三年级奥数《和差问题》

合集下载

三年级奥数课题

三年级奥数课题

三年级奥数课题一、和差问题。

1. 甲、乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?- 解析:- 我们可以先求出乙班的人数。

因为甲班比乙班多6人,如果从两班总人数98人中减去6人,那么剩下的人数就是乙班人数的2倍。

- 乙班人数为(98 - 6)÷2=46(人)。

- 甲班人数就是46 + 6 = 52(人)。

2. 长方形的长和宽之和为18厘米,长比宽多2厘米,求长方形的面积。

- 解析:- 先求宽,宽为(18 - 2)÷2 = 8(厘米)。

- 长为8+2 = 10(厘米)。

- 长方形面积 = 长×宽=10×8 = 80(平方厘米)。

二、和倍问题。

3. 学校将360本图书分给二、三年级,已知三年级所分得的本数是二年级的2倍,问二、三年级各分得多少本图书?- 解析:- 把二年级分得的图书本数看作1份,三年级分得的本数就是2份,那么二、三年级共分得1 + 2=3份。

- 二年级分得360÷3 = 120(本)。

- 三年级分得120×2 = 240(本)。

4. 甲、乙两数的和是112,甲数除以乙数的商是6,甲、乙两数各是多少?- 解析:- 因为甲数除以乙数的商是6,所以甲数是乙数的6倍。

把乙数看作1份,甲数就是6份,它们的和就是1+6 = 7份。

- 乙数为112÷7 = 16。

- 甲数为16×6 = 96。

三、差倍问题。

5. 妈妈的年龄是小红的4倍,妈妈比小红大27岁,小红和妈妈各多少岁?- 解析:- 妈妈的年龄是小红的4倍,那么妈妈比小红大的岁数就是小红年龄的4 - 1=3倍。

- 小红的年龄为27÷3 = 9(岁)。

- 妈妈的年龄为9×4 = 36(岁)。

6. 被除数比除数大252,商是7,被除数、除数各是多少?- 解析:- 因为商是7,说明被除数是除数的7倍,被除数比除数大的252就是除数的7 - 1 = 6倍。

三年级和差问题(五篇模版)

三年级和差问题(五篇模版)

三年级和差问题(五篇模版)第一篇:三年级和差问题和差问题和差问题是已知大小两个数的和与两个数的差,求大小两个数各是多少的应用题。

为了解答这种应用题,首先要弄清两个数相差多少的不同叙述方式.有些题目明确给了两个数的差,而有些应用题把两个数的差“暗藏”起来,我们管暗藏的差叫“暗差”。

例:“把姐姐的铅笔拿出3支后,姐姐、弟弟的铅笔支数就同样多.”这说明姐姐的铅笔比弟弟多3支,也说明姐姐和弟弟铅笔相差3支。

再例:“把姐姐的铅笔给弟弟3支后,两人铅笔支数就同样多.”如果认为姐姐的铅笔比弟弟多3支(差是3),那就错了.实际上姐姐比弟弟多2个3支.姐姐给弟弟3支后,自己留下3支,再加上他们原有的铅笔数,他们的铅笔支数才可能一样多.这里3×2=6支,就是暗差。

“把姐姐的铅笔给弟弟3支后还比弟弟多1支”,这就说明姐姐的铅笔支数比弟弟多3×2+1=7(支)。

例1 两筐水果共重150千克,第一筐比第二筐多8千克,两筐水果各多少千克?分析这样想:假设第二筐和第一筐重量相等时,两筐共重150+8=158(千克);假设第一筐重量和第二筐相等时,两筐共重150-8=142(千克).解法1:①第二筐重多少千克?(150-8)÷2=71(千克)②第一筐重多少千克?71+8=79(千克)或 150-71=79(千克)解法2:①第一筐重多少千克?(150+8)÷2=79(千克)②第二筐重多少千克?79-8=71(千克)或150-79=71(千克)答:第一筐重79千克,第二筐重71千克。

例2 今年小强7岁,爸爸35岁,当两人年龄和是58岁时,两人年龄各多少岁?分析题中没有给出小强和爸爸年龄之差,但是已知两人今年的年龄,那么今年两人的年龄差是35-7=28(岁).不论过多少年,两人的年龄差是保持不变的.所以,当两人年龄和为58岁时他们年龄差仍是28岁.根据和差问题的解题思路就能解此题。

