都会引起平均数的变化,这是________和________都不具有的性质.所以与众数、中位数比较起来,平均数可以反映出更多的关于样本数据全体的________,但平均数受数据中的________的影响较大,使平均数在估计总体时可靠性降低.【做一做2】对甲、乙二人的学习成绩进行抽样分析,各抽4门功课,得到的观测值如下:4.标准差(1)定义:标准差是样本数据到平均数的一种平均距离,一般用s表示,通常用以下公式来计算s=________________________________________________________________________.可以用计算器或计算机计算标准差.(2)特征:标准差描述一组数据围绕________波动的大小,反映了一组数据变化的幅度和离散程度的大小.标准差较大,数据的离散程度较________;标准差较小,数据的离散程度较______.【做一做3】从某项综合能力测试中抽取100人的成绩如下表,则这100人成绩的标准差为( ).A. 3 B5.方差(1)定义:标准差的平方,即s2=________________________________________________________________________.(2)特征:与标准差的作用________,描述一组数据围绕平均数波动的大小.(3)取值范围:________.数据组x1,x2,…,x n的平均数为x,方差为s2,标准差为s,则数据组ax1+b,ax2+b,…,ax n+b(a,b为非零常数)的平均数为a x+b,方差为a2s2,标准差为as.【做一做4】下列能刻画一组数据离散程度的是( ).A.平均数 B.方差 C.中位数 D.众数6.极差(1)定义:一组数据的最______值与最______值的差称为这组数据的极差.(2)特征:表示该组数据之间的差异情况.极差利用了数据组中最大和最小的两个值,对极值过于敏感.但由于只涉及两个数据,便于得到,所以极差在实际中也经常应用.【做一做5】一组数据3,-1,0,2,x的极差是5,则x=__________.平均数与标准差(方差)这两个数字特征在实际问题中如何应用?剖析:平均数反映的是数据的平均水平,在实际应用中,平均数常被理解为平均水平.标准差反映的是数据的离散程度的大小,反映了各个样本数据聚集于样本平均数周围的程度,标准差越小表明在样本平均数的周围越集中;反之,标准差越大,表明各个样本数据在样本平均数的两边越分散.在实际应用中,标准差常被理解为稳定性,常常与平均数结合起来解决问题.例如,要从甲、乙两名射击运动员中选一名参加2012年伦敦奥运会,如果你是教练,你会制定怎样的选拔标准?制定怎样的选拔方案?选拔标准是:要考虑射击运动员的射击水平即平均射击环数,再就是考虑射击运动员发挥的稳定性.当射击环数的平均数不相同时,选择平均数较大的运动员;当射击环数的平均数相同时,选择发挥稳定(标准差较小)的运动员.选拔方案:让这两名运动员在相同的环境中进行相同次数的射击,比如参加射击世锦赛、世界杯、国际邀请赛、热身赛或国内比赛,并记录每次射击的环数.然后计算两名运动员射击环数的平均数和方差,再根据选拔标准作出选择.题型一平均数、中位数、众数的应用(2)假设副董事长的工资从5 000元提升到20 000元,董事长的工资从5 500元提升到30 000元,那么该公司职工的月工资的平均数、中位数、众数又是多少?(精确到元)(3)你认为哪个统计量更能反映这个公司职工的月工资水平?结合此问题谈一谈你的看法.分析:根据平均数、中位数、众数的概念求解. 反思:平均数是将所有的数据都考虑进去得到的量,它是反映数据集中趋势最常用的量,中位数可靠性较差,当一组数据中个别数据变动较大时,常用中位数表示该组数据的集中趋势.而众数求法较简便,也经常被用到.考查一组数据的特征时,这三个数字特征要结合在一起考虑.大多情况下人们会把眼光仅停留在工资表中的最大值与最小值处,把最高工资作为一个单位工资的评价,这是一种错误的评价方式.题型二 标准差、方差的计算【例题2】已知一个样本为x,1,y,5,其中x ,y 是方程组⎩⎪⎨⎪⎧x +y =2,x 2+y 2=10的解,则这个样本的标准差是( ).A .2B . 2C .5D . 5反思:深刻理解平均数、方差的计算公式,灵活应用x +y =2和x 2+y 2=10进行整体求解是提高解题速度的关键.题型三 综合应用题【例题3】对划艇运动员甲、乙二人在相同的条件下进行了6次测试,测得他们最大速度(m/s)的数据如下:甲:27,38,30,37,35,31; 乙:33,29,38,34,28,36.