高二数学期末复习15

合集下载

高二上学期期末考试数学复习题(带答案)详解+解析点睛

高二上学期期末考试数学复习题(带答案)详解+解析点睛

高二上学期期末考试数学复习题(带答案)详解+解析点睛姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx 题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)第 1 题已知命题,,则为()A.,B.,C.,D.,【答案解析】B【分析】根据全称命题的否定是特称命题的知识选出正确选项.【详解】原命题是全称命题,其否定是特称命题,注意到要否定结论,故B选项正确,D选项不正确.故选:B【点睛】本小题主要考查全称命题的否定,属于基础题.第 2 题某学校高一、高二年级共有1800人,现按照分层抽样的方法,抽取90人作为样本进行某项调查.若样本中高一年级学生有42人,则该校高一年级学生共有()A. 420人B. 480人C. 840人D. 960人【答案解析】C【分析】先由样本容量和总体容量确定抽样比,用高一年级抽取的人数除以抽样比即可求出结果.【详解】由题意需要从1800人中抽取90人,所以抽样比为,又样本中高一年级学生有42人,所以该校高一年级学生共有人.故选C【点睛】本题主要考查分层抽样,先确定抽样比,即可确定每层的个体数,属于基础题型..第 3 题已知双曲线的离心率是2,则其渐近线方程为()A. B.C. D.【答案解析】A【分析】利用离心率求得,由此求得渐近线方程.【详解】依题意,所以渐近线方程为,即.故选:A【点睛】本小题主要考查双曲线渐近线方程的求法,属于基础题.第 4 题设,则“”是“”的()A. 充要条件B. 充分而不必要条件C. 必要而不充分条件D. 既不充分也不必要条件【答案解析】C【分析】首先解两个不等式,再根据充分、必要条件的知识选出正确选项.【详解】由解得.由得.所以“”是“”必要而不充分条件故选:C【点睛】本小题主要考查充分、必要条件的判断,考查绝对值不等式的解法,属于基础题.第 5 题若将一个质点随机投入如图所示的长方形ABCD中,其中,,则质点落在以AB为直径的半圆内的概率是()A. B. C. D.【答案解析】C【分析】利用几何概型概率计算公式,计算出所求的概率.【详解】依题意,长方体的面积为,半圆的面积为,所以质点落在以为直径的半圆内的概率是.故选:C【点睛】本小题主要考查几何概型的计算,属于基础题.第 6 题在正三棱柱ABC﹣A1B1C1中,,则异面直线与所成角的余弦值为()A. B. C. D.【答案解析】D【分析】作出异面直线所成的角,解三角形求得其余弦值.【详解】设,是的中点,所以,所以是两条异面直线所成的角(或补角).在三角形中,,,所以.所以异面直线与所成角的余弦值为.故选:D【点睛】本小题主要考查异面直线所成角的求法,属于基础题.第 7 题若函数在区间(1,+∞)单调递增,则的取值范围是()A. B. C. D.【答案解析】B【分析】利用函数在区间上的导函数为非负数列不等式,解不等式求得的取值范围.【详解】依题意在区间上恒成立,所以,所以.所以实数的取值范围是.故选:B【点睛】本小题主要考查利用导数,根据函数在给定区间上的单调性求参数的取值范围,属于基础题. 第 8 题设函数是奇函数的导函数,(),,当时,,则使得成立的的取值范围是()A. B.C. D.【答案解析】A【分析】构造函数,当时,根据已知条件,判断出.当时,根据为偶函数,判断出的单调性.结合,求得使得成立的的取值范围.【详解】由于是定义在上的奇函数,所以.构造函数,当时,,所以在上递增,由于,所以为偶函数,所以在区间上递减且.所以当时,,;当时,,.所以使得成立的的取值范围是.故选:A【点睛】本小题主要考查利用导数研究不等的解集,考查函数的奇偶性和单调性,属于中档题.第 9 题(多选题)下列命题中真命题的是()A. 若实数,满足,则,互为倒数B. 面积相等的两个三角形全等C. 设,“若,则方程有实根”的逆否命题D. “若,则”的逆命题【答案解析】AC【分析】A利用倒数的知识进行判断;B利用全等三角形的知识进行判断;C利用原命题的真假性来判断;D利用原命题的逆命题的真假性来判断.【详解】对于A选项,根据倒数的知识可知,A选项正确.对于B选项,两个三角形的面积相等,不一定是全等三角形,所以B选项错误.对于C选项,当时,,所以方程有实根,为真命题,故其逆否命题为真命题,所以C选项正确.对于D选项,原命题的逆命题为“若,则”不正确,因为也可以,所以D选项为假命题.综上所述,正确的为AC.故选:AC【点睛】本小题主要考查命题真假性的判断,考查逆否命题、逆命题真假性,属于基础题.第 10 题(多选题)“悦跑圈”是一款基于社交型的跑步应用,用户通过该平台可查看自己某时间段的运动情况,某人根据2019年1月至2019年11月期间每月跑步的里程(单位:十公里)的数据绘制了下面的折线图,根据该折线图,下列结论正确的是()A. 月跑步里程逐月增加B.l 一共个月份,里程中间的是从小到大的第个,根据折线图可知,跑步里程的中位数为月份对应的里程数,故C选项正确.根据折线图可知,月至月的月跑步里程相对于月至月波动性更小,变化比较平稳,故D选项正确.综上所述,正确的选项为BCD.故选:BCD【点睛】本小题主要考查折线图,考查图表分析、数据处理能力,属于基础题.第 11 题(多选题)设椭圆的左右焦点为,,P是C上的动点,则下列结论正确的是() A. B. 离心率C.面积的最大值为D. 以线段为直径的圆与直线相切【答案解析】AD【分析】根据椭圆的定义判断A选项正确性,根据椭圆离心率判断B选项正确性,求得面积的最大值来判断C选项的正确性,求得圆心到直线的距离,与半径比较,由此判断D选项的正确性.【详解】对于A选项,由椭圆的定义可知,所以A选项正确.对于B选项,依题意,所以,所以B选项不正确.对于C选项,,当为椭圆短轴顶点时,的面积取得最大值为,所以C选项错误.对于D选项,线段为直径的圆圆心为,半径为,圆心到直线的距离为,也即圆心到直线的距离等于半径,所以以线段为直径的圆与直线相切,所以D选项正确.综上所述,正确的为AD.故选:AD【点睛】本小题主要考查椭圆的定义和离心率,考查椭圆的几何性质,考查直线和圆的位置关系,属于基础题..第 12 题(多选题)定义在区间上的函数的导函数图象如图所示,则下列结论正确的是()A. 函数f(x)在区间(0,4)单调递增B. 函数f(x)在区间单调递减C. 函数f(x)在处取得极大值D. 函数f(x)在处取得极小值【答案解析】ABD【分析】根据导函数图像判断出函数的单调性和极值,由此判断出正确选项.【详解】根据导函数图像可知,在区间上,,单调递减,在区间上,,单调递增.所以在处取得极小值,没有极大值.所以A,B,D选项正确,C选项错误.故选:ABD【点睛】本小题主要考查利用导函数图像判断函数单调区间、极值,属于基础题第 13 题同时掷两枚质地均匀的骰子,所得的点数之和为5的概率是.【答案解析】【详解】列表如下:从列表中可以看出,所有可能出现的结果共有36种,这些结果出现的可能性相等.∵点数的和为5的结果共有4种:(1,4),(2,3),(4,1),(3,2)∴点数的和为5的概率P==故答案为第 14 题已知函数,为的导函数,则的值为__________.【答案解析】【分析】求得函数的导函数,由此求得的值.【详解】依题意,所以.故答案为:【点睛】本小题主要考查导数的计算,属于基础题.第 15 题已知向量,,且满足,则的值为__________.【答案解析】【分析】先求得,根据两个向量垂直的坐标表示列方程,解方程求得的值.【详解】依题意,由于,所以,即,解得.故答案为:【点睛】本小题主要考查空间向量垂直的坐标表示,考查空间向量的线性运算,属于基础题.第 16 题设抛物线的焦点为F,过点F作直线与抛物线交于A、B两点,点M满足,过M作轴的垂线与抛物线交于点,若,则点P的横坐标为__________,__________.