高中数学必修5综合测试题答案

合集下载

最新人教A版高中数学必修5第二章测评试卷及答案

最新人教A版高中数学必修5第二章测评试卷及答案

第二章测评(时间:120分钟满分:150分)一、选择题(每小题5分,共60分)1.已知数列{a n}是等差数列,a1=2,其公差d≠0.若a5是a3和a8的等比中项,则S18=()A.398B.388C.189D.199a52=a3·a8,公差d≠0,a1=2,∴(a1+4d)2=(a1+2d)·(a1+7d),代入数据可得d=189.故选C.(2+4d)2=(2+2d)·(2+7d),解得d=1,∴S18=18a1+18×1722.已知数列{b n}是等比数列,b9是1和3的等差中项,则b2b16=()A.16B.8C.4D.2b9是1和3的等差中项,所以2b9=1+3,即b9=2.由等比数列{b n}的性质可得b2b16=b92=4.3.已知在递减的等差数列{a n}中,a3=-1,a1,a4,-a6成等比数列,若S n为数列{a n}的前n项和,则S7的值为() A.-14 B.-9C.-5D.-1{a n}的公差为d,由已知得a3=a1+2d=-1,a42=a1·(-a6),即(a1+3d)2=a1·(-a1-5d),且{a n}为递减d=7-21=-14.数列,则d=-1,a1=1.故S7=7a1+7×624.等差数列{a n}中,S16>0,S17<0,当其前n项和取得最大值时,n=()A.8B.9C.16D.17,S16>0,即a1+a16=a8+a9>0,S17<0,即a1+a17=2a9<0,所以a9<0,a8>0,所以等差数列{a n}为递减数列,且前8项为正数,从第9项以后为负数,所以当其前n项和取得最大值时,n=8.故选A.5.(2020·全国Ⅱ高考,文6)记S n为等比数列{a n}的前n项和.若a5-a3=12,a6-a4=24,则S n=()a nA.2n-1B.2-21-nC.2-2n-1D.21-n-1{a n}的公比为q.∵a5-a3=12,a6-a4=24,∴a6-a4=q=2.a5-a3又a 5-a 3=a 1q 4-a 1q 2=12a 1=12,∴a 1=1.∴a n =a 1·q n-1=2n-1,S n =a 1(1-q n )1-q =1×(1-2n )1-2=2n-1. ∴S na n=2n -12n -1=2-12n -1=2-21-n.故选B .6.已知数列{a n }满足a n +a n+1=12(n ∈N *),a 2=2,S n 是数列{a n }的前n 项和,则S 21为( ) A.5 B.72C.92D.132a n +a n+1=12,a 2=2,∴a n ={-32,n 为奇数,2,n 为偶数.∴S 21=11×(-32)+10×2=72.故选B .7.我国古代数学巨著《九章算术》中,有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”这个问题用今天的白话叙述为:“有一位善于织布的女子,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这位女子每天分别织布多少?”根据上面的已知条件,可求得该女子第4天所织布的尺数为( ) A .815B .1615C .2031D .4031n 天织的布为a n 尺,且数列{a n }为公比q=2的等比数列,由题意可得a 1(1-25)1-2=5,解得a 1=531.所以该女子第4天所织布的尺数为a 4=a 1q 3=4031. 故选D .8.在各项都为正数且不相等的等比数列{a n }中,S n 为其前n 项和,若a m ·a 2m+2=a 72=642(m ∈N *),且a m =8,则S 2m =( ) A.127 B.255 C.511D.1 023{a n }的公比为q ,则a 1q m-1·a 1q 2m+1=(a 1q 6)2.因为等比数列{a n }的各项都为正数且不相等,所以m-1+2m+1=12,解得m=4,故a 4=8.又因为a 72=642,所以a 7=64,q 3=a7a 4=8,解得q=2,所以a 1=a 423=1.故S 2m =S 8=1-281-2=255.9.已知在各项均为正数的数列{a n }中,a 1=1,a 2=2,2a n 2=a n -12+a n+12(n ≥2),b n =1a n +an+1,记数列{b n }的前n 项和为S n ,若S n =3,则n 的值是( ) A.99B.33C.48D.92a n 2=a n -12+a n+12(n ≥2),∴数列{a n 2}是首项为1,公差为22-1=3的等差数列,∴a n 2=1+3(n-1)=3n-2.又a n >0,∴a n =√3n -2,∴b n =1an +a n+1=√3n -2+√3n+1=13·(√3n +1−√3n -2), 故数列{b n }的前n 项和S n =13[(√4−√1)+(√7−√4)+…+(√3n +1−√3n -2)]=13·(√3n +1-1).由S n =13(√3n +1-1)=3,解得n=33.故选B 10.已知数列{a n }满足a 1+3a 2+32a 3+…+3n-1a n =n3(n ∈N *),则a n =( ) A.13n B.13n -1C.13nD.13n+1a 1+3a 2+32a 3+…+3n-1a n =n 3,①a 1+3a 2+32a 3+…+3n-2a n-1=n -13(n ≥2),② ①-②,得3n-1a n =n3−n -13=13(n ≥2),∴a n =13n (n ≥2).由①得a 1=13,经验证也满足上式,∴a n =13n (n ∈N *).故选C .11.对于正项数列{a n },定义:G n =a 1+2a 2+3a 3+…+na nn为数列{a n }的“匀称值”.已知数列{a n }的“匀称值”为G n =n+2,则该数列中的a 10等于( ) A .83B .125C .94D .2110G n=a1+2a2+3a3+…+na n,G n=n+2,∴n·G n=n·(n+2)=a1+2a2+3a3+…+na n,∴n.故10×(10+2)=a1+2a2+3a3+…+10a10;9×(9+2)=a1+2a2+3a3+…+9a9,两式相减得10·a10=21,∴a10=2110选D.12.在数列{a n}中,a1=1,a2=2,且a n+2-a n=1+(-1)n(n∈N*),则S100=()A.0B.1 300C.2 600D.2 602a n+2-a n=1+(-1)n(n∈N*),当n=1时,得a3-a1=0,即a3=a1;当n=2时,得a4-a2=2.由此可得,当n为+a2=n.奇数时,a n=a1;当n为偶数时,a n=2×n-22所以S100=a1+a2+…+a100=(a1+a3+…+a99)+(a2+a4+…+a100)=50a1+(2+4+ (100)=2 600.=50+50×(100+2)2二、填空题(每小题5分,共20分)13.若数列{a n}的前n项和S n=n2-8n,n=1,2,3,…,则满足a n>0的n的最小值为.,当n=1时,a1=S1=-7,当n≥2时,a n=S n-S n-1=2n-9.而a1=2×1-9=-7.综上,a n=2n-9.,又因为n∈N*.由2n-9>0,得n>92故满足a n>0的n的最小值为5.14.已知在公差不为零的正项等差数列{a n}中,S n为其前n项和,lg a1,lg a2,lg a4也成等差数列.若a5=10,则S5=.{a n}的公差为d,则d>0.由lg a1,lg a2,lg a4成等差数列,得2lg a2=lg a1+lg a4,则a22=a1a4,即(a1+d)2=a1(a1+3d),d2=a1d.因为d>0,所以d=a1,a5=5a1=10,解得d=a1=2.故S5=5a1+5×4×d=30.215.