根据以上数据,试判断他们谁更优秀.分析:分别计算两组数据的平均值与方差,然后加以比较并作出判断.反思:判断甲、乙两运动员成绩的优劣,通常用平均数和方差作为标准来比较,当平均数相同时,还应考察他们的成绩波动情况(方差),以达到判断上的合理性和全面性.1(2011广东汕头期中,6)若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是( ).A .91.5和91.5B .91.5和92C .91和91.5D .92和922甲、乙两台机床同时生产一种零件,现要检验它们的运行情况,统计10天中两台机床每天出的次品数分别为甲:0,1,0,2,2,0,3,1,2,4;乙:2,3,1,1,0,2,1,1,0,1.则出次品数较少的为( ).A .甲B .乙C .相同D .不能比较3已知一个样本中含有5个数据3,5,7,4,6,则样本方差为( ). A .1 B .2 C .3 D .44已知一组数据x 1,x 2,…,x n 的方差是a ,那么另一组数据x 1-2,x 2-2,…,x n -2的方差是________.5答案:基础知识·梳理1.(1)最多 (2)不止一 集中趋势 2.(1)中间 (2)唯一 集中趋势 【做一做1】1.2 0.83.(1)x 1+x 2+…+x nn(2)平均水平 众数 中位数信息 极端值【做一做2】解:x 甲=14(65+82+80+85)=78,x 乙=14(75+65+70+90)=75,∴甲的平均成绩较好.4.(1)1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2](2)平均数 大 小【做一做3】B 这100人的总成绩为5×20+4×10+3×30+2×30+1×10=300,则平均成绩为300100=3,则这100人成绩的标准差为1100[(5-3)2×20+(4-3)2×10+(3-3)2×30+(2-3)2×30+(1-3)2×10] =2105. 5.(1)1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2] (2)相同 (3)[0,+∞) 【做一做4】B 方差能刻画一组数据离散程度的大小. 6.(1)大 小【做一做5】-2或4 典型例题·领悟【例题1】解:(1)平均数是5 500+5 000+3 500×2+3 000+2 500×2+2 000×3+1 500×2030=2 050(元),中位数是1 500元,众数是1 500元. (2)平均数是30 000+20 000+3 500×2+3 000+2 500×2+2 000×3+1 500×2030≈3 367(元),中位数是1 500元,众数是1 500元.(3)在这个问题中,中位数或众数均能反映该公司职工的月工资水平.因为公司中少数人的月工资与大多数人的月工资差别较大,这样导致平均数与职工整体月工资的偏差较大,所以平均数不能反映这个公司职工的月工资水平.【例题2】D ∵x +y =2,x 2+y 2=10,∴x =14(x +1+y +5)=14[(x +y )+6]=2,s 2=14[(x -2)2+(1-2)2+(y -2)2+(5-2)2]=14[(x 2+y 2)-4(x +y )+18]=14×20=5, ∴s =s 2= 5.【例题3】解:x 甲=16×(27+38+30+37+35+31)=33,s 甲2=16×[(27-33)2+(38-33)2+…+(31-33)2]=16×94≈15.7, x 乙=16×(33+29+38+34+28+36)=33,s 乙2=16×[(33-33)2+(29-33)2+…+(36-33)2]=16×76≈12.7. ∴x 甲=x 乙,s 甲2>s 乙2.这说明甲、乙二人的最大速度的平均值相同,但乙比甲更稳定,故乙比甲更优秀. 随堂练习·巩固1.A x =90+18(-1-3+3+1+6+4+0+2)=91.5.中位数=91+922=91.5.2.B x 甲=1.5,x 乙=1.2.3.B x =3+5+7+4+65=5,则方差s 2=15[(3-5)2+(5-5)2+(7-5)2+(4-5)2+(6-5)2]=2.4.a 将一组数据同时减去一个数,所得新数据的方差与原数据的方差相等.5.解:x 甲=15×(60+80+70+90+70)=74;x 乙=15×(80+60+70+80+75)=73.s 甲2=15×(142+62+42+162+42)=104;s 乙2=15×(72+132+32+72+22)=56.∵x 甲>x 乙,s 甲2>s 乙2,∴甲的平均成绩较好,乙的各门功课发展较平衡.。