【答案解析】1 ; 8【分析】利用抛物线的定义,求得点的坐标,设出直线的方程,联立直线的方程和抛物线的方程,利用韦达定理,求得点坐标的表达式,根据两点的纵坐标相同列方程,解方程求得直线的斜率,由此求得.【详解】由于点满足,所以是线段中点.抛物线的焦点坐标为,准线方程为.设,由于在抛物线上,且,根据抛物线的定义得,所以,则,不妨设.若直线斜率不存在,则,则,此时的纵坐标和的纵坐标不相同,不符合题意.所以直线的斜率存在.设,设直线的方程为,代入抛物线方程并化简得,则.由于是线段中点,所以,而,所以,即,即,解得.所以,所以,则到准线的距离为,根据抛物线的定义结合中位线的性质可知.故答案为: 1 ; 8【点睛】本小题主要考查抛物线的定义,考查直线和抛物线的位置关系,考查运算求解能力,属于中档题.第 17 题已知函数.(1)求曲线在点(0,0)处的切线方程;(2)求f(x)在区间[-2,2]上的最大值与最小值.【答案解析】(1);(2)最大值为,最小值为【分析】(1)求得函数在时的导数,由点斜式求得切线方程.(2)利用导数求得的单调区间,区间端点的函数值和极值点的函数值,由此求得在区间上的最大值与最小值.【详解】(1)由题意得,则,所以曲线在点处的切线方程为,即;(2)令,得,当时,,当时,,所以在上单调递减,在上单调递增,又,所以,所以在上的最大值为,最小值为.【点睛】本小题主要考查利用导数求切线方程,考查利用导数求函数的最值,属于基础题.第 18 题已知双曲线E的两个焦点为,,并且E经过点.(1)求双曲线E的方程;(2)过点的直线与双曲线E有且仅有一个公共点,求直线的方程.【答案解析】(1);(2)或【分析】(1)利用,以及列方程组,解方程组求得,由此求得双曲线的方程.(2)当直线斜率不存在时,直线与双曲线没有交点.当直线斜率存在时,设出直线的方程,联立直线的方程和双曲线的方程,消去得到,根据二次项系数和判别式进行分类讨论,由此求得直线的方程.【详解】(1)由已知可设双曲线的方程为,则,解得,所以双曲线的方程为.(2)当直线斜率不存在时,显然不合题意所以可设直线方程为,联立,得,①当,即或,方程只有一解,直线与双曲线有且仅有一个公共点,此时,直线方程为,②当,即,要使直线与双曲线有且仅有一个公共点,则,解得,此时,直线方程为,综上所述,直线的方程为或.【点睛】本小题主要考查双曲线方程的求法,考查根据直线和双曲线交点个数求参数,属于中档题. .第 19 题某手机厂商在销售某型号手机时开展“手机碎屏险”活动.用户购买该型号手机时可选购“手机碎屏险”,保费为元,若在购机后一年内发生碎屏可免费更换一次屏幕,为了合理确定保费的值,该手机厂商进行了问卷调查,统计后得到下表(其中表示保费为元时愿意购买该“手机碎屏险”的用户比例):(1)根据上面的数据计算得,求出关于的线性回归方程;(2)若愿意购买该“手机碎屏险”的用户比例超过0.50,则手机厂商可以获利,现从表格中的5种保费任取2种,求这2种保费至少有一种能使厂商获利的概率.附:回归方程中斜率和截距的最小二乘估计分别为,【答案解析】(1);(2)【分析】(1)利用回归直线方程计算公式,计算出关于的线性回归方程.(2)利用列举法和古典概型概率计算公式,计算出所求概率.【详解】(1)由,,,,得所以关于的回归直线方程为.(2)现从表格中的种保费任选种,所有的基本事件有:,,,,,,,,,,共有种.其中至少有一种保费能使厂商获利的基本事件有:,,,,,,,共种.所以从表格中的种保费任选种,其中至少有一种保费能使厂商获利的概率为.【点睛】本小题主要考查回归直线方程的计算,考查古典概率问题的求解,属于基础题.第 20 题在如图所示的六面体中,四边形ABCD是边长为2的正方形,四边形ABEF是梯形,,平面ABCD⊥平面ABEF,,.(1)在图中作出平面ABCD与平面的交线,并写出作图步骤,但不要求证明;(2)求证:平面;(3)求平面ABEF与平面所成角的余弦值【答案解析】(1)见解析;(2)见解析;(3)【分析】(1)延长与相交于点,连接,根据公理和公理可知,即是所求.(2)通过证明四边形是平行四边形,证得,由此证得平面.(3)利用勾股定理计算出,建立空间直角坐标系,通过平面和平面的法向量,计算出二面角的余弦值.【详解】(1)延长与相交于点,连接,则直线就是平面与平面的交线.(2)因为,,所以是的中位线,故,因为,所以,且,所以四边形是平行四边形,所以,因为面,面,所以平面.(3)在平面内,过点作的平行线交于点,又,所以四边形为平行四边形,所以,,,又因为,所以,所以为直角三角形,且,,.在平面内,过点作的垂线交于点,又因为平面平面,平面平面,所以面.以为坐标原点,的方向为轴正方向,的方向为轴正方向,的方向为轴正方向,建立如图所示的空间直角坐标系.则,,,,所以,,设是平面的法向量,则,即,所以可取.因为是平面的法向量,所以,所以平面与平面所成角的余弦值.【点睛】本小题主要考查线面平行的证明,考查二面角的求法,考查空间想象能力和逻辑推理能力,属于中档题.第 21 题已知椭圆的离心率为,,,,的面积为.(1)求椭圆C的方程;(2)过右焦点F作与轴不重合的直线交椭圆C于P,Q两点,连接,分别交直线于,M,N两点,若直线,的斜率分别为,,试问:是否为定值?若是,求出该定值,若不是,请说明理由.【答案解析】(1);(2)为定值,理由见解析【分析】(1)结合椭圆离心率、的面积、列方程组,解方程组求得,由此求得椭圆的标准方程.(2)当直线斜率不存在时,求得两点的坐标,由此求得直线的方程,进而求得两点的坐标,由此求得,,求得.当直线斜率存在时,设直线方程为,联立直线的方程和椭圆方程,写出韦达定理,求得直线的方程,进而求得两点的坐标,由此求得,,结合韦达定理计算.由此证得为定值.【详解】(1)由题意得,解得,所以椭圆的方程为.(2)由(1)知,,①当直线斜率不存在时,直线方程为,联立,得,不防设,,则直线方程为,令,得,则,此时,,同理,所以,②当直线斜率存在时,设直线方程为,联立,得,设,,则,,直线方程为,令,得,则,同理,所以,,所以综上所述,为定值.【点睛】本小题主要考查椭圆标准方程的求法,考查直线和椭圆的位置关系,考查根与系数关系,考查运算求解能力,考查分类讨论的数学思想方法,属于难题.第 22 题已知函数,,为的导函数.(1)若,求a的值;(2)讨论的单调性;(3)若恰有一个零点,求a的取值范围.【答案解析】(1);(2)见解析;(3)或【分析】(1)利用列方程,解方程求得的值.(2)求得函数的导函数,对分成等四种情况,分类讨论的单调区间.(3)结合(1)求得的的单调区间,判断出的单调区间,结合的取值范围、零点的存在性定理进行分类讨论,由此求得的取值范围.【详解】(1)由,得,得;(2)①当时,令,得,令,得,所以在上单调递增,在上单调递减;②当时,令,得,,i)当时,,所以在上单调递增;ii)当时,令,得或;令,得,所以在和单调递增,在单调递减;iii)当时,令,得或;令,得,所以在和单调递增,在单调递减;综上:①当时,在上单调递增;在单调递减;②i)当时,在上单调递增;ii)当时,在和单调递增,在单调递减;iii)当时,在和单调递增,在单调递减;(3)①当时,由(2)知,在单调递增,在单调递减,所以在单调递增,在单调递减,又因为,所以恰有一个零点,符合题意;②i)当时,在单调递增,所以在单调递增,又,所以在恰有一个零点,符合题意;ii)当时,在单调递增,在单调递减,在单调递增,所以在单调递增,在单调递减,在单调递增,因为,所以是函数的一个零点,且,当时,取且,则,所以,所以在恰有一个零点,所以在区间有两个零点,不合题意;iii)当时,在单调递增,在单调递减,在单调递增,所以在单调递增,在单调递减,在单调递增,又因为,所以是函数的一个零点,且,又因为,所以,所以在区间有两个零点,不合题意;综上的取值范围为或.【点睛】本小题主要考查导数的计算,考查利用导数研究函数的单调性,考查利用导数研究函数的零点,考查零点的存在性定理,考查分类讨论的数学思想方法,属于难题.。