若等差数列{a n}的前n项和为S n,且a2=0,S5=10,数列{b n}满足b1=0,且b n+1=a n+1+b n,则数列{b n}的通项公式为.{a n }的公差为d ,则{a 1+d =0,5a 1+10d =10,解得{a 1=-2,d =2.于是a n =-2+2(n-1)=2n-4.因此a n+1=2n-2.于是b n+1-b n =2n-2,b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n-1)=0+0+2+…+(2n-4)=n 2-3n+2,故数列{b n }的通项公式为b n =n 2-3n+2.n =n 2-3n+216.(2020·全国Ⅰ高考,文16)数列{a n }满足a n+2+(-1)n a n =3n-1,前16项和为540,则a 1= .n 为偶数时,有a n+2+a n =3n-1,则(a 2+a 4)+(a 6+a 8)+(a 10+a 12)+(a 14+a 16)=5+17+29+41=92, 因为前16项和为540,所以a 1+a 3+a 5+a 7+a 9+a 11+a 13+a 15=448.当n 为奇数时,有a n+2-a n =3n-1,由累加法得a n+2-a 1=3(1+3+5+…+n )-1+n2=34n 2+n+14,所以a n+2=34n 2+n+14+a 1,所以a 1+34×12+1+14+a 1+34×32+3+14+a 1+34×52+5+14+a 1+34×72+7+14+a 1+34×92+9+14+a 1+34×112+11+14+a 1+34×132+13+14+a 1=448,解得a 1=7.三、解答题(共6小题,共70分)17.(本小题满分10分)已知数列{a n }是等差数列,前n 项和为S n ,且满足a 2+a 7=23,S 7=10a 3. (1)求数列{a n }的通项公式;(2)若a 2,a k ,a k+5(k ∈N *)构成等比数列,求k 的值.设等差数列{a n }的公差是d.根据题意有{a 1+d +a 1+6d =23,7a 1+7×62d =10(a 1+2d ), 解得{a 1=1,d =3.所以数列{a n }的通项公式为a n =3n-2. (2)由(1)得a 2=4,a k =3k-2,a k+5=3(k+5)-2, 由于a 2,a k ,a k+5(k ∈N *)构成等比数列, 所以(3k-2)2=4[3(k+5)-2],整理得3k 2-8k-16=0,解得k=4(舍去k =-43). 故k=4.18.(本小题满分12分)已知各项均为正数的等比数列{a n }的前n 项和为S n ,且2a 2=S 2+12,a 3=2. (1)求数列{a n }的通项公式;(2)若b n =log 2a n +3,数列1b n b n+1的前n 项和为T n ,求满足T n >13的正整数n 的最小值.由题意知,2a 2=S 2+12,∴2a 2=a 1+a 2+12,得a 2=a 1+12.设等比数列{a n }的公比为q ,∵a 3=2,∴2q =2q 2+12,化简得q 2-4q+4=0,解得q=2, ∴a n =a 3·q n-3=2·2n-3=2n-2.(2)由(1)知,b n =log 2a n +3=log 22n-2+3=n-2+3=n+1,∴1b n b n+1=1(n+1)(n+2)=1n+1−1n+2, ∴T n =1b1b 2+1b 2b 3+…+1b n b n+1=12−13+13−14+…+1n+1−1n+2=12−1n+2=n2(n+2). 令T n >13,得n2(n+2)>13,解得n>4,∴满足T n >13的正整数n 的最小值是5.19.(本小题满分12分)已知数列{a n }满足2a n+1=1a n+1a n+2(n ∈N *),且a 3=15,a 2=3a 5.(1)求{a n }的通项公式;(2)若b n =3a n a n+1(n ∈N *),求数列{b n }的前n 项和S n .由2a n+1=1a n+1a n+2(n ∈N *)可知数列{1a n}为等差数列.由已知得1a 3=5,1a 2=13·1a 5, 设其公差为d ,则1a 1+2d=5,1a 1+d=13(1a 1+4d),解得1a 1=1,d=2,于是1a n=1+2(n-1)=2n-1,整理得a n =12n -1.(2)由(1)得b n =3a n a n+1=3(2n -1)(2n+1)=32(12n -1-12n+1), 所以S n =32(1-13+13−15+…+12n -1−12n+1)=3n2n+1. 20.(本小题满分12分)已知数列{a n }的前n 项和S n =2a n -2n . (1)求a 1,a 2.(2)设c n =a n+1-2a n ,证明数列{c n }是等比数列.(3)求数列{n+12c n}的前n 项和T n .a 1=S 1,2a 1=S 1+2,∴a 1=S 1=2.由2a n =S n +2n ,知2a n+1=S n+1+2n+1=a n+1+S n +2n+1,∴a n+1=S n +2n+1,①∴a 2=S 1+22=2+22=6.①式知a n+1-2a n =(S n +2n+1)-(S n +2n )=2n+1-2n =2n ,即c n =2n ,∴cn+1c n=2(常数). ∵c 1=21=2,∴{c n }是首项为2,公比为2的等比数列.c n =2n ,∴n+12c n=n+12n+1.∴数列{n+12c n}的前n 项和T n =222+323+424+…+n+12n+1,12T n =223+324+…+n 2n+1+n+12n+2,两式相减,得12T n =222+123+124+125+…+12n+1−n+12n+2=12+123×(1-12n -1)1-12−n+12n+2=34−12n+1−n+12n+2=34−n+32n+2.∴T n =32−n+32n+1. 21.(本小题满分12分)已知数列{a n }的前n 项和S n =a n +12n 2+32n-2(n ∈N *). (1)求数列{a n }的通项公式; (2)若b n ={1(a n -1)(a n +1),n 为奇数,4·(12)a n,n 为偶数,且数列{b n }的前n 项和为T n ,求T 2n .由于S n =a n +12n 2+32n-2,所以当n ≥2时,S n-1=a n-1+12(n-1)2+32(n-1)-2,两式相减得a n =a n -a n-1+n+1,于是a n-1=n+1,所以a n =n+2. (2)由(1)得b n ={1(n+1)(n+3),n 为奇数,(12)n ,n 为偶数,所以T 2n =b 1+b 2+b 3+…+b 2n =(b 1+b 3+…+b 2n-1)+(b 2+b 4+…+b 2n ).因为b 1+b 3+…+b 2n-1=12×4+14×6+16×8+…+12n×(2n+2)=14[11×2+12×3+…+1n×(n+1)]=14(1-12+12-13+…+1n -1n+1)=n 4(n+1),b 2+b 4+…+b 2n =(12)2+(14)4+…+(12)2n =14[1-(14)n ]1-14=13[1-(14)n],于是T 2n =n4(n+1)+13[1-(14)n].22.(本小题满分12分)已知数列{a n }满足3(n+1)a n =na n+1(n ∈N *),且a 1=3. (1)求数列{a n }的通项公式; (2)求数列{a n }的前n 项和; (3)若a nb n=2n+3n+1,求证:56≤1b 1+1b 2+…+1b n<1.3(n+1)a n =na n+1,所以an+1a n=3(n+1)n(n ∈N *), 则a2a 1=3×21,a 3a 2=3×32,a 4a 3=3×43,……a n a n -1=3×n n -1,累乘可得an a 1=3n-1×n. 