北师大版数学高一新授课教案1.5 数据的数字特征

第一章 统计第4节 数据的数字特征一 数据的集中趋势(代表)1.平均数、中位数、众数的概念 (1)平均数 一般地,对于N 个数Nx x x ,,,21 ,我们把Nx x x N+++ 21叫做这N 个数的算术平均数,简称平均数.平均数是将所有的数据都考虑进去得到的度量,它是反映数据集中趋势最常用的统计量.(2)中位数将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.中位数将观测数据分成相同数目的两部分,其中一部分都比这个数小而另一部分都比这个数大,对于非对称的数据集,中位数更实际地描述了数据的中心.(3)众数在一组数据中,出现次数最多的数据叫做这组数据的众数.注意:①众数是一组数据中出现次数最多的数据,是一组数据中的原数据,而不是相应的次数.②一组数据中的众数有时不只一个,如数据2、3、-1、2、1、3中,2和3都出现了2次,它们都是这组数据的众数.③当变量是分类变量时,众数往往经常被使用.二 数据的离散程度极差、方差、标准差的概念 (1)极差极差=数据中的最大值-数据中的最小值. 极差表示了一组数据变化范围的大小,反映了极端数据的波动情况.它只是利用了数据中的最大值与最小值,而且对极值过于敏感.但由于只涉及两个数据,便于得到,所以极差在实际中也经常用到.(2)方差与标准差设在一组数据中n x x x ,,,21 中,各数据与它们的平均数x 的差的平方分别是21)(x x -、22)(x x -、2)(x x n -,那么我们用它们的平均数,即用])()()[(122221x x x x x x nn -++-+- ,来衡量这组数据的波动大小,并把它叫做这组数据的方差.即])()()[(1222212x x x x x x ns n -++-+-=样本方差的算术平方根叫做样本的标准差,标准差的计算公式:例1鞋的尺码(cm ) 302820232125销售量(双)5 1 2 3 5 4 指出这组数据的众数、中位数、平均数.解: 30cm ,21cm 的鞋各出现5次,故众数为30cm,21cm ;求中位数时应注意,在排列数据时应考虑每一个数出现的次数,本题中共有20514352=+++++个数据,第10位数据为23,第11位数据是25,故中位数22423+=24(cm) .平均数为6.2420254215233202281305=⨯+⨯+⨯+⨯+⨯+⨯(cm)例2 已知两组数据:分别计算这两组数据的方差,试判断这两种数据的中哪个波动性更小.解:因为乙甲22S <S,所以甲组数据比乙组数据波动性更小.前5天 5 5 0 0 0 后5天 -1 2 2 2 5 解:(1)前5天的极差505=-=;后5天的极差6)1(5=--= 因为65<,所以前5天中最高气温的变化范围较小. 又因为前5天的方差6])20()20()20()25()25[(512222221=-+-+-+-+-=s 后5天的方差6.3])25()22()22()22()21[(512222222=-+-+-+-+--=s 所以22s <21s ,所以后5天中最高气温的波动较小,比较稳定.例4甲、乙两名战士在相同条件下各射击靶10次,每次命中的环数分别是: 甲:8,6,7,8,6,5,9,10,4,7; 乙:6,7,7,8,6,7,8,7,9,5. (1)分别计算以上两组数据的平均数; (2)分别求出这两组数据的方差;(3)根据计算结果,估计这两名战士的射击情况. 解:(1)7107768=++++= 甲x (环),7105776=++++= 乙x (环)(2)0.3]77()76()78[(1012222=-++-+-=)s甲(环2) 2.1])75()77()76[(1012222=-++-+-=乙s (环2)(3)因为=甲x 乙x ,所以说明甲、乙两名战士的平均水平相当. 又因为>甲2s乙2s ,所以说明甲战士射击情况波动大.故乙战士比甲战士射击情况稳定.例6(2006年湖南卷)某高校有甲、乙两个数学建模兴趣班. 其中甲班有40人,乙班50人. 现分析两个班的一次考试成绩,算得甲班的平均成绩是90分,乙班的平均成绩是81分,则该校数学建模兴趣班的平均成绩是 分.解:由于甲班有40人,甲班的一次考试的平均成绩是90分,所以甲班在这次考试的总绩为9040⨯分,同样乙班在这次考试的总绩为8150⨯分.