解:①爸爸的年龄:[58+(35-7)]÷2=[58+28]÷2=86÷2=43(岁)②小强的年龄:58-43=15(岁)答:当父子两人的年龄和是58岁时,小强15岁,他爸爸43岁。

三年级奥数《和差问题》(五篇范文)

三年级奥数《和差问题》(五篇范文)

三年级奥数《和差问题》(五篇范文)第一篇:三年级奥数《和差问题》教学设计方案 XueDa PPTS Learning Center第八讲:和差问题【知识要点】:已知大小两个数的和以及它们的差,求这两个数各是多少,这类问题我们称为“和差问题”。

掌握和差问题的特征和规律,解答起来就很方便了。

解答和差问题通常用假设法,同时结合线段图进行分析。

可以假设小数增加到与大数同样多,先求大数,再求小数;也可以假设大数减少到与小数同样多,先求小数,再求大数。

数量关系式表:(和+差)÷2=大数(和—差)÷2=小数【例1】期中考试王平和李杨语文成绩的总和是188分,李杨比王平少4分。

两人各考了多少分?【思路导航】根据题意画出线段图。

我们可以用假设法来分析。

假设李杨的分数和王平一样多,则总分就增加______分,变为188+[ ]= [ ]分,这就表示王平的______倍,所以王平考了:[ ]÷[ ]= [ ]分,李杨考了[ ]-[ ]= [ ]分。

【课堂反馈1】1、两筐水果共重124千克,第一筐比第二筐多8千克。

两筐水果各重多少千克?2、有三只船共运木板9800块,第一只船比其余两船共运的少1400块,第二只船比第三只船少运200块。

三只船各运木板多少块?教学设计方案 XueDa PPTS Learning Center【例2】某机床厂第一、二两个车间共有车床96部,如果第一车间拨给第二车间8部,那么两个车间车床数相等。

两个车间各有车床多少部?【思路导航】用线段图表示题意。

已知第一、二两个车间共有车床96部,又根据“如果第一车间拨给第二车间8部,两个车间车床数相等”,从线段图上我们可以看出第一车间原来比第二车间多[ ]×2=[ ]部车床。

所以,第一车间原有:([ ]+ [ ]×2)÷[ ]= [ ]部车床,第二车间原有56-[ ]= [ ]部车床。

【课堂反馈2】1、红星小学一年级新108人,分成甲、乙两个班。

三年级奥数和差问题

三年级奥数和差问题

和差问题:1、有两筐橘子,共重120千克,大筐比小筐重30千克。

两筐橘子各重多少千克?
2、三年级有50名学生,其中男生比女生多2人,三年级男生、女生各多少人?
3、期中考试,王平和李杨语文成绩总和是188分,李杨比王平少4分。

两人语文各考了多少分?
4、小华和小明共有180张画片,小华比小明多20张,小华和小明各有多少张画片?
5、红领巾小学三年级共有学生102人,分成了甲、乙两个班,如果从甲班转2个学生到乙班,两班学生就一样多了,甲、乙两班原来各有学生多少人?
6、爷爷和爸爸的年龄和正好是80岁,4年前爷爷的年龄正好是爸爸的2倍,爸爸今年多少岁?
7、哥哥哥和弟弟俩共有邮票70枚,如果哥哥给弟弟4枚,则哥弟俩邮票同样多,哥哥和弟弟原来各有邮票多少枚?
8、一个两层书架共放书72本,若上层书架拿出9本放在下层,则两层书架上的书同样多。

上、下两层书架原来各有书多少本?
9、小青和小丽共有50张彩纸,如果小青送给小丽5张,两人就一样多。

她们两人原来各有多少张彩纸?
10、姐姐和弟弟共有贺卡80张,如果姐姐给弟弟3张后,还比弟弟多4张。

姐姐和弟弟原来各有多少张贺卡?
11、甲、乙两校共有学生864人,如果从甲校调32人到乙校,那么甲校还比乙校多48人,问甲、乙两校原来各有学生多少人?
12、姐姐和妹妹共有糖果42块,如果姐姐给妹妹7块糖果,姐姐仍比妹妹多2块。