又因为a 1=3,所以a n =n×3n (n ∈N *).{a n }的前n 项和为S n ,则S n =1×3+2×32+3×33+…+(n-1)×3n-1+n×3n ,①3S n =1×32+2×33+3×34+…+(n-1)×3n +n×3n+1,② ①-②,可得-2S n =3+32+33+…+3n -n×3n+1=3(1-3n )1-3-n×3n+1=32(3n -1)-n×3n+1 =(12-n)×3n+1-32. 所以S n =(n 2-14)×3n+1+34.因为an b n=2n+3n+1, 所以1b n=2n+3n+1×1n×3n =2n+3n (n+1)×13n=3(n+1)-nn (n+1)×13n =(3n -1n+1)×13n =1n ×13n -1−1n+1×13n , 则1b 1+1b 2+…+1b n=(1×13-12×131)+(12×131-13×132)+…+(1n×13n -1-1n+1×13n )=1-1n+1×13n .因为n ∈N *,所以0<1n+1×13n≤16,即56≤1-1n+1×13n <1, 于是56≤1b 1+1b 2+…+1b n <1.。

高中数学(人教版)必修五第二章数列综合测试卷

高中数学(人教版)必修五第二章数列综合测试卷

高中数学(人教版)必修五第二章数列综合测试卷本试卷满分150分,其中选择题共75分,填空题共25分,解答题共50分。

试卷难度:0.63一.选择题(共15小题,满分75分,每小题5分)1.(5分)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1B.2C.4D.82.(5分)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏3.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440B.330C.220D.1104.(5分)已知数列{a n}、{b n}、{c n},以下两个命题:①若{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,则{a n}、{b n}、{c n}都是递增数列;②若{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,则{a n}、{b n}、{c n}都是等差数列;下列判断正确的是()A.①②都是真命题B.①②都是假命题C.①是真命题,②是假命题D.①是假命题,②是真命题5.(5分)一给定函数y=f(x)的图象在下列图中,并且对任意a1∈(0,1),=f(a n)得到的数列{a n}满足a n+1>a n,n∈N*,则该函数的图象是由关系式a n+1()A.B.C.D.6.(5分)若数列{a n},{b n}的通项公式分别为a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,则实数a的取值范围是()A.B.[﹣1,1)C.[﹣2,1)D.7.(5分)数列{a n}是正项等比数列,{b n}是等差数列,且a6=b7,则有()A.a3+a9≤b4+b10B.a3+a9≥b4+b10C.a3+a9≠b4+b10D.a3+a9与b4+b10大小不确定8.(5分)已知数列{a n}满足:a1=1,a n+1=(n∈N*)若(n∈N*),b1=﹣λ,且数列{b n}是单调递增数列,则实数λ的取值范围是()A.B.λ<1C.D.9.(5分)设△A n B n C n的三边长分别是a n,b n,c n,△A n B n C n的面积为S n,n∈N*,若b1>c1,b1+c1=2a1,b n+1=,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列10.(5分)《张丘建算经》是我国南北朝时期的一部重要数学著作,书中系统的介绍了等差数列,同类结果在三百多年后的印度才首次出现.书中有这样一个问题,大意为:某女子善于织布,后一天比前一天织的快,而且每天增加的数量相同,已知第一天织布5尺,一个月(按30天计算)总共织布390尺,问每天增加的数量为多少尺?该问题的答案为()A.尺B.尺C.尺D.尺11.(5分)已知数列{a n}为等差数列,S n其前n项和,且a2=3a4﹣6,则S9等于()A.25B.27C.50D.5412.(5分)《九章算术》是我国古代的数字名著,书中《均属章》有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各德几何.”其意思为“已知A、B、C、D、E五人分5钱,A、B两人所得与C、D、E三人所得相同,且A、B、C、D、E每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,E所得为()A.钱B.钱C.钱D.钱13.(5分)已知等差数列{a n}的前n项和为s n,且S2=10,S5=55,则过点P(n,a n),Q(n+2,a n+2)(n∈N*)的直线的斜率为()A.4B.C.﹣4D.﹣14.(5分)已知等差数列{a n}的前n项和为S n,且S3=9,a2a4=21,数列{b n}满足,若,则n的最小值为()A.6B.7C.8D.915.(5分)已知函数f(x)的图象关于x=﹣1对称,且f(x)在(﹣1,+∞)上单调,若数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),则{a n}的前100项的和为()A.﹣200B.﹣100C.﹣50D.0二.填空题(共5小题,满分25分,每小题5分)16.(5分)等比数列{a n}的各项均为实数,其前n项为S n,已知S3=,S6=,则a8=.17.(5分)等差数列{a n}的前n项和为S n,a3=3,S4=10,则=.18.(5分)“中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{a n },则此数列的项数为.19.(5分)已知无穷数列{a n },a 1=1,a 2=2,对任意n ∈N *,有a n +2=a n ,数列{b n }满足b n +1﹣b n =a n (n ∈N *),若数列中的任意一项都在该数列中重复出现无数次,则满足要求的b 1的值为.20.(5分)设数列{a n }的通项公式为a n =n 2+bn ,若数列{a n }是单调递增数列,则实数b 的取值范围为.三.解答题(共5小题,满分50分,每小题10分)21.(10分)对于给定的正整数k ,若数列{a n }满足:a n ﹣k +a n ﹣k +1+…+a n ﹣1+a n +1+…+a n +k ﹣1+a n +k =2ka n 对任意正整数n (n >k )总成立,则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”,又是“P (3)数列”,证明:{a n }是等差数列.22.(10分)设{a n }和{b n }是两个等差数列,记c n =max {b 1﹣a 1n ,b 2﹣a 2n ,…,b n ﹣a n n }(n=1,2,3,…),其中max {x 1,x 2,…,x s }表示x 1,x 2,…,x s 这s 个数中最大的数.(1)若a n =n ,b n =2n ﹣1,求c 1,c 2,c 3的值,并证明{c n }是等差数列;(2)证明:或者对任意正数M ,存在正整数m ,当n ≥m 时,>M ;或者存在正整数m ,使得c m ,c m +1,c m +2,…是等差数列.23.(10分)已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5. (Ⅰ)求{a n }的通项公式;(Ⅱ)求和:b 1+b 3+b 5+…+b 2n ﹣1.24.