高中高二数学下学期期末复习试卷(含解析)-人教版高二全册数学试题

高中高二数学下学期期末复习试卷(含解析)-人教版高二全册数学试题

2014-2015学年某某省某某市东海县石榴高中高二(下)期末数学复习试卷一、填空题:1.已知集合P={﹣4,﹣2,0,2,4},Q={x|﹣1<x<3},则P∩Q=.2.若复数z1=3+4i,z2=1+2i(i是虚数单位),则z1﹣z2=.3.命题:∀x∈R,sinx<2的否定是.4.复数z=(1+3i)i(i是虚数单位),则z的实部是.5.已知函数y=f(x),x∈[0,2π]的导函数y=f′(x)的图象,如图所示,则y=f(x)的单调增区间为.6.已知则满足的x值为.7.函数在[2,4]上是增函数的充要条件是m的取值X围为.8.已知函数f(x)=x3+2x2﹣ax+1在区间(﹣1,1)上恰有一个极值点,则实数a的取值X 围是.9.设x,y满足约束条件,若目标函数z=abx+y(a>0,b>0)的最大值为35,则a+b的最小值为.10.曲线在点(4,e2)处的切线与坐标轴所围三角形的面积为.11.在平面直角坐标系xOy中,若直线y=2a与函数y=|x﹣a|﹣1的图象只有一个交点,则a的值为.12.已知实数a,b,c满足a+b+c=9,ab+bc+ca=24,则b的取值X围是.13.设f(x),g(x)分别是定义在R上的奇函数和偶函数.当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(﹣3)=0,则不等式f(x)g(x)<0的解集是.14.观察下面的数阵,第20行第20个数是.12 3 45 6 7 8 910 11 12 13 14 15 1617 18 19 20 21 22 23 24 25…二、解答题(共6小题,满分0分)15.给定两个命题:p:对任意实数x都有ax2+ax+1>0恒成立;q:关于x的方程x2﹣x+a=0有实数根,如果p和q中至少有一个为真命题,某某数a的取值X围.16.已知复数z1满足(z1﹣2)(1+i)=1﹣i(i为虚数单位),复数z2的虚部为2,且z1•z2是实数,求z2.17.已知函数f(x)=ax3+bx2+cx在点x0处取得极大值5,其导函数y=f′(x)的图象经过点(1,0),(2,0),如图所示,求:(Ⅰ)x0的值;(Ⅱ)a,b,c的值.18.因发生意外交通事故,一辆货车上的某种液体泄漏到一渔塘中.为了治污,根据环保部门的建议,现决定在渔塘中投放一种可与污染液体发生化学反应的药剂.已知每投放a(1≤a≤4,且a∈R)个单位的药剂,它在水中释放的浓度y(克/升)随着时间x(天)变化的函数关系式近似为y=a•f(x),其中f(x)=.若多次投放,则某一时刻水中的药剂浓度为每次投放的药剂在相应时刻所释放的浓度之和.根据经验,当水中药剂的浓度不低于4(克/升)时,它才能起到有效治污的作用.(Ⅰ)若一次投放4个单位的药剂,则有效治污时间可达几天?(Ⅱ)若第一次投放2个单位的药剂,6天后再投放a个单位的药剂,要使接下来的4天中能够持续有效治污,试求a的最小值(精确到0.1,参考数据:取1.4).19.试比较n n+1与(n+1)n(n∈N*)的大小,分别取n=1,2,3,4,5加以试验,根据试验结果猜测一个一般性结论.20.对于定义在区间D上的函数f(x)和g(x),如果对于任意x∈D,都有|f(x)﹣g(x)|≤1成立,那么称函数f(x)在区间D上可被函数g(x)替代.(1)若,试判断在区间[[1,e]]上f(x)能否被g(x)替代?(2)记f(x)=x,g(x)=lnx,证明f(x)在上不能被g(x)替代;(3)设,若f(x)在区间[1,e]上能被g(x)替代,某某数a的X围.2014-2015学年某某省某某市东海县石榴高中高二(下)期末数学复习试卷参考答案与试题解析一、填空题:1.已知集合P={﹣4,﹣2,0,2,4},Q={x|﹣1<x<3},则P∩Q={0,2} .考点:交集及其运算.专题:计算题.分析:通过理解集合的表示法化简集合P和集合Q,两集合的交集是集合P和Q中的共同的数.解答:解:∵P={﹣4,﹣2,0,2,4},Q={x|﹣1<x<3},∴P∩Q={0,2}故答案为:{0,2}点评:本题考查集合的表示法、集合交集的求法.2.若复数z1=3+4i,z2=1+2i(i是虚数单位),则z1﹣z2= 2+2i .考点:复数代数形式的加减运算.专题:计算题.分析:根据复数减法的运算法则,当且仅当实部与虚部分别相减可求.解答:解:Z1﹣Z2=(3+4i)﹣(1+2i)=2+2i故答案为:2+2i点评:本题主要考查了复数减法的基本运算,运算法则:当且仅当实部与虚部分别相减,属于基础试题.3.命题:∀x∈R,sinx<2的否定是“∃x∈R,sinx≥2”.考点:命题的否定.分析:根据命题“∀x∈R,sinx<2”是全称命题,其否定为特称命题,即“∃x∈R,sinx≥2”.从而得到本题答案.解答:解:∵命题“∀x∈R,sinx<2”是全称命题.∴命题的否定是存在x值,使sinx<2不成立,即“∃x∈R,sinx≥2”.故答案为:“∃x∈R,sinx≥2”.点评:本题给出全称命题,求该命题的否定形式.着重考查了含有量词的命题的否定、全称命题和特称命题等知识点,属于基础题.4.复数z=(1+3i)i(i是虚数单位),则z的实部是﹣3 .考点:复数的基本概念.专题:计算题.分析:利用两个复数代数形式的乘法,虚数单位i的幂运算性质,化简=(1+3i)i,依据使不得定义求得z的实部.解答:解:复数z=(1+3i)i=﹣3+i,故实部为﹣3,故答案为﹣3.点评:本题考查两个复数代数形式的乘法,虚数单位i的幂运算性质,以及复数为实数的条件.5.已知函数y=f(x),x∈[0,2π]的导函数y=f′(x)的图象,如图所示,则y=f(x)的单调增区间为[0,π].考点:函数的单调性与导数的关系.专题:数形结合.分析:根据据f′(x)≥0,函数f(x)单调递增;f′(x)≤0时,f(x)单调递减;从图中找到f′(x)≥0的区间即可.解答:解:据f′(x)≥0,函数f(x)单调递增;f′(x)≤0时,f(x)单调递减由图得到x∈[0,π]时,f′(x)≥0故y=f (x)的单调增区间为[0,π]故答案为[0,π]点评:本题考查函数的单调性与导函数符号的关系:f′(x)≥0时,函数f(x)单调递增;f′(x)≤0时,f(x)单调递减6.已知则满足的x值为 3 .考点:分段函数的解析式求法及其图象的作法;函数的值.分析:分x≤1和x>1两段讨论,x≤1时,得,x>1时,得,分别求解.解答:解:x≤1时,f(x)=,x=2,不合题意,舍去;x>1时,,=3综上所示,x=3故答案为:3点评:本题考查分段函数求值问题,属基本题.7.函数在[2,4]上是增函数的充要条件是m的取值X围为.考点:利用导数研究函数的单调性;必要条件、充分条件与充要条件的判断.专题:计算题.分析:先求导函数,要使函数在[2,4]上是增函数,则﹣x2+mx+2≥0在[2,4]上恒成立,故可建立不等式,解之即可求得m的取值X围.