姐妹俩原来各有糖果多少块?
1、为纪念小学毕业留念,王老师为甲、乙两个班共买了160个纪念品,甲班分给乙班20个后,甲班还比乙班多10个,甲班和乙班原来各分到多少个纪念品?。

三年级奥数题和差问题及答案

三年级奥数题和差问题及答案

三年级奥数题及答案:和差问题1.和差问题大强体重比小强体重多3公斤,他们俩的体重之和是77公斤,问大强的体重是多少公斤?解答:让小强长胖3公斤,这时候两人一样重,这时候两人体重之和是3+77=80公斤。

所以大强体重也是80÷2=40公斤,小强长胖3公斤后体重也是40公斤,所以小强体重40-3=37公斤。

【小结】在解决和差问题时,假设法是常用的方法。

2.逆推问题三个鱼缸里共有金鱼60条,现在从第一个鱼缸里取出5条放入第二个鱼缸里,再从第二个鱼缸里取出10条放入第三个鱼缸中,现在三个鱼缸里的金鱼一样多,求原来每个鱼缸里各有多少条金鱼?解答:最后每个鱼缸里有鱼60÷3=20条。

在从第二个鱼缸里取鱼放入第三个鱼缸之前,第一个、第二个、第三个鱼缸分别有鱼20条,30条,10条;在从第一个鱼缸里取鱼放入第二个鱼缸之前,第一个、第二个、第三个鱼缸分别有鱼25条,25条,10条。

所以原来第一个、第二个、第三个鱼缸里分别有鱼25条,25条,10条。

三年级奥数:和差分倍问题一1、南京长江大桥共分两层,上层是公路桥,下层是铁路桥。

铁路桥和公路桥共长11270米,铁路桥比公路桥长2270米,问南京长江大桥的公路和铁路桥各长多少米?分析:和差基本问题,和1127米,差2270米,大数=(和+差)/2,小数=(和-差)/2。

解:铁路桥长=(11270+2270)/2=6770米,公路桥长=(11270-2270)/2=4500米。

2、三个小组共有180人,一、二两个小组人数之和比第三小组多20人,第一小组比第二小组少2人,求第一小组的人数。

分析:先将一、二两个小组作为一个整体,这样就可以利用基本和差问题公式得出第一、二两个小组的人数和,然后对第一、二两个组再作一次和差基本问题计算,就可以得出第一小组的人数。

解:一、二两个小组人数之和=(180+20)/2=100人,第一小组的人数=(100-2)/2=49人。

三年级奥数和差问题练习题

三年级奥数和差问题练习题

三年级奥数和差问题练习题
和差公式:较大的数=(和+差)÷2
较小的数=(和-差)÷2
1、三年级一班和二班共有85人,一班比二班多3人。

问一班、二班各有多少人?
2、果园共260棵桃树和梨树,其中桃树的棵树比梨树多20棵。

桃树有多少棵?
3、明明家和乐乐家一共养了35只兔子,现在明明家送5只兔子给乐乐家,这时明明家比乐乐家还多5只,那么乐乐家原来多少只兔子?
4、陈红和李玲平均身高为130厘米,陈红比李玲高8厘米,李玲身高是多少厘米?
5、有一根钢管长12米,要锯成两段,使第一段比第二段短2米。

第二段长多少米?
6、学校买来红、黄两种订书器共花了100元,红的比黄的多2个,两种订书器的单价都是每一个10元,那么红、黄两种订书器各买了几个?
7、实验一小、实验二小两校共有学生2346人,如果实验一小增加146人,实验二小减少88人,两校的学生人数就相等,你知道两校实际各有多少人吗?
8、两个连续奇数的和是36,这两个数分别是多少?请问:较大数是()。

小学三年级奥数和差问题【三篇】

小学三年级奥数和差问题【三篇】

小学三年级奥数和差问题【三篇】
导读:本文小学三年级奥数和差问题【三篇】,仅供参考,如果觉得很不错,欢迎点评和分享。

【第一篇:数学成绩】练习题:小华、小林、小黄三人期末考试数学成绩总和为289分,已知小华比小林多8分。

小林比小黄少8分,三个人各得多少分?
解答:可以知道小华和小黄的分数相同,均比小林多8分,因此小华和小黄的分数为(289+8)÷3=99(分)小华的人数为91分【第二篇:耕地】【试题】一台拖拉机5小时耕地40公顷,照这样的速度,耕72公顷地需要几小时?
【详解】要求耕72公顷地需要几小时,我们就要先求出这台拖拉机每小时耕地多少公顷?
(1)每小时耕地多少公顷?
40÷5=8(公顷)
(2)需要多少小时?
72÷8=9(小时)
答:耕72公顷地需要9小时。