(10分)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=﹣6.(1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.25.(10分)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3﹣x 2=2. (Ⅰ)求数列{x n }的通项公式;(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1,1),P 2(x 2,2)…P n +1(x n +1,n +1)得到折线P 1 P 2…P n +1,求由该折线与直线y=0,x=x 1,x=x n +1所围成的区域的面积T n.高中数学(人教版)必修五第二章数列综合测试卷参考答案与试题解析一.选择题(共15小题,满分75分,每小题5分)1.(5分)(2017•新课标Ⅰ)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1B.2C.4D.8【考点】85:等差数列的前n项和;84:等差数列的通项公式.【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】利用等差数列通项公式及前n项和公式列出方程组,求出首项和公差,由此能求出{a n}的公差.【解答】解:∵S n为等差数列{a n}的前n项和,a4+a5=24,S6=48,∴,解得a1=﹣2,d=4,∴{a n}的公差为4.故选:C.【点评】本题考查等差数列的面公式的求法及应用,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.2.(5分)(2017•新课标Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏【考点】89:等比数列的前n项和;88:等比数列的通项公式.【专题】11 :计算题;34 :方程思想;54 :等差数列与等比数列.【分析】设这个塔顶层有a盏灯,由题意和等比数列的定义可得:从塔顶层依次向下每层灯数是等比数列,结合条件和等比数列的前n项公式列出方程,求出a 的值.【解答】解:设这个塔顶层有a盏灯,∵宝塔一共有七层,每层悬挂的红灯数是上一层的2倍,∴从塔顶层依次向下每层灯数是以2为公比、a为首项的等比数列,又总共有灯381盏,∴381==127a,解得a=3,则这个塔顶层有3盏灯,故选B.【点评】本题考查了等比数列的定义,以及等比数列的前n项和公式的实际应用,属于基础题.3.(5分)(2017•新课标Ⅰ)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440B.330C.220D.110【考点】8E:数列的求和.【专题】35 :转化思想;4R:转化法;54 :等差数列与等比数列.【分析】方法一:由数列的性质,求得数列{b n}的通项公式及前n项和,可知当N为时(n∈N+),数列{a n}的前N项和为数列{b n}的前n项和,即为2n ﹣n﹣2,容易得到N>100时,n≥14,分别判断,即可求得该款软件的激活码;方法二:由题意求得数列的每一项,及前n项和S n=2n+1﹣2﹣n,及项数,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,分别分别即可求得N的值.【解答】解:设该数列为{a n},设b n=+…+=2n﹣1,(n∈N+),则=a i,由题意可设数列{a n}的前N项和为S N,数列{b n}的前n项和为T n,则T n=21﹣1+22﹣1+…+2n﹣1=2n﹣n﹣2,),数列{a n}的前N项和为数列{b n}的前n项和,可知当N为时(n∈N+即为2n﹣n﹣2,容易得到N>100时,n≥14,A项,由=435,440=435+5,可知S440=T29+b5=230﹣29﹣2+25﹣1=230,故A 项符合题意.B项,仿上可知=325,可知S330=T25+b5=226﹣25﹣2+25﹣1=226+4,显然不为2的整数幂,故B项不符合题意.C项,仿上可知=210,可知S220=T20+b10=221﹣20﹣2+210﹣1=221+210﹣23,显然不为2的整数幂,故C项不符合题意.D项,仿上可知=105,可知S110=T14+b5=215﹣14﹣2+25﹣1=215+15,显然不为2的整数幂,故D项不符合题意.故选A.方法二:由题意可知:,,,…,根据等比数列前n项和公式,求得每项和分别为:21﹣1,22﹣1,23﹣1, (2)﹣1,每项含有的项数为:1,2,3,…,n,总共的项数为N=1+2+3+…+n=,所有项数的和为S n:21﹣1+22﹣1+23﹣1+…+2n﹣1=(21+22+23+…+2n)﹣n=﹣n=2n+1﹣2﹣n,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,则①1+2+(﹣2﹣n)=0,解得:n=1,总共有+2=3,不满足N>100,②1+2+4+(﹣2﹣n)=0,解得:n=5,总共有+3=18,不满足N>100,③1+2+4+8+(﹣2﹣n)=0,解得:n=13,总共有+4=95,不满足N>100,④1+2+4+8+16+(﹣2﹣n)=0,解得:n=29,总共有+5=440,满足N >100,∴该款软件的激活码440.故选A.【点评】本题考查数列的应用,等差数列与等比数列的前n项和,考查计算能力,属于难题.4.(5分)(2017•上海模拟)已知数列{a n}、{b n}、{c n},以下两个命题:①若{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,则{a n}、{b n}、{c n}都是递增数列;②若{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,则{a n}、{b n}、{c n}都是等差数列;下列判断正确的是()A.①②都是真命题B.①②都是假命题C.①是真命题,②是假命题D.①是假命题,②是真命题【考点】81:数列的概念及简单表示法.【专题】11 :计算题;35 :转化思想;4O:定义法;5L :简易逻辑.【分析】对于①不妨设a n=2n,b n=3n、c n=sinn,满足{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,但是不满足c n=sinn是递增数列,对于②根据等差数列的性质和定义即可判断.【解答】解:对于①不妨设a n=2n,b n=3n、c n=sinn,∴{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,但c n=sinn不是递增数列,故为假命题,对于②{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,不妨设公差为分别为a,b,c,∴a n+b n﹣a n﹣1﹣b n﹣1=a,b n+c n﹣b n﹣1﹣c n﹣1=b,a n+c n﹣a n﹣1﹣c n﹣1=c,设{a n},{b n}、{c n}的公差为x,y,x,∴则x=,y=,z=,故若{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,则{a n}、{b n}、{c n}都是等差数列,故为真命题,故选:D【点评】本题考查了等差数列的性质和定义,以及命题的真假,属于基础题.5.(5分)(2017•徐汇区校级模拟)一给定函数y=f(x)的图象在下列图中,并且对任意a1∈(0,1),由关系式a n+1=f(a n)得到的数列{a n}满足a n+1>a n,n∈N*,则该函数的图象是()A.B.C.D.【考点】81:数列的概念及简单表示法.【专题】31 :数形结合;51 :函数的性质及应用.