又该校甲、乙两个数学建模兴趣班共有905040=+(人),故该校数学建模兴趣班的平均成绩是859081509040=⨯+⨯(分)所以填85. 练习题1.当5个整数从小到大排列,其中位数是4,如果这个数据的唯一众数是6,则这5个整数可能的最大的和是( )A .21B . 22C .23D .242. 已知一组数据为10,20,80,40,30,90,50,40,50,40,则这组数据的众数是 ,中位数是 .3. 甲,乙两名射击手的测试成绩统计如下:第一次 第二次 第三次 第四次 第五次 甲命中环数 7 8 8 8 9 乙命中环数1061068⑴ 请分别计算两名射手的平均成绩;⑵ 请根据这两名射击手的成绩画出折线统计图; ⑶ 现要挑选一名射击手参加比赛,若你是教练,你认为挑选哪一位比较适宜?为什么?4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七课时§1.5数据的数字特征
一、教学背景分析:在义务教育阶段,学生已经通过实例,学习了平均数、中位数、众数、极差、方差等,并能解决简单的实际问题。
(由于义务教育阶段《大纲》中对统计部分的要求与《标准》的要求相差较大,若是承接现行《大纲》的话,建议先补充《标准》中第三学段相应部分的内容。
)在这个基础上高中阶段还将进一步学习标准差,并在学习中不断地体会它们各自的特点,在具体的问题中根据情况有针对性地选择一些合适的数字特征。
二、教学目标:1、能结合具体情境理解不同数字特征的意义,并能根据问题的需要选择适当的数字特征来表达数据的信息,培养学生解决问题的能力。
2、通过实例理解数据标准差的意义和作用,学会计算数据的标准差,提高学生的运算能力。
三、教学重、难点
教学重点:平均数、中位数、众数、极差、方差、标准差的计算、意义和作用。
教学难点:根据问题的需要选择适当的数字特征来表达数据的信息。
四、设计思路
1、教法构想:本节教学设计依据课程标准,在义务教育阶段的基础上,进一步掌握平均数、中位数、众数、极差、方差、标准差的计算、意义和作用。
通过具体的实例,让学生理解数字特征的意义,并能选择适当的数字特征来表达数据的信息。
2、学法指导:学生自主探究,交流合作,教师归纳总结相结合。
五、教学实施
(一)、导入新课
提出问题:小明开设了一个生产玩具的小工厂,管理人员由小明、他的弟弟和六个亲戚组成。
工作人员由五个领工和十个工人组成。
工厂经营的很顺利,需增加一个新工人,小亮需要一份工作,应征而来与小明交谈。
小明说:“我们这里报酬不错,平均薪金是每周300元。
你在学徒期每周75元,不过很快就可以加工资了。
”小亮工作几天后找到小明说:“你欺骗了我,我已经找其他工人核对过了,没有一个人的工
资超过每周100元,平均工资怎么可能是一周300元呢?”小名说:“小亮啊,不要激动,平均工资是300元,你看,这是一张工资表。
”工资表如下:
这到底是怎么了?(学生思考交流)。
教师
点出课题:数据的数字特征 (二)、推进新课 Ⅰ、新知探究
提出问题:1、什么叫平均数?有什么意义?2、什么叫中位数?有什么意义?3、什么叫众数?有什么意义?4、什么叫极差?有什么意义?5、什么叫方差?有什么意义?6、什么叫标准差?有什么意义?
讨论结果:1、一组数据的和与这组数据的个数的商称为这组数据的平均数。
数据
12,,,n x x x 的平均数为12n
x x x x n
++
+=。
平均数对数据有“取齐”的作用,代
表该组数据的平均水平。
2、一组数据按从小到大的顺序排成一列,处于中间位置的数称为这组数据的中位数。
一组数据的中位数是唯一的,反映了数据的集中趋势。
3、一组数据中出现次数最多的数称为这组数据的众数。
一组数据中的众数可能不止一个,也可能没有,反映了数据的集中趋势。
4、一组数据的最大值与最小值的差称为这组数据的极差,表示该组数据之间的差异情况。
5、方差是样本数据到平均数的平均距离,一般用2
s 表示,通常用公式
2222121
[()()()]n s x x x x x x n
=-+-+
+-来计算。
反映了数据的离散程度。
方差
越大,数据的离散程度越大。
方差越小数据的离散程度越小。
6、标准差等于方差的正的平方根,即s
围绕平均数的波动程度的大小。
Ⅱ、应用示例
例1 某公司员工的月工资情况如表所示:
(1)、分别计算该公司员工月工资的平均数、中位数、和众数。
(2)、公司经理会选取上面哪个数来代表该公司员工的月工资情况?税务官呢?工会领导呢?