解答:解:求导函数要使函数在[2,4]上是增函数,则﹣x2+mx+2≥0在[2,4]上恒成立,构建函数g(x)=﹣x2+mx+2,因为函数图象恒过点(0,2),所以﹣x2+mx+2≥0在[2,4]上恒成立,只需m根据函数的单调递增,解得,即所求m的X围为故答案为:点评:本题考查利用导数研究函数的单调性,解题的关键是求导函数,将问题转化为﹣x2+mx+2≥0在[2,4]上恒成立.8.已知函数f(x)=x3+2x2﹣ax+1在区间(﹣1,1)上恰有一个极值点,则实数a的取值X 围是﹣1≤a<7 .考点:函数在某点取得极值的条件.专题:计算题.分析:首先利用函数的导数与极值的关系求出a的值,由于函数f(x)=x3+2x2﹣ax+1在区间(﹣1,1)上恰有一个极值点,所以f′(﹣1)f′(1)<0,进而验证a=﹣1与a=7时是否符合题意,即可求答案.解答:解:由题意,f′(x)=3x2+4x﹣a,当f′(﹣1)f′(1)<0时,函数f(x)=x3+2x2﹣ax+1在区间(﹣1,1)上恰有一个极值点,解得﹣1<a<7,当a=﹣1时,f′(x)=3x2+4x+1=0,在(﹣1,1)上恰有一根x=﹣,当a=7时,f′(x)=3x2+4x﹣7=0在(﹣1,1)上无实根,则a的取值X围是﹣1≤a<7,故答案为﹣1≤a<7.点评:考查利用导数研究函数的极值问题,体现了数形结合和转化的思想方法.9.设x,y满足约束条件,若目标函数z=abx+y(a>0,b>0)的最大值为35,则a+b的最小值为8 .考点:简单线性规划.专题:计算题;压轴题;数形结合.分析:本题考查的知识点是线性规划,处理的思路为:根据已知的约束条件,画出满足约束条件的可行域,再根据目标函数z=abx+y(a>0,b>0)的最大值为35,求出a,b的关系式,再利用基本不等式求出a+b的最小值.解答:解:满足约束条件的区域是一个四边形,如图4个顶点是(0,0),(0,1),(,0),(2,3),由图易得目标函数在(2,3)取最大值35,即35=2ab+3∴ab=16,∴a+b≥2 =8,在a=b=8时是等号成立,∴a+b的最小值为8.故答案为:8点评:用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.10.曲线在点(4,e2)处的切线与坐标轴所围三角形的面积为e2.考点:定积分在求面积中的应用.专题:计算题.分析:先利用复合函数求导法则求已知函数的导函数,再利用导数的几何意义求切线斜率,进而利用直线的点斜式写出切线方程,最后求直线与坐标轴的交点,计算直角三角形的面积即可解答:解:y′=,y′|x=4=e2∴曲线在点(4,e2)处的切线方程为y﹣e2=e2(x﹣4)即y=e2x﹣e2令x=0,得y=﹣e2,令y=0,得x=2∴此切线与坐标轴所围三角形的面积为×2×e2=e2故答案为e2点评:本题主要考查了导数的几何意义,求曲线在某点出的切线方程的方法,利用导数求切线方程是解决本题的关键11.在平面直角坐标系xOy中,若直线y=2a与函数y=|x﹣a|﹣1的图象只有一个交点,则a的值为.考点:函数的零点与方程根的关系.专题:函数的性质及应用.分析:由已知直线y=2a与函数y=|x﹣a|﹣1的图象特点分析一个交点时,两个图象的位置,确定a.解答:解:由已知直线y=2a是平行于x轴的直线,函数y=|x﹣a|﹣1的图象是折线,所以直线y=2a过折线顶点时满足题意,所以2a=﹣1,解得a=﹣;故答案为:.点评:本题考查了函数的图象;考查利用数形结合求参数.12.已知实数a,b,c满足a+b+c=9,ab+bc+ca=24,则b的取值X围是[1,5].考点:函数最值的应用.专题:计算题;综合题.分析:根据a+b+c=9,ab+bc+ca=24,得到a+c=9﹣b,并代入ab+bc+ca=24,得到ac=24﹣(a+c)b,然后利用基本不等式ac,即可求得b的取值X围.解答:解:∵a+b+c=9,∴a+c=9﹣b,∵ab+ac+bc=(a+c)b+ac=24,得ac=24﹣(a+c)b;又∵ac,∴24﹣(a+c)b,即24﹣(9﹣b)b,整理得b2﹣6b+5≤0,∴1≤b≤5;故答案为[1,5].点评:此题考查了利用基本不等式求最值的问题,注意基本不等式成立的条件为一正、二定、三等,以及消元思想的应用,属中档题.13.设f(x),g(x)分别是定义在R上的奇函数和偶函数.当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(﹣3)=0,则不等式f(x)g(x)<0的解集是(﹣∞,﹣3)∪(0,3).考点:利用导数研究函数的单调性;函数奇偶性的性质.专题:导数的概念及应用.分析:构造函数h(x)=f(x)g(x),利用已知可判断出其奇偶性和单调性,进而即可得出不等式的解集.解答:解:令h(x)=f(x)g(x),则h(﹣x)=f(﹣x)g(﹣x)=﹣f(x)g(x)=﹣h(x),因此函数h(x)在R上是奇函数.①∵当x<0时,h′(x)=f′(x)g(x)+f(x)g′(x)>0,∴h(x)在x<0时单调递增,故函数h(x)在R上单调递增.∵h(﹣3)=f(﹣3)g(﹣3)=0,∴h(x)=f(x)g(x)<0=h(﹣3),∴x<﹣3.②当x>0时,函数h(x)在R上是奇函数,可知:h(x)在(0,+∞)上单调递增,且h (3)=﹣h(﹣3)=0,∴h(x)<0,的解集为(0,3).∴不等式f(x)g(x)<0的解集是(﹣∞,﹣3)∪(0,3).故答案为(﹣∞,﹣3)∪(0,3).点评:恰当构造函数,熟练掌握函数的奇偶性单调性是解题的关键.14.观察下面的数阵,第20行第20个数是381 .12 3 45 6 7 8 910 11 12 13 14 15 1617 18 19 20 21 22 23 24 25…考点:归纳推理.专题:综合题;推理和证明.分析:观察这个数列知,第n行的最后一个数是n2,第19行的最后一个数是192=361,由此可求出第20行第20个数.解答:解:观察这个数列知,第n行的最后一个数是n2,第19行的最后一个数是192=361,∴第20行第20个数是361+20=381.故答案为:381.点评:本题给出三角形数阵,求第20行第20个数,着重考查了递归数列和归纳推理等知识点,属于基础题.二、解答题(共6小题,满分0分)15.给定两个命题:p:对任意实数x都有ax2+ax+1>0恒成立;q:关于x的方程x2﹣x+a=0有实数根,如果p和q中至少有一个为真命题,某某数a的取值X围.考点:复合命题的真假.专题:简易逻辑.分析:根据二次函数恒成立的充要条件,我们可以求出命题p为真时,实数a的取值X围,根据二次函数有实根的充要条件,我们可以求出命题q为真时,实数a的取值X围,则命题p,q中一个为真,分类讨论后,即可得到实数a的取值X围.解答:解:对任意实数x都有ax2+ax+1>0恒成立⇔a=0或⇔0≤a<4;关于x的方程x2﹣x+a=0有实数根⇔△=1﹣4a≥0⇔a≤;p和q中至少有一个为真命题如果p真q假,则有0≤a<4,且a>,∴<a<4;如果p假q真,则有a<0,或a≥4,且a≤∴a<0;如果p真q真,则有0≤a<4,且a≤,∴0≤a≤;所以实数a的取值X围为(﹣∞,4)点评:本题考查的知识点是命题的真假判断与应用,复合命题的真假,函数恒成立问题,其中判断出命题p与命题q为真时,实数a的取值X围,是解答本题的关键.16.