=f(a n)得到的数列{a n}满足a n+1>a n(n∈N*),根据点与【分析】由关系式a n+1直线之间的位置关系,我们不难得到,f(x)的图象在y=x上方.逐一分析不难得到正确的答案.=f(a n)>a n知:f(x)的图象在y=x上方.【解答】解:由a n+1故选:A.【点评】本题考查了数列与函数的单调性、数形结合思想方法,考查了推理能力与计算能力,属于基础题.6.(5分)(2017•河东区二模)若数列{a n},{b n}的通项公式分别为a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,则实数a的取值范围是()A.B.[﹣1,1)C.[﹣2,1)D.【考点】82:数列的函数特性.【专题】32 :分类讨论;35 :转化思想;54 :等差数列与等比数列;59 :不等式的解法及应用.【分析】由a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,可得:(﹣1)n+2016•a<2+,对n分类讨论即可得出.【解答】解:a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,∴(﹣1)n+2016•a<2+,n为偶数时:化为a<2﹣,则a<.n为奇数时:化为﹣a<2+,则a≥﹣2.则实数a的取值范围是.故选:D【点评】本题考查了数列通项公式、分类讨论方法、数列的单调性,考查了推理能力与计算能力,属于中档题.7.(5分)(2017•宝清县一模)数列{a n}是正项等比数列,{b n}是等差数列,且a6=b7,则有()A.a3+a9≤b4+b10B.a3+a9≥b4+b10C.a3+a9≠b4+b10D.a3+a9与b4+b10大小不确定【考点】82:数列的函数特性.【专题】54 :等差数列与等比数列.【分析】由于{b n}是等差数列,可得b4+b10=2b7.已知a6=b7,于是b4+b10=2a6.由于数列{a n}是正项等比数列,可得a3+a9=≥=2a6.即可得出.【解答】解:∵{b n}是等差数列,∴b4+b10=2b7,∵a6=b7,∴b4+b10=2a6,∵数列{a n}是正项等比数列,∴a3+a9=≥=2a6,∴a3+a9≥b4+b10.【点评】本题考查了等差数列与等比数列的性质、基本不等式的性质,属于中档题.8.(5分)(2017•湖北模拟)已知数列{a n}满足:a1=1,a n+1=(n∈N*)若(n∈N*),b1=﹣λ,且数列{b n}是单调递增数列,则实数λ的取值范围是()A.B.λ<1C.D.【考点】82:数列的函数特性.【专题】11 :计算题;35 :转化思想;4O:定义法;54 :等差数列与等比数列.【分析】根据数列的递推公式可得数列{+1}是等比数列,首项为+1=2,公=(n﹣2λ)•2n,根据数列的单调性即可求出λ的范围.比为2,再代值得到b n+1【解答】解:∵数列{a n}满足:a1=1,a n+1=(n∈N*),∴=+1,化为+1=+2∴数列{+1}是等比数列,首项为+1=2,公比为2,∴+1=2n,=(n﹣2λ)(+1)=(n﹣2λ)•2n,∴b n+1∵数列{b n}是单调递增数列,>b n,∴b n+1∴(n﹣2λ)•2n>(n﹣1﹣2λ)•2n﹣1,解得λ<1,但是当n=1时,b2>b1,∵b1=﹣λ,∴(1﹣2λ)•2>﹣λ,故选:A.【点评】本题考查了变形利用等比数列的通项公式的方法、单调递增数列,考查了推理能力与计算能力,属于中档题.9.(5分)(2017•海淀区校级模拟)设△A n B n C n的三边长分别是a n,b n,c n,△A nB nC n的面积为S n,n∈N*,若b1>c1,b1+c1=2a1,b n+1=,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列【考点】82:数列的函数特性.【专题】54 :等差数列与等比数列;58 :解三角形;59 :不等式的解法及应用.【分析】由a n=a n可知△A n B n C n的边B n C n为定值a1,由b n+1+c n+1﹣2a1=(b n+c n+1﹣2a n),b1+c1=2a1得b n+c n=2a1,则在△A n B n C n中边长B n C n=a1为定值,另两边A n C n、A n B n的长度之和b n+c n=2a1为定值,由此可知顶点A n在以B n、C n为焦点的椭圆上,根据b n﹣c n+1=(c n﹣b n),得b n﹣c n=,可知n→+∞时b n→c n,+1据此可判断△A n B n C n的边B n C n的高h n随着n的增大而增大,再由三角形面积公式可得到答案.【解答】解:b1=2a1﹣c1且b1>c1,∴2a1﹣c1>c1,∴a1>c1,∴b1﹣a1=2a1﹣c1﹣a1=a1﹣c1>0,∴b1>a1>c1,又b1﹣c1<a1,∴2a1﹣c1﹣c1<a1,∴2c1>a1,∴c1,+c n+1=+a n,∴b n+1+c n+1﹣2a n=(b n+c n﹣2a n),由题意,b n+1∴b n+c n﹣2a n=0,∴b n+c n=2a n=2a1,∴b n+c n=2a1,﹣c n+1=,又由题意,b n+1∴b n﹣(2a1﹣b n+1)==a1﹣b n,b n+1﹣a1=(a1﹣b n)=(b1 +1﹣a1).∴b n=a1+(b1﹣a1),c n=2a1﹣b n=a1﹣(b1﹣a1),=•=单调递增.可得{S n}单调递增.故选:B.【点评】本题主要考查由数列递推式求数列通项、三角形面积海伦公式,综合考查学生分析解决问题的能力,有较高的思维抽象度,属于难题.10.(5分)(2017•汉中二模)《张丘建算经》是我国南北朝时期的一部重要数学著作,书中系统的介绍了等差数列,同类结果在三百多年后的印度才首次出现.书中有这样一个问题,大意为:某女子善于织布,后一天比前一天织的快,而且每天增加的数量相同,已知第一天织布5尺,一个月(按30天计算)总共织布390尺,问每天增加的数量为多少尺?该问题的答案为()A.尺B.尺C.尺D.尺【考点】84:等差数列的通项公式.【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】由题意,该女子从第一天起,每天所织的布的长度成等差数列,其公差为d,由等差数列的前n项和公式能求出公差.【解答】解:由题意,该女子从第一天起,每天所织的布的长度成等差数列,记为:a1,a2,a3,…,a n,其公差为d,则a1=5,S30=390,∴=390,∴d=.故选:B.【点评】本题查等差数列的公差的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.11.(5分)(2017•徐水县模拟)已知数列{a n}为等差数列,S n其前n项和,且a2=3a4﹣6,则S9等于()A.25B.27C.50D.54【考点】84:等差数列的通项公式.【专题】11 :计算题.【分析】由题意得a2=3a4﹣6,所以得a5=3.所以由等差数列的性质得S9=9a5=27.【解答】解:设数列{a n}的首项为a1,公差为d,因为a2=3a4﹣6,所以a1+d=3(a1+3d)﹣6,所以a5=3.所以S9=9a5=27.故选B.【点评】解决此类题目的关键是熟悉等差数列的性质并且灵活利用性质解题.12.(5分)(2017•安徽模拟)《九章算术》是我国古代的数字名著,书中《均属章》有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各德几何.”其意思为“已知A、B、C、D、E五人分5钱,A、B两人所得与C、D、E三人所得相同,且A、B、C、D、E每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,E所得为()A.钱B.钱C.钱D.钱【考点】84:等差数列的通项公式.