【第三篇:烧煤】【试题】纺织厂运来一堆煤,如果每天烧煤1500千克,6天可以烧完。

如果每天烧1000千克,可以多烧几天?
【详解】要想求可以多烧几天,就要先知道这堆煤每天烧1000千克可以烧多少天;而要求每天烧1000千克,可以烧多少天,还要
知道这堆煤一共有多少千克。

(1)这堆煤一共有多少千克?
1500×6=9000(千克)
(2)可以烧多少天?
9000÷1000=9(天)
(3)可以多烧多少天?
9-6=3(天)。

【奥数】三年级和差问题

【奥数】三年级和差问题

例1.国庆节到了,花圃给学校送了200盆花,其中红花比黄花多30盆,红花和黄花各有多少盆?例2.姐姐丽丽和妹妹小芳的年龄和是29岁,五年以后,姐姐比妹妹大三岁。

问今年姐姐和妹妹各多少岁?1两个数的和是19,一个加数比另一个加数多5。

求这两个数各是多少? 2一个两位数,十位上的数字与个位上的数字和是9,差是3。

求这个两位数。

3三(1)班共有学生40人,男生比女生多4人。

三(1)班男生和女生各有多少人?4甲、乙两个数的平均数是35,甲数比乙数少6。

求甲、乙两数分别是多少?5小张和小李的年龄和是46岁,小张比小李大8岁。

小张和小李各是多少岁?6两年前姐姐与妹妹相差3岁,今年姐妹两人年龄和是29岁。

问今年姐妹两人各多少岁?例3林小强期中考试时语文和数学的平均分数是92分,数学比语文多六分。

问语文数学各多少分?例4甲乙两筒水共80千克,从甲桶往乙桶中倒10千克后,两桶水质量正好相等。

求原来甲乙两桶水各有多少千克?1兄弟两人的平均年龄是15岁,哥哥比弟弟大4岁。

问哥哥、弟弟各多少岁?2今年小红14岁,小丽10岁。

当两人年龄和是60岁时,两人各是多少岁了3小明和小华共有28本练习本。

小明给小华4本练习本后,两人的练习本同样多。

两人原来各有几本练习本?4甲、乙两袋大米共有100千克,如果从甲袋中倒入10千克到乙袋后,两袋大米质量相等。

原来两袋大米各有多少千克?5一个长方形的周长是50厘米,宽比长少5厘米。

问长和宽各是多少厘米?6甲、乙两班共有80名学生,开学初甲班转走了5名学生,乙班转进了3名学生,这时两班人数相等。

问原来两班各有多少名学生?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八讲:和差问题
【知识要点】:
已知大小两个数的和以及它们的差,求这两个数各是多少,这类问题我们称为“和差问题”。

掌握和差问题的特征和规律,解答起来就很方便了。

解答和差问题通常用假设法,同时结合线段图进行分析。

可以假设小数增加到与大数同样多,先求大数,再求小数;也可以假设大数减少到与小数同样多,先求小数,再求大数。

数量关系式表:(和+差)÷2=大数(和—差)÷2=小数
【例1】期中考试王平和李杨语文成绩的总和是188分,李杨比王平少4分。

两人各考了多少分?
【思路导航】根据题意画出线段图。

我们可以用假设法来分析。

假设李杨的分数和王平一样多,则总分就增加______分,变为188+[ ]= [ ]分,这就表示王平的______倍,所以王平考了:[ ]÷[ ]= [ ]分,李杨考了[ ]-[ ]= [ ]分。