解:(1)经计算可以得出:该公司员工月工资的平均数为1373元,中位数为800元,众数为700元。
(2)、公司经理为了显示本公司员工的收入高,采用平均数;而税务官希望取中位数,以便知道目前的所得税率对该公司的多数员工是否有利;工会领导则主张用众数,因为每月拿700元的员工最多。
点评:平均数是将所有的数据都考虑进去得到的度量,它是反映数据平均水平最常用的统计量;中位数将观测数据分成相同数目的两部分,其中一部分都比这个数小而另一部分都比这个数大,对于非对称的数据集,中位数更实际地描述了数据的中心;当变量是分类变量时,众数往往经常被使用。
变式训练:1、下表是某班40名学生参加“环保知识竞赛”的得分统计表:
请参照这个表解答下列问题:(1)用含x,y的式子表示该班参加“环保知识竞赛”的班平均分f;(2)若该班这次竞赛的平均分为2.5分,求,x y的值。
解:(1)
3559
40
x y
f
++
=;(2)依题意,有
3541
11
{x y
x y
+=
+=解得
7
4
{x
y
=
=
例2 甲、乙两台机床同时生产直径是40mm的零件。
为了检验产品质量,从两台机床生产的产品中各抽取10件进行测量,结果如下表所示
分别计算上面从甲、乙两台机床抽取的10件产品直径的标准差。
解:从数据容易得到甲、乙两台机床生产的这10件产品直径的平均值40()
x x mm
==
乙
甲。
我们分别计算它们直径的标准差:
0.161()
s mm ==
甲
0.077()
s mm ==
乙
由上面的计算可以看出:甲、乙两台机床生产的产品直径的平均值相同,而甲机床生产的产品直径的标准差为0.161mm,比乙机床的标准差0.077mm大,说明乙机床生产
的零件更标准些,即乙机床的生产过程更稳定一些。
点评:对数据数字特征内容的评价,应当更多地关注对其本身意义的理解和在新情境中的应用,而不是记忆和使用的熟练程度。
Ⅲ、知能训练
1、下列说法正确的是(D )
A.甲、乙两班期末考试数学平均成绩相同,这表明这两个班数学学习情况一样。
B.期末考试数学成绩的方差甲班比乙班小,这表明甲班的数学学习情况比乙班好。
C.期末考试数学平均成绩甲、乙两班相同,方差甲班比乙班大,则数学学习甲班比乙班好。
D.期末考试数学平均成绩甲、乙两班相同,方差甲班比乙班小,则数学学习甲班比乙
班好。
2、(2007海南高考,理11)甲、乙、丙三名射箭运动员在某次测试中各射箭20次,三人的测试成绩如下表: 甲的成绩:
乙的成绩:
丙的成绩:
123s s s 、、分别表示甲、乙、丙三名射箭运动员这次测试成绩的标准差,则有(C )
A.123s s s >>
B.312s s s >>
C.213s s s >>
D.231s s s >>
3、某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么由此求出的平均数与实际平均数的差是 -3 Ⅳ、拓展提升
甲、乙两种玉米苗各抽10株,分别测得它们的株高如下(单位:cm )
问:(1)哪种玉米的苗长得高?(2)哪种玉米的苗长得齐?
解:(1)30()x cm =甲,31()x cm =乙 x x ∴<乙甲,即乙种玉米的苗长得高。
(2)
2222 22
104.2(),128.8() s cm s cm s s
==
∴<乙
甲
乙
甲
即甲种玉米的苗长得齐。
(三)、课堂小结:本节课通过具体实例探讨和学习了平均数、中位数、众数、极差、方差、标准差的计算、意义和作用,让学生体会所学内容与现实世界的密切联系。
(四)、作业:课本30—31页习题1—4 1、2。
六、设计体会(教后反思)
统计的学习,本质上是统计活动的学习,而不是概念和公式的学习。
因此在本节教学设计中所采用的数据和问题情境尽可能来源于实际,充分挖掘学生生活中与数据有关的素材,使他们体会所学内容与现实世界的密切联系。
另外,在教学活动中,还要特别加强小组活动的组织与教学,并在活动的过程中引导学生逐步体会统计的作用和基本思想。