【专题】11 :计算题;21 :阅读型;33 :函数思想;51 :函数的性质及应用;54 :等差数列与等比数列.【分析】设A=a﹣4d,B=a﹣3d,C=a﹣2d,D=a﹣d,E=a,列出方程组,能求出E所得.【解答】解:由题意:设A=a﹣4d,B=a﹣3d,C=a﹣2d,D=a﹣d,E=a,则,解得a=,故E所得为钱.故选:A.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质、等差数列的性质的合理运用.13.(5分)(2017•南开区模拟)已知等差数列{a n}的前n项和为s n,且S2=10,S5=55,则过点P(n,a n),Q(n+2,a n+2)(n∈N*)的直线的斜率为()A.4B.C.﹣4D.﹣【考点】84:等差数列的通项公式.【专题】54 :等差数列与等比数列.【分析】设出等差数列的首项和公差,由已知列式求得首项和公差,代入两点求直线的斜率公式得答案.【解答】解:设等差数列{a n}的首项为a1,公差为d,由S2=10,S5=55,得,解得:.∴过点P(n,a n),Q(n+2,a n+2)的直线的斜率为k=.故选:A.【点评】本题考查等差数列的通项公式,考查等差数列的前n项和,训练了两点求直线的斜率公式,是基础题.14.(5分)(2017•枣阳市校级模拟)已知等差数列{a n}的前n项和为S n,且S3=9,a2a4=21,数列{b n}满足,若,则n的最小值为()A.6B.7C.8D.9【考点】84:等差数列的通项公式.【专题】34 :方程思想;35 :转化思想;54 :等差数列与等比数列;59 :不等式的解法及应用.【分析】设等差数列{a n}的公差为d,由S3=9,a2a4=21,可得3a1+d=9,(a1+d)(a1+3d)=21,可得a n.由数列{b n}满足,利用递推关系可得:=.对n取值即可得出.【解答】解:设等差数列{a n}的公差为d,∵S3=9,a2a4=21,∴3a1+d=9,(a1+d)(a1+3d)=21,联立解得:a1=1,d=2.∴a n=1+2(n﹣1)=2n﹣1.∵数列{b n}满足,∴n=1时,=1﹣,解得b1=.n≥2时,+…+=1﹣,∴=.∴b n=.若,则<.n=7时,>.n=8时,<.因此:,则n的最小值为8.故选:C.【点评】本题考查了等差数列通项公式与求和公式、数列递推关系及其单调性,考查了推理能力与计算能力,属于中档题.15.(5分)(2017•安徽一模)已知函数f(x)的图象关于x=﹣1对称,且f(x)在(﹣1,+∞)上单调,若数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),则{a n}的前100项的和为()A.﹣200B.﹣100C.﹣50D.0【考点】84:等差数列的通项公式.【专题】11 :计算题;35 :转化思想;4O:定义法;54 :等差数列与等比数列.【分析】由函数图象关于x=﹣1对称,由题意可得a50+a51=﹣2,运用等差数列的性质和求和公式,计算即可得到所求和.【解答】解:函数f(x)的图象关于x=﹣1对称,数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),可得a50+a51=﹣2,又{a n}是等差数列,所以a1+a100=a50+a51=﹣2,则{a n}的前100项的和为=﹣100故选:B.【点评】本题考查函数的对称性及应用,考查等差数列的性质,以及求和公式,考查运算能力,属于中档题.二.填空题(共5小题,满分25分,每小题5分)16.(5分)(2017•江苏)等比数列{a n}的各项均为实数,其前n项为S n,已知S3=,S6=,则a8=32.【考点】88:等比数列的通项公式.【专题】34 :方程思想;35 :转化思想;54 :等差数列与等比数列.【分析】设等比数列{a n}的公比为q≠1,S3=,S6=,可得=,=,联立解出即可得出.【解答】解:设等比数列{a n}的公比为q≠1,∵S3=,S6=,∴=,=,解得a1=,q=2.则a8==32.故答案为:32.【点评】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.17.(5分)(2017•新课标Ⅱ)等差数列{a n}的前n项和为S n,a3=3,S4=10,则=.【考点】8E:数列的求和;85:等差数列的前n项和.【专题】11 :计算题;35 :转化思想;49 :综合法;54 :等差数列与等比数列.【分析】利用已知条件求出等差数列的前n项和,然后化简所求的表达式,求解即可.【解答】解:等差数列{a n}的前n项和为S n,a3=3,S4=10,S4=2(a2+a3)=10,可得a2=2,数列的首项为1,公差为1,S n=,=,则=2[1﹣++…+]=2(1﹣)=.故答案为:.【点评】本题考查等差数列的求和,裂项消项法求和的应用,考查计算能力.18.(5分)(2017•汕头三模)“中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{a n},则此数列的项数为134.【考点】81:数列的概念及简单表示法.【专题】11 :计算题;35 :转化思想;4R:转化法;54 :等差数列与等比数列.【分析】由能被3除余1且被5除余1的数就是能被15整除余1的数,运用等差数列通项公式,以及解不等式即可得到所求项数.【解答】解:由能被3除余1且被5除余1的数就是能被15整除余1的数,故a n=15n﹣14.由a n=15n﹣14≤2017得n≤135,∵当n=1时,符合要求,但是该数列是从2开始的,故此数列的项数为135﹣1=134.故答案为:134【点评】本题考查数列模型在实际问题中的应用,考查等差数列的通项公式的运用,考查运算能力,属于基础题19.(5分)(2017•闵行区一模)已知无穷数列{a n},a1=1,a2=2,对任意n∈N*,=a n,数列{b n}满足b n+1﹣b n=a n(n∈N*),若数列中的任意一项都在有a n+2该数列中重复出现无数次,则满足要求的b1的值为2.【考点】81:数列的概念及简单表示法.【专题】35 :转化思想;48 :分析法;5M :推理和证明.【分析】依题意数列{a n}是周期数咧,则可写出数列{a n}的通项,由数列{b n}满足b n﹣b n=a n(n∈N*),可推出b n+1﹣b n=a n=⇒,,+1,,…要使数列中的任意一项都在该数列中重复出现无数次,则b2=b6=b10=…=b2n﹣1,b4=b8=b12=…=b4n,可得b8=b4=3即可,【解答】解:a1=1,a2=2,对任意n∈N*,有a n+2=a n,∴a3=a1=1,a4=a2=2,a5=a3=a1=1,∴a n=﹣b n=a n=,∴b n+1﹣b2n+1=a2n+1=1,b2n+1﹣b2n=a2n=2,∴b2n+2﹣b2n=3,b2n+1﹣b2n﹣1=3∴b2n+2∴b3﹣b1=b5﹣b3=…=b2n+1﹣b2n﹣1=3,b4﹣b2=b6﹣b4=b8﹣b6=…=b2n﹣b2n﹣2=3,b2﹣b1=1,,,,,,,…,=b4n﹣2∵数列中的任意一项都在该数列中重复出现无数次,∴b2=b6=b10=…=b4n﹣2,b4=b8=b12=…=b4n,解得b8=b4=3,b2=3,∵b2﹣b1=1,∴b1=2,故答案为:2【点评】本题考查了数列的推理与证明,属于难题.20.(5分)(2017•青浦区一模)设数列{a n}的通项公式为a n=n2+bn,若数列{a n}是单调递增数列,则实数b的取值范围为(﹣3,+∞).【考点】82:数列的函数特性.【专题】35 :转化思想;54 :等差数列与等比数列;59 :不等式的解法及应用.【分析】数列{a n}是单调递增数列,可得∀n∈N*,a n+1>a n,化简整理,再利用数列的单调性即可得出.