已知复数z1满足(z1﹣2)(1+i)=1﹣i(i为虚数单位),复数z2的虚部为2,且z1•z2是实数,求z2.考点:复数代数形式的混合运算.专题:计算题.分析:利用复数的除法运算法则求出z1,设出复数z2;利用复数的乘法运算法则求出z1•z2;利用当虚部为0时复数为实数,求出z2.解答:解:∴z1=2﹣i设z2=a+2i(a∈R)∴z1•z2=(2﹣i)(a+2i)=(2a+2)+(4﹣a)i∵z1•z2是实数∴4﹣a=0解得a=4所以z2=4+2i点评:本题考查复数的除法、乘法运算法则、考查复数为实数的充要条件是虚部为0.17.已知函数f(x)=ax3+bx2+cx在点x0处取得极大值5,其导函数y=f′(x)的图象经过点(1,0),(2,0),如图所示,求:(Ⅰ)x0的值;(Ⅱ)a,b,c的值.考点:利用导数研究函数的极值.专题:计算题.分析:(1)观察图象满足f′(x)=0的点附近的导数的符号的变化情况,来确定极大值,求出x0的值;(2)根据图象可得f'(1)=0,f'(2)=0,f(1)=5,建立三个方程,联立方程组求解即可.解答:解:(Ⅰ)由图象可知,在(﹣∝,1)上f'(x)>0,在(1,2)上f'(x)<0.在(2,+∝)上f'(x)>0.故f(x)在(﹣∝,1),(2,+∝)上递增,在(1,2)上递减.因此f(x)在x=1处取得极大值,所以x0=1.(Ⅱ)f'(x)=3ax2+2bx+c,由f'(1)=0,f'(2)=0,f(1)=5,得解得a=2,b=﹣9,c=12.点评:本题主要考查了利用导数研究函数的极值,以及观察图形的能力,属于基础题.18.因发生意外交通事故,一辆货车上的某种液体泄漏到一渔塘中.为了治污,根据环保部门的建议,现决定在渔塘中投放一种可与污染液体发生化学反应的药剂.已知每投放a(1≤a≤4,且a∈R)个单位的药剂,它在水中释放的浓度y(克/升)随着时间x(天)变化的函数关系式近似为y=a•f(x),其中f(x)=.若多次投放,则某一时刻水中的药剂浓度为每次投放的药剂在相应时刻所释放的浓度之和.根据经验,当水中药剂的浓度不低于4(克/升)时,它才能起到有效治污的作用.(Ⅰ)若一次投放4个单位的药剂,则有效治污时间可达几天?(Ⅱ)若第一次投放2个单位的药剂,6天后再投放a个单位的药剂,要使接下来的4天中能够持续有效治污,试求a的最小值(精确到0.1,参考数据:取1.4).考点:函数模型的选择与应用.专题:函数的性质及应用.分析:(Ⅰ)通过a=4可知y=,分别令每段对应函数值大于等于4,计算即得结论;(Ⅱ)通过化简、利用基本不等式可知y=2•(5﹣x)+a[﹣1]=(14﹣x)+﹣a﹣4≥﹣a﹣4,再令﹣a﹣4≥4,计算即得结论.解答:解:(Ⅰ)∵a=4,∴y=,当0≤x≤4时,由﹣4≥4,解得x≥0,∴此时0≤x≤4;当4<x≤10时,由20﹣2x≥4,解得x≤8,∴此时4<x≤8;综上所述,0≤x≤8,即若一次投放4个单位的制剂,则有效治污时间可达8天;(Ⅱ)当6≤x≤10时,y=2•(5﹣x)+a[﹣1]=10﹣x+﹣a=(14﹣x)+﹣a﹣4,∵14﹣x∈[4,8],而1≤a≤4,∴∈[4,8],∴y=(14﹣x)+﹣a﹣4≥2﹣a﹣4=﹣a﹣4,当且仅当14﹣x=即x=14﹣4时,y有最小值为﹣a﹣4,令﹣a﹣4≥4,解得24﹣16≤a≤4,∴a的最小值为24﹣16≈1.6.点评:本题考查函数模型的选择与应用,考查分析问题、解决问题的能力,注意解题方法的积累,属于中档题.19.试比较n n+1与(n+1)n(n∈N*)的大小,分别取n=1,2,3,4,5加以试验,根据试验结果猜测一个一般性结论.考点:数学归纳法.专题:点列、递归数列与数学归纳法.分析:本题考查的知识点是归纳推理与数学归纳法,我们可以列出n n+1与(n+1)n(n∈N*)的前若干项,然后分别比较其大小,然后由归纳推理猜想出一个一般性的结论,然后利用数学归纳法进行证明.解答:解:当n=1时,n n+1=1,(n+1)n=2,此时,n n+1<(n+1)n,当n=2时,n n+1=8,(n+1)n=9,此时,n n+1<(n+1)n,当n=3时,n n+1=81,(n+1)n=64,此时,n n+1>(n+1)n,当n=4时,n n+1=1024,(n+1)n=625,此时,n n+1>(n+1)n,根据上述结论,我们猜想:当n≥3时,n n+1>(n+1)n(n∈N*)恒成立.证明:①当n=3时,n n+1=34=81>(n+1)n=43=64即n n+1>(n+1)n成立.②假设当n=k时,k k+1>(k+1)k成立,即:>1则当n=k+1时,=(k+1)()k+1>(k+1)()k+1=>1即(k+1)k+2>(k+2)k+1成立,即当n=k+1时也成立,∴当n≥3时,n n+1>(n+1)n(n∈N*)恒成立.点评:本题考查了数学归纳法的应用,证明步骤的应用,归纳推理,考查计算能力,属于中档题.20.对于定义在区间D上的函数f(x)和g(x),如果对于任意x∈D,都有|f(x)﹣g(x)|≤1成立,那么称函数f(x)在区间D上可被函数g(x)替代.(1)若,试判断在区间[[1,e]]上f(x)能否被g(x)替代?(2)记f(x)=x,g(x)=lnx,证明f(x)在上不能被g(x)替代;(3)设,若f(x)在区间[1,e]上能被g(x)替代,某某数a的X围.考点:函数恒成立问题;函数单调性的性质.专题:证明题;综合题;压轴题.分析:(1)构造函数,通过研究h(x)的导数得出其单调性,从而得出其在区间[[1,e]上的值域,可以证出f(x)能被g(x)替代;(2)构造函数k(x)=f(x)﹣g(x)=x﹣lnx,可得在区间上函数k(x)为减函数,在区间(1,m)上为增函数,因此函数k(x)在区间的最小值为k(1)=1,最大值是k(m)大于1,所以不满足对于任意x∈D,都有|f(x)﹣g(x)|≤1成立,故f(x)在上不能被g(x)替代;(3)根据题意得出不等式,去掉绝对值,再根据x﹣lnx的正负转化为或,通过讨论右边函数的最值,得出实数a的X围解答:解:(1)∵,令,∵,∴h(x)在[1,e]上单调增,∴.∴|f(x)﹣g(x)|≤1,即在区间[[1,e]]上f(x)能被g(x)替代.(2)记k(x)=f(x)﹣g(x)=x﹣lnx,可得当时,k′(x)<0,在区间上函数k(x)为减函数,当1<x<m时,k′(x)>0,在区间(1,m)上函数k(x)为增函数∴函数k(x)在区间的最小值为k(1)=1,最大值是k(m)>1,所以不满足对于任意x∈D,都有|f(x)﹣g(x)|≤1成立,故f(x)在上不能被g(x)替代;(3)∵f(x)在区间[1,e]上能被g(x)替代,即|f(x)﹣g(x)|≤1对于x∈[1,e]恒成立.∴.,由(2)知,当x∈[1,e]时,x﹣lnx>0恒成立,∴有,令,∵=,由(1)的结果可知,∴F'(x)恒大于零,∴.②,令,∵=,∵,∴G'(x)恒大于零,∴,即实数a的X围为点评:本题考查了利用导数研究函数的单调性,通过分类讨论解决了不等式恒成立的问题,属于难题.。