【课堂反馈1】
1、两筐水果共重124千克,第一筐比第二筐多8千克。

两筐水果各重多少千克?
2、有三只船共运木板9800块,第一只船比其余两船共运的少1400块,第二只船比第三只船少运200块。

三只船各运木板多少块?
【例2】某机床厂第一、二两个车间共有车床96部,如果第一车间拨给第二车间8部,那么两个车间车床数相等。

两个车间各有车床多少部?
【思路导航】用线段图表示题意。

已知第一、二两个车间共有车床96部,又根据“如果第一车间拨给第二车间8部,两个车间车床数相等”,从线段图上我们可以看出第一车间原来比第二车间多[ ]×2=[ ]部车床。

所以,第一车间原有:([ ]+ [ ]×2)÷[ ]= [ ]部车床,第二车间原有56-[ ]= [ ]部车床。

【课堂反馈2】
1、红星小学一年级新108人,分成甲、乙两个班。

如果从甲班转3个学生到乙班去,两班学生就一样多。

甲、乙两班各有学生多少人?
2、三(1)班和三(2)班共有学生124人,如果从三(2)班调2人到三(1)班,两班学生同样多。

三(1)班、三(2)班原来各有学生多少人?
【例3】哥弟俩共有邮票70张,如果哥哥给弟弟4张邮票,这时哥哥还比弟弟多2张。

哥哥和弟弟原来各有邮票多少张?
【思路导航】我们可以这样想,哥弟俩共有邮票______张,根据“如果哥哥给弟弟4张,还比弟弟多2张”,说明原来哥哥比弟弟多[ ]×2+[ ]= [ ]张邮票。

所以,弟弟有邮
【课堂反馈3】
1、一只两层书架共放书72本,若从上层中拿出9本给下层,上层比下层多4本。

上、下层各放书多少本?
2、两笼兔子共16只,若甲笼再放入4只,乙笼取出2只,这时两笼兔子只数就同样多。

甲、乙两笼原来各有兔子多少只?
【例4】把一条100米长的绳子剪成三段,要求第二段比第一段多16米,第三段比第一段少18米。

三段绳子各长多少米?
【思路导航】用线段图来表示题意。

可以这样想:把第一段绳子的长度当作标准,假设第二、第三段绳子都和第一段同样长,那么总长就变为100-[ ]+[ ]=[ ]米。

第一段绳子长:[ ]÷3=[ ]米
第二段绳子长:[ ]+[ ]=[ ]米
第三段绳子长:[ ]-[ ]=[ ]米
【课堂反馈4】
1、某工厂第一、二、三车间共有工人280人,第一车间比第二车间多10人,第二车间比第三车间多15人。

三个车间各有工人多少人?
2、某工厂将857元奖金分给有创造发明的三名优秀工人,第一名比第二名多得250元,第二名比第三名多得125元。

三名优秀工人各得多少元?
【例5】四个人年龄之和是88岁,最小的3岁,他与最大的年龄之和比另外两个人年龄之和大8岁。

最大的年龄是多少岁?
【思路导航】我们可以这样思考,将最大、最小两个人年龄的和与另外两人年龄和分别看作___ __与__ ___,根据四个人的年龄和是_____岁,年龄差是_____岁,即可求出大数与小数。

大数:([ ]+[ ])÷2=[ ]岁
最大的年龄:[ ]-3= [ ]岁
【课堂反馈5】
1、小军一家四口年龄之和是129岁,小军7岁,妈妈30岁,小军与爷爷年龄这和比他父母年龄之和大5岁。

爷爷和爸爸的年龄各是多少岁?
2、某校四个年级共有138名学生参加数学竞赛,其中一、二年级共70名,一、三年级共65名,二、三年级共59名。

四年级有多少名?
【课后作业】
1、小宁与小慧的身高总和是264厘米,又已知小宁比小慧矮8厘米。

两人分别高多少厘米?
2、甲、乙两筐共有水果80千克,若从甲箱取出6千克放到乙箱中,这时两箱水果同样多。

两箱原来各有水果多少千克?
3、姐姐和妹妹共有糖果39块,如果姐姐给妹妹7块,就比妹妹少3块。

那么姐姐和妹妹原来各有糖果多少块?
4、小明期终考试的语文、数学和英语的平均分是95分,数学比语文多6分,英语比语文多9分。

小明期终考试三门功课各多少分?
5、某校四个年龄共有438名学生,其中一年级119人,四年级101人,一、二年级的总人数比三、四年级的总人数多52人。

二、三年级各有多少人?。

相关文档
最新文档