【解答】解:∵数列{a n}是单调递增数列,∴∀n∈N*,a n>a n,+1(n+1)2+b(n+1)>n2+bn,化为:b>﹣(2n+1),∵数列{﹣(2n+1)}是单调递减数列,∴n=1,﹣(2n+1)取得最大值﹣3,∴b>﹣3.即实数b的取值范围为(﹣3,+∞).故答案为:(﹣3,+∞).【点评】本题考查了数列的单调性及其通项公式、不等式的解法,考查了推理能力与计算能力,属于中档题.三.解答题(共5小题,满分50分,每小题10分)21.(10分)(2017•江苏)对于给定的正整数k ,若数列{a n }满足:a n ﹣k +a n ﹣k +1+…+a n ﹣1+a n +1+…+a n +k ﹣1+a n +k =2ka n 对任意正整数n (n >k )总成立,则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”,又是“P (3)数列”,证明:{a n }是等差数列.【考点】8B :数列的应用.【专题】23 :新定义;35 :转化思想;4R :转化法;54 :等差数列与等比数列.【分析】(1)由题意可知根据等差数列的性质,a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3=(a n ﹣3+a n +3)+(a n ﹣2+a n +2)+(a n ﹣1+a n +1)═2×3a n ,根据“P (k )数列”的定义,可得数列{a n }是“P (3)数列”;(2)由已知条件结合(1)中的结论,可得到{a n }从第3项起为等差数列,再通过判断a 2与a 3的关系和a 1与a 2的关系,可知{a n }为等差数列.【解答】解:(1)证明:设等差数列{a n }首项为a 1,公差为d ,则a n =a 1+(n ﹣1)d ,则a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3,=(a n ﹣3+a n +3)+(a n ﹣2+a n +2)+(a n ﹣1+a n +1),=2a n +2a n +2a n ,=2×3a n ,∴等差数列{a n }是“P (3)数列”;(2)证明:当n ≥4时,因为数列{a n }是P (3)数列,则a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3=6a n ,①,因为数列{a n }是“P (2)数列”,所以a n ﹣3+a n ﹣3+a n +a n +1=4a n ﹣1,②,a n ﹣1+a n +a n +2+a n +3=4a n +1,③,②+③﹣①,得2a n =4a n ﹣1+4a n +1﹣6a n ,即2a n =a n ﹣1+a n +1,(n ≥4),因此n ≥4从第3项起为等差数列,设公差为d ,注意到a 2+a 3+a 5+a 6=4a 4, 所以a 2=4a 4﹣a 3﹣a 5﹣a 6=4(a 3+d )﹣a 3﹣(a 3+2d )﹣(a 3+3d )=a 3﹣d ,因为a1+a2+a4+a5=4a3,所以a1=4a3﹣a2﹣a4﹣a5=4(a2+d)﹣a2﹣(a2+2d)﹣(a2+3d)=a2﹣d,也即前3项满足等差数列的通项公式,所以{a n}为等差数列.【点评】本题考查等差数列的性质,考查数列的新定义的性质,考查数列的运算,考查转化思想,属于中档题.22.(10分)(2017•北京)设{a n}和{b n}是两个等差数列,记c n=max{b1﹣a1n,b2﹣a2n,…,b n﹣a n n}(n=1,2,3,…),其中max{x1,x2,…,x s}表示x1,x2,…,x s这s个数中最大的数.(1)若a n=n,b n=2n﹣1,求c1,c2,c3的值,并证明{c n}是等差数列;(2)证明:或者对任意正数M,存在正整数m,当n≥m时,>M;或者存在正整数m,使得c m,c m+1,c m+2,…是等差数列.【考点】8B:数列的应用;8C:等差关系的确定.【专题】32 :分类讨论;4R:转化法;54 :等差数列与等比数列.【分析】(1)分别求得a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,代入即可求得c1,c2,c3;由(b k﹣na k)﹣(b1﹣na1)≤0,则b1﹣na1≥b k﹣na k,则c n=b1﹣na1=1﹣c n=﹣1对∀n∈N*均成立;﹣n,c n+1(2)由b i﹣a i n=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),分类讨论d1=0,d1>0,d1<0三种情况进行讨论根据等差数列的性质,即可求得使得c m,c m+1,c m+2,…是等差数列;设=An+B+对任意正整数M,存在正整数m,使得n≥m,>M,分类讨论,采用放缩法即可求得因此对任意正数M,存在正整数m,使得当n≥m时,>M.【解答】解:(1)a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,当n=1时,c1=max{b1﹣a1}=max{0}=0,当n=2时,c2=max{b1﹣2a1,b2﹣2a2}=max{﹣1,﹣1}=﹣1,当n=3时,c3=max{b1﹣3a1,b2﹣3a2,b3﹣3a3}=max{﹣2,﹣3,﹣4}=﹣2,下面证明:对∀n∈N*,且n≥2,都有c n=b1﹣na1,当n∈N*,且2≤k≤n时,则(b k﹣na k)﹣(b1﹣na1),=[(2k﹣1)﹣nk]﹣1+n,=(2k﹣2)﹣n(k﹣1),=(k﹣1)(2﹣n),由k﹣1>0,且2﹣n≤0,则(b k﹣na k)﹣(b1﹣na1)≤0,则b1﹣na1≥b k﹣na k,因此,对∀n∈N*,且n≥2,c n=b1﹣na1=1﹣n,c n+1﹣c n=﹣1,∴c2﹣c1=﹣1,∴c n﹣c n=﹣1对∀n∈N*均成立,+1∴数列{c n}是等差数列;(2)证明:设数列{a n}和{b n}的公差分别为d1,d2,下面考虑的c n取值,由b1﹣a1n,b2﹣a2n,…,b n﹣a n n,考虑其中任意b i﹣a i n,(i∈N*,且1≤i≤n),则b i﹣a i n=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n,=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),下面分d1=0,d1>0,d1<0三种情况进行讨论,①若d1=0,则b i﹣a i n═(b1﹣a1n)+(i﹣1)d2,当若d2≤0,则(b i﹣a i n)﹣(b1﹣a1n)=(i﹣1)d2≤0,则对于给定的正整数n而言,c n=b1﹣a1n,此时c n+1﹣c n=﹣a1,∴数列{c n}是等差数列;当d2>0,(b i﹣a i n)﹣(b n﹣a n n)=(i﹣n)d2>0,则对于给定的正整数n而言,c n=b n﹣a n n=b n﹣a1n,﹣c n=d2﹣a1,此时c n+1∴数列{c n}是等差数列;此时取m=1,则c1,c2,…,是等差数列,命题成立;②若d1>0,则此时﹣d1n+d2为一个关于n的一次项系数为负数的一次函数,故必存在m∈N*,使得n≥m时,﹣d1n+d2<0,则当n≥m时,(b i﹣a i n)﹣(b1﹣a1n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i≤n),因此当n≥m时,c n=b1﹣a1n,此时c n﹣c n=﹣a1,故数列{c n}从第m项开始为等差数列,命题成立;+1③若d1<0,此时﹣d1n+d2为一个关于n的一次项系数为正数的一次函数,故必存在s∈N*,使得n≥s时,﹣d1n+d2>0,则当n≥s时,(b i﹣a i n)﹣(b n﹣a n n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i ≤n),因此,当n≥s时,c n=b n﹣a n n,此时==﹣a n+,=﹣d2n+(d1﹣a1+d2)+,令﹣d1=A>0,d1﹣a1+d2=B,b1﹣d2=C,下面证明:=An+B+对任意正整数M,存在正整数m,使得n≥m,>M,若C≥0,取m=[+1],[x]表示不大于x的最大整数,当n≥m时,≥An+B≥Am+B=A[+1]+B>A•+B=M,此时命题成立;若C<0,取m=[]+1,当n≥m时,≥An+B+≥Am+B+C>A•+B+C≥M﹣C﹣B+B+C=M,此时命题成立,因此对任意正数M,存在正整数m,使得当n≥m时,>M;综合以上三种情况,命题得证.