高二数学期末复习卷

高二数学期末复习卷
A.10B.13C.15D.25
7、若 , , ,则a,b,c的大小关系为( )
A. B. C. D.
8、函数 的大致图象是( )
A. B.
C. D.
9、已知 是两条不同的直线, 是一个平面,则下列命题中正确的是
A.若 B.若
C.若 D.若
10、为了得到函数 的图象,可以将函数 的图象( ).
A.向左平移 个单位长度,再向下平移 个单位长度
4、已知 , ,则 ( )
A. B. C. D.
5、某地区空气质量检测资料表明,一天的空气质量为优良的概率是0.9,连续两天为优良的概率是0.75,已知某天的空气质量为优良,则随后一天的空气质量也为优良的概率为( )
A. B. C. D.
6、如图,某城市中, 、 两地有整齐的道路网,若( )
A. B. C. D.
二、填空题()
13、已知实数 , 满足 ,则目标函数 的最小值为______.
14、函数 在点 处的切线的倾斜角是_____________.
15、 展开式的二项式系数之和为256,则展开式中 的系数为_____.
16、现有5人要排成一排照相,其中甲与乙两人不相邻,且甲不站在两端,则不同的排法有____种.(用数字作答)
B.向右平移 个单位长度,再向上平移 个单位长度
C.向左平移 个单位长度,再向下平移 个单位长度
D.向右平移 个单位长度,再向上平移 个单位长度
11、若双曲线 ( , )的一条渐近线被圆 所截得的弦长为2,则 的离心率为( )
A.2B. C. D.
12、已知三棱锥 的所有顶点都在球 的球面上, 是边长为 的正三角形, 两两垂直,则球 的体积为()。
(2)若关于 的方程 在区间 上有两个不同的实根,求实数 的取值范围.

高二期末数学复习试卷

高二期末数学复习试卷

高二期末数学复习试卷一、选择题('60'512=⨯)1、已知α、β是两个不重合的平面,l 、m 是两条不重合的直线,则α∥β的一个充分条件是………………………………………( )(A) βββα//,//,m l m l 且⊂⊂ (B) m l m l //,且βα⊂⊂(C) m l m l //,且βα⊥⊥(D) m l m l ////,//且βα2、在正方体ABCD-A 1B 1C 1D 1过顶点A 1在空间作直线l ,使l 与直线AC 、BC 1所成的角都等于60°,这样的直线的条数为………( )(A) 1 (B) 2 (C) 3 (D) 43、已知菱形ABCD 的边长为1,∠DAB=60°,将这个菱形沿AC 折成120°的二面角,则B,D 两点间的距离为………………………( ) (A)23 (B)21 (C)23 (D)434、PA、PB 、PC 为三条射线,且 ∠APB = ∠APC= 60°, ∠BPC=90°,则PA 与平面BPC 所成的角为…………………( )(A )30° (B )45° (C )60° (D )90°5、6人并排站成一排,乙必须站在甲的右方,丙必须站在乙的右方,则不同排法的种数为……………………………………………( )(A )4433A A (B )44A (C )3366A A (D )3544A A6、用1,2,3,4,5,7这6 个数字排成无重复的六位数,其中偶数数字不相邻的排法有………………………………………………………() (A )5566A A -(B )224466A A A -(C )141512A A A (D )3544A A 7、在100件产品中,有3件是次品,现从中任意抽取5件,其中至少有2件次品的取法种数为………………………………………( )(A )39723C C (B )2973339723C C C C +(C )497135100C C C -(D )5975100C C - 8、n 是奇数,二项式(1-x)2n+1展开式中系数最大的项是…( )(A )第n 项(B )第n +1项(C )第n+2项(D )第n+1,n +2项9、二项式244)1(xx +的展开式中,有理项共有………( ) (A )3项 (B )5项 (C )6项(D )7项 10、从装有白球3个、红球4个的箱子中,把球一个一个地取出来,到第五个恰好把白球全部取出的概率是………………………( )(A )354 (B )71 (C )356(D )72 11、从两件正品和两件次品中任取两件互为对立事件的是() (A )至少有一件正品与至少有一件次品(B )恰有一件正品与恰有两件正品(C )至多有一件次品与全是次品(D )至少有一件正品与全是正品12、一次游戏中有人出了12道选择题,每题附有4个答案,其中只有一个是符合要求的。

高二上学期文科数学期末总复习

高二上学期文科数学期末总复习

高二上学期文科数学期末总复习一、选择题:每小题5分,共60分(1)直线3410x y +-=的斜率是 ( )(A)34 (B)43 (C) 34- (D) 43-(2)不等式“2a b c +>”成立的一个充分条件是( )(A )c b c a >>或(B )c b c a <>且(C )b c a >且(3)双曲线2224x y -=的离心率是( )(4)已知1a >,则11a a +-的最小值是 ( )(A )(B 1 (C )(5)直线120l y --=与2:10l x +=的夹角( ) (A )6π (B )4π (C )3π (D )2π2x ≤⎧x y =-的取值范围是( )2,2)的双曲线方程是( )1=(C )22128x y -=(D )221312x y -= ) 32⎫<⎬⎭ (C) 322x x ⎧⎫-<<⎨⎬⎩⎭ (D) {}1x x <(9)若椭圆221259x y +=上 的一点P 到左准线的距离为25.,则点P 到右焦点的距离是( )(A )258(B )92 (C )163 (D )8(10)若直线210x ay +-=与直线(31)10a x ay --+=平行,则a 的值是 ( )(A )0 (B )16 (C )13 (D )3(11)设经过双曲线22149x y -=左焦点的直线l 与双曲线交于点A 、B ,若6AB =,则这样的直线有 ( )(A )1 条 (B )2条 (C )3条 (D )4条 (12)设点2222(3,1)1(0)x y P a b a b-+=>>在椭圆的左准线上,过点P 且方向为(2,5)a =-的光线经直线2y =-是( )(A )22132x y += (B )22143x y += (C )25x 二、填空题(13)圆22(1)1x y -+=的圆心到直线y =的距离是(14)若直线41ax y +=与直线(1)1x a y +-=-(15)以双曲线221169x y =-(16)一段长为L 米的篱笆围成一个一边靠墙的矩形菜园,则这个菜园的最大面积是_________ 三、解答题:(17)解下列不等式:(Ⅰ)3≤|x -2|<9.(Ⅱ)261513121x x x -+>+.5)x -的最大值(2)已知x , y ∈( 0,+∞) 且 2x +3y=1,求 1x + 1y的最小值(19)已知圆C 同时满足两个条件:①圆心是直线x y 2=与052=-+y x 的交点;②直线03534=-+y x 与圆C 相切. 求圆C 的方程.(20)(本题12分)如图,已知矩形ABCD 的两条对 角线的交点为E (1,0),且AB 与BC 所在的直线 方程分别为:05053=+-=-+y ax y x 与 (1)求a 的值;(2)求DA 所在的直线方程及CD 所在的直线方程。

日照实验高中高二下学期期末复习数学练习十五(选修2-2和2-3)

日照实验高中高二下学期期末复习数学练习十五(选修2-2和2-3)

日照实验高中高二下学期期末复习数学练习十五(选修2-2和2-3)1.复数ii -+1)1(4+2等于A .2-2iB .-2iC .1-ID .2i2.已知函数f (x )=12mx 2+ln x -2x 在定义域内是增函数,则实数m 的取值范围为A. ]3,1[B. ]1,(-∞C. ]3,(-∞D. ),1[+∞ 3.32()32f x x x =-+在区间[]1,1-上的最大值是(A)-2 (B)0 (C)2 (D)44.在1,2,3,4,5这五个数字组成的没有重复数字的三位数中,各位数字之和为奇数的共有 (A )36个(B )24个 (C )18个(D )6个5.已知(5x -3)n 的展开式中各项系数的和比nyy x 2)1(--的展开式中各项系数的和多1023,则n 的值为 A .9 B .10 C .11 D .126.在正方体上任选3个顶点连成三角形,则所得的三角形是直角非等腰三角形的概率为 A .17 B .27 C .37 D .477.设集合{12}{123}A B ==,,,,,分别从集合A 和B 中随机取一个数a 和b ,确定平面上的一个点()P a b ,,记“点()P a b ,落在直线x y n +=上”为事件(25)n C n n ∈N ≤≤,,若事件n C 的概率最大,则n 的所有可能值为A .3B .4C .2和5D .3和48.已知关于x 的方程09)3(222=-+--b x a x ,其中a ,b 都可以从集合{1,2,3,4,5,6}中任意选取,则已知 方程两根异号的概率为A .61 B .21 C .121 D .31 9.设n 是奇数,12)(,,++∈n i x b a R x 分别表示的展开式中系数大于0与小于0的项的个数,那么A .a =b +2B .a =b +1C .a =bD .a =b -110.设函数b x a x g x f b a x g x f <<'<'则当且上均可导在),()(,],[)(),(时,有 A .)()(x g x f >B .)()(x g x f <C .)()()()(a f x g a g x f +<+D .)()()()(b f x g b g x f +<+11.已知二项式31()nx x-的展开式中的第三项为常数项,则n= 12. 若O 为ABC 内部任意一点,边AO 并延长交对边于A′,则'AOAA =,同理边BO ,CO 并延长,分别交对边于B′,C′,这样可以推出'AO AA +'BO BB +'COCC =____ 类似的,若O 为四面体ABCD 内部任意一点,连AO ,BO ,CO ,DO 并延长,分别交相对面于A ′,B′,C′,D′,,则'AO AA+'BO BB +'CO CC +'DODD =_____ 13. 从长度分别为2、3、4、5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是____0.75____ 14. 设函数2()()f x g x x =+,曲线()y g x =在点(1,(1))g 处的切线方程为21y x =+,则曲线()y f x =在点(1,(1))f 处切线的斜率为________15.设三位数n abc =,若以,,a b c 为三边的长可以构成一个等腰(不含等边)三角形,则这样的三位数n 有________个16.为应对艾滋病对人类的威胁,现在甲、乙、丙三个研究所独立研制艾滋病疫苗,他们能够成功研制出疫苗的概率分别是41,31,21,求: (1)恰有一个研究所研制成功的概率;(2)若想在到研制成功(即至少有一个研究所研制成功)的概率不低于10099,至少需要多少个乙这样的研究所?(参考数据:lg2=0.3010, lg3=0.4771)17.在nx x )12(2+的展开式中,第三项的二项式系数比第二项的二项式系数大27,求展开式中的常数项及系数最大的项。

数学高二上期末考试知识点

数学高二上期末考试知识点

数学高二上期末考试知识点高二上学期即将结束,期末考试即将来临,对于数学学科而言,学生们需掌握一定的知识点才能在考试中取得好成绩。

本文将重点介绍高二数学上学期期末考试的知识点,以帮助各位同学更好地复习和备考。

一、函数与方程1. 函数概念与性质:函数的定义、定义域、值域、奇偶性、周期性等基本性质。

2. 一次函数:一次函数的定义、函数图像、斜率、截距、函数间的等式与不等式关系等。

3. 二次函数:二次函数的定义、函数图像、顶点坐标、对称轴、零点、极值点、函数间的等式与不等式关系等。

4. 指数与对数函数:指数函数与对数函数的基本性质、定义、图像、指数方程与对数方程的解法等。

二、数列与数列极限1. 等差数列:等差数列的定义、通项公式、前n项和公式等。

2. 等比数列:等比数列的定义、通项公式、前n项和公式、求和公式等。

3. 数列极限:数列极限的定义、收敛与发散的判断、极限性质、极限计算等。

三、三角函数1. 常用角:角度制与弧度制的相互转换、正弦、余弦、正切等常用角的值计算。

2. 三角函数的图像与性质:正弦函数、余弦函数、正切函数的图像特征、周期性、奇偶性、函数图像的平移等。

3. 三角函数的基本关系与恒等式:三角函数之间的基本关系、和差角公式、倍角公式、辅助角公式等。

四、解析几何1. 直线与圆的方程:直线的斜截式、点斜式、一般式等,圆的标准式与一般式等。

2. 直线与圆的位置关系:直线与直线的位置关系、直线与圆的位置关系等。

3. 向量:向量的定义、运算、数量积、向量坐标法、向量的共线条件等。

五、概率与统计1. 基本概念与方法:随机事件、样本空间、基本概率、频率与概率的关系等。

2. 排列与组合:排列与组合的基本概念、思想方法、计算公式等。

3. 统计初步:频数表、频率表、频率分布直方图等。

六、数学推理与证明1. 数学归纳法:数学归纳法的基本思想、证明方法等。

2. 数列的证明:数列的单调性、有界性、极限等的证明。

3. 函数的证明:函数的奇偶性、周期性等的证明。

高二数学期末考哪些知识点

高二数学期末考哪些知识点

高二数学期末考哪些知识点高二数学期末考知识点数学是一门学科,对学生来说,无论是在基础教育阶段还是高中阶段,都是必修的科目。

针对高二数学期末考试,下面列举了一些较为重要的知识点供大家学习和复习参考。

一、函数与方程1. 函数的概念与性质- 函数的定义及表示方法- 奇偶函数的判断及性质- 函数的单调性及最值2. 一次函数和二次函数- 一次函数的性质、图像及应用- 二次函数的性质、图像及应用- 二次函数与一元二次方程的关系3. 三角函数- 基本概念与性质- 三角函数的图像、周期性及性质- 三角函数的和差化积、倍角公式等运算方法二、空间与向量1. 空间几何- 点、线、面的性质与判定- 空间中的平面与直线的位置关系- 空间几何问题的应用2. 向量的基本概念与运算- 向量的定义、性质及表示方法- 向量的加减、数量积及应用- 向量的线性相关性与线性无关性3. 空间中直线和平面的方程- 直线的向量方程、参数方程及一般方程 - 平面的点法式方程及一般方程- 直线和平面的位置关系与应用三、概率与统计1. 概率基础- 随机事件及其运算- 事件的概率及性质- 古典概型与几何概型2. 排列与组合- 排列与组合的基本概念- 排列与组合的计算公式- 排列组合问题的应用3. 统计与抽样调查- 数据的收集与整理- 描述统计与统计图表- 抽样调查与推断统计四、导数与微分1. 导数的概念与性质- 导数的定义与计算方法- 导数的几何意义与物理应用- 导数与函数的关系2. 微分的概念与应用- 微分的定义及计算方法- 微分中值定理的应用- 高阶导数与函数的性质以上列出的知识点只是高二数学期末考试的一部分内容,学生在复习时还需综合教材、教师的指导以及平时的学习情况进行全面复习。