【点评】本题考查数列的综合应用,等差数列的性质,考查与不等式的综合应用,考查“放缩法”的应用,考查学生分析问题及解决问题的能力,考查分类讨论及转化思想,考查计算能力,属于难题.23.(10分)(2017•北京)已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求和:b1+b3+b5+…+b2n﹣1.【考点】8E:数列的求和;8M:等差数列与等比数列的综合.【专题】11 :计算题;35 :转化思想;49 :综合法;54 :等差数列与等比数列.【分析】(Ⅰ)利用已知条件求出等差数列的公差,然后求{a n}的通项公式;(Ⅱ)利用已知条件求出公比,然后求解数列的和即可.【解答】解:(Ⅰ)等差数列{a n},a1=1,a2+a4=10,可得:1+d+1+3d=10,解得d=2,所以{a n}的通项公式:a n=1+(n﹣1)×2=2n﹣1.(Ⅱ)由(Ⅰ)可得a5=a1+4d=9,等比数列{b n}满足b1=1,b2b4=9.可得b3=3,或﹣3(舍去)(等比数列奇数项符号相同).∴q2=3,}是等比数列,公比为3,首项为1.{b2n﹣1b1+b3+b5+…+b2n﹣1==.【点评】本题考查等差数列与等比数列的应用,数列求和以及通项公式的求解,考查计算能力.24.(10分)(2017•新课标Ⅰ)记S n为等比数列{a n}的前n项和.已知S2=2,S3=﹣6.(1)求{a n}的通项公式;(2)求S n,并判断S n+1,S n,S n+2是否成等差数列.【考点】8E:数列的求和;89:等比数列的前n项和.【专题】35 :转化思想;4R:转化法;54 :等差数列与等比数列.【分析】(1)由题意可知a3=S3﹣S2=﹣6﹣2=﹣8,a1==,a2==,由a1+a2=2,列方程即可求得q及a1,根据等比数列通项公式,即可求得{a n}的通项公式;(2)由(1)可知.利用等比数列前n项和公式,即可求得S n,分别求得S n+1,S n+2,显然S n+1+S n+2=2S n,则S n+1,S n,S n+2成等差数列.。

高中数学必修5测试题(中等程度)

高中数学必修5测试题(中等程度)

《三角函数》综合练习一、选择题1.已知角α的终边经过点0p (-3,-4),则)2cos(απ+的值为( )A.54-B.53C.54D.53-2.半径为πcm ,圆心角为120︒所对的弧长为( )A .3πcm B .23πcm C .23πcm D .223πcm 3.函数12sin[()]34y x π=+的周期、振幅、初相分别是()A .3π,2-,4π B .3π,2,12π C .6π,2,12π D .6π,2,4π 4.sin y x =的图象上各点纵坐标不变,横坐标变为原来的12,然后把图象沿x 轴向右平移3π个单位,则表达式为( )A .1sin()26y x π=-B .2sin(2)3y x π=-C .sin(2)3y x π=-D .1sin()23y x π=- 5.已知函数f (x )=sin ⎝⎛⎭⎪⎫ωx +π3(ω>0)的最小正周期为π,则该函数图像( ) A .关于直线x =π4对称B .关于点(π3,0)对称C .关于点(π4,0)对称D .关于直线x =π3对称6.如图,曲线对应的函数是 ( ) A .y=|sin x | B .y=sin|x |C .y=-sin|x |D .y=-|sin x |7.函数y=cos 2x –3cosx+2的最小值是()A .2B .0C .41 D .68.函数y =3sin ⎝⎛⎭⎪⎫-2x -π6(x ∈[0,π])的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤0,5π12B.⎣⎢⎡⎦⎥⎤π6,2π3C.⎣⎢⎡⎦⎥⎤π6,11π12D.⎣⎢⎡⎦⎥⎤2π3,11π12 9.已知函数sin()y A x B ωϕ=++的一部分图象如右图所示,如果0,0,||2A πωϕ>><,则( )A.4=AB.1ω=C.6πϕ= D.4=B10.已知1cos()63πα+=-,则sin()3πα-的值为()A .13B .13-CD.11.已知α、β是第二象限的角,且βαcos cos >,则 ( )A.βα<;B.βαsin sin >;C.βαtan tan >;D.以上都不对12.设()f x 是定义域为R ,最小正周期为32π的函数,若cos ,(0)(),2sin ,(0)x x f x x x ππ⎧-≤<⎪=⎨⎪≤<⎩ 则15()4f π-等于( ) A. 1B.2C. 0D.2-二、填空题13.函数x x f cos 21)(-=的定义域是______________ 14.若sin α+cos αsin α-cos α=2,则sin αcos α的值是_____________.15、函数])32,6[)(6cos(πππ∈+=x x y 的值域是 . 16.函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图象与直线y =k 有且仅有两个不同的交点,则k 的取值范围是__________.三、解答题17.已知α是第二象限角,sin()tan()()sin()cos(2)tan()f πααπαπαπαα---=+--.(1)化简()f α; (2)若31sin()23πα-=-,求()f α的值.18.已知tan 3α=,求下列各式的值: (1)4sin cos 3sin 5cos αααα-+ ;(2)212sin cos cos ααα+.19.(1)画出函数y =sin ⎪⎭⎫ ⎝⎛6π - 2x 在一个周期的函数图像;(2)求出函数的对称中心和对称轴方程.20.已知y =a -b cos3x (b >0)的最大值为32,最小值为-12.(1)判断其奇偶性.(2)求函数y =-4a sin(3bx )的周期、最大值,并求取得最大值时的x ;21.已知函数45)62sin(21++=πx y (1)求函数的单调递增区间; (2)写出y=sinx 图象如何变换到15sin(2)264y x π=++的图象。

(完整版)高中数学必修五综合测试题 含答案

(完整版)高中数学必修五综合测试题 含答案

.绝密★启用前高中数学必修五综合考试卷第I 卷(选择题)一、单选题1.数列的一个通项公式是( )0,23,45,67⋯A .B . a n =n -1n +1(n ∈N *)a n =n -12n +1(n ∈N *)C .D .a n =2(n -1)2n -1(n ∈N *)a n =2n2n +1(n ∈N *)2.不等式的解集是( )x -12-x ≥0A .B .C .D . [1,2](-∞,1]∪[2,+∞)[1,2)(-∞,1]∪(2,+∞)3.若变量满足 ,则的最小值是( )x,y {x +y ≥0x -y +1≥00≤x ≤1x -3y A .B .C .D . 4-5-314.在实数等比数列{a n }中,a 2,a 6是方程x 2-34x +64=0的两根,则a 4等于( )A . 8B . -8C . ±8D . 以上都不对5.己知数列为正项等比数列,且,则( ){a n }a 1a 3+2a 3a 5+a 5a 7=4a 2+a 6=A . 1B . 2C . 3D . 46.数列