通过归纳总结每个知识点的要点,合理安排复习时间,并进行大量的练习和习题训练,相信可以在期末考试中取得好成绩。

祝愿所有参加考试的学生都能充分发挥自己的优势和潜力,取得令人满意的成绩!加油!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常熟市浒浦高级中学高二数学期末复习(15)
部分选自2011.6期末试卷期末考试倒计时:3天
姓名:____________
1.已知复数z=(m﹣2)+(m﹣3)i(其中i为虚数单位)在复平面内对应的点位于第四象限,则实数m的取值范围是_________.
2.式子C125+C126=_________(用组合数表示).
3.设(2x+1)4=a0+a1x+a2x2+a3x3+a4x4,则a0﹣a1+a2﹣a3+a4=_________.
4.若复数z满足z﹣2i=1+zi(其中i为虚数单位),则z=_________.
5.函数y=x﹣ln(x+1)的单调递减区间为_________.
6.上午4节课,一个教师要上3个班级的课,每个班1节课,都安排在上午,若不能3节
连上,这个教师的课有_________种不同的排法.
7.设随机变量ξ的分布列为P(ξ=i)=m(),i=1,2,3,4,则m的值为_________.
8.甲、乙两人投篮,投中的概率分别为0.6,0.7,若两人各投2次,则两人都投中1次的概率为_________.
9.曲线y=x3在点(a,a3)(a>0)处的切线与x轴、直线x=a所围成的三角形的面积为= _________.
10.观察下列不等式:≥,≥,
≥,…,由此猜测第n个不等式为____
____ _.(n∈N*)
11.一份试卷有10个题目,分为A,B两组,每组5题,要求考生选择6题,且每组至多选择4题,则考生有_________种不同的选答方法.
14.已知定义在R上的函数f(x)=x2(ax﹣3),若函数g(x)=f(x)+f′(x),x∈[0,2],在x=0处取得最大值,则正数a的范围_________.
14.已知二项式的展开式中,前三项的系数成等差数列.
(1)求n;
(2)求展开式中的一次项;
(3)求展开式中所有项的二项式系数之和.
15.一袋子中装着标有数字1,2,3的小球各2个,共6个球,现从袋子中任取3个小球,每个小球被取出的可能性都相等,用ξ表示取出的3个小球的数字之和,求:
(1)求取出的3个小球上的数字互不相同的概率;
(2)求随机变量ξ的概率分布.
16.已知z为虚数,为实数.
(1)若z﹣2为纯虚数,求虚数z;
(2)求|z﹣4|的取值范围.
17.已知数列{a n}中,S n是{a n}的前n项和,且S n是2a与﹣2na n的等差中项,其中a是不等于零的常数.
(1)求a1,a2,a3;
(2)猜想a n的表达式,并用数学归纳法加以证明.
18.已知函数f(x)=xlnx,g(x)=x3+mx2﹣nx(m,n为实数).
(1)若x=1是函数y=g(x)的一个极值点,求m与n的关系式;
(2)在(1)的条件下,求函数g(x)的单调递增区间;
(3)若关于x的不等式2f(x)≤g'(x)+1+n的解集为P,且(0,+∞)⊆P,求实数m的取值范围.
2010-2011学年江苏省苏州市常熟市高二(下)期中数学试卷(理科)
参考答案与试题解析
一、第一卷填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应的位置上.
1.(5分)已知复数z=(m﹣2)+(m﹣3)i(其中i为虚数单位)在复平面内对应的点位于第四象限,则实数m的取值范围是(2,3).
2.(5分)式子C125+C126=C136(用组合数表示).
3.(5分)设(2x+1)4=a0+a1x+a2x2+a3x3+a4x4,则a0﹣a1+a2﹣a3+a4=1.
4.(5分)(2009•泰安一模)若复数z满足z﹣2i=1+zi(其中i为虚数单位),则z=.
=
故答案为
5.(5分)函数y=x﹣ln(x+1)的单调递减区间为(﹣1,0).
6.(5分)上午4节课,一个教师要上3个班级的课,每个班1节课,都安排在上午,若不能3节连上,这个教师的课有12种不同的排法.
7.(5分)设随机变量ξ的分布列为P(ξ=i)=m(),i=1,2,3,4,则m的值为.

∴,,
∵,∴
故答案为
8.(5分)甲、乙两人投篮,投中的概率分别为0.6,0.7,若两人各投2次,则两人都投中1次的概率为0.2016.
9.(5分)曲线y=x3在点(a,a3)(a>0)处的切线与x轴、直线x=a所围成的三角形的面积
为=1.
x=
S=)
10.(5分)(2010•镇江模拟)观察下列不等式:≥,≥,
≥,…,由此猜测第n个不等式为
…≥….(n∈N*)
故答案为
11.(5分)一份试卷有10个题目,分为A,B两组,每组5题,要求考生选择6题,且每组至多选择4题,则考生有200种不同的选答方法.
12.(5分)已知f1(x)=sinx+cosx,且f2(x)=f1′(x),f3(x)=f2′(x),…,f n(x)=f n﹣1′
(x),…(n∈N*,n≥2),则=0.
)(()=cos sin
13.(5分)已知数列{a n}满足a1=1,a n+a n﹣1=()n(n≥2),S n=a1•2+a2•22+…+a n•2n,类比课本中推导等比数列前n项和公式的方法,可求得3S n﹣a n•2n+1=n+1.
)((
14.(5分)已知定义在R上的函数f(x)=x2(ax﹣3),若函数g(x)=f(x)+f′(x),x∈[0,
2],在x=0处取得最大值,则正数a的范围.
,所以
<>
<≤时,
∴≤
>时,由于

综上所述,
故答案为:
二、第二卷解答题:本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明或演算步骤.
15.(14分)已知二项式的展开式中,前三项的系数成等差数列.
(1)求n;
(2)求展开式中的一次项;
(3)求展开式中所有项的二项式系数之和.
)由题意二项式的展开式中,前三项的系数成等差数列,可得出
,解此方程求出n的值;
)由项的展开式整理得
)前三项的系数为

所以展开式中的一次项为
16.(14分)一袋子中装着标有数字1,2,3的小球各2个,共6个球,现从袋子中任取3个小球,每个小球被取出的可能性都相等,用ξ表示取出的3个小球的数字之和,求:
(1)求取出的3个小球上的数字互不相同的概率;
(2)求随机变量ξ的概率分布.

=

4 5 6 7 8
所以
17.(15分)已知z为虚数,为实数.
(1)若z﹣2为纯虚数,求虚数z;
(2)求|z﹣4|的取值范围.
的值,再由
为实数且
,从而得到
)∵
∴,∵

18.(15分)已知数列{a n}中,S n是{a n}的前n项和,且S n是2a与﹣2na n的等差中项,其中a是不等于零的常数.
(1)求a1,a2,a3;
(2)猜想a n的表达式,并用数学归纳法加以证明.
,∴
,∴
,∴
)猜想:
∴,

19.(16分)已知函数f(x)=xlnx,g(x)=x3+mx2﹣nx(m,n为实数).
(1)若x=1是函数y=g(x)的一个极值点,求m与n的关系式;
(2)在(1)的条件下,求函数g(x)的单调递增区间;
(3)若关于x的不等式2f(x)≤g'(x)+1+n的解集为P,且(0,+∞)⊆P,求实数m的取值范围.

与可转化为
由题意得,∴
,即得
,即,可得

(舍)
20.(16分)已知数列{a n}的首项为1,设f(n)=a1C n1+a2C n2+…+a k C n k+…+a n C n n(n∈N*).(1)若{a n}为常数列,求f(4)的值;
(2)若{a n}为公比为2的等比数列,求f(n)的解析式;
(3)数列{a n}能否成等差数列,使得f(n)﹣1=2n•(n﹣1)对一切n∈N*都成立?若能,求出数列{a n}的通项公式;若不能,试说明理由.
用倒序相加法求得

参与本试卷答题和审题的老师有:caoqz;刘长柏;席泽林;wubh2011;wfy814;xintrl;haichuan;wsj1012;俞文刚;lily2011;若尘;wdnah(排名不分先后)
菁优网
2014年6月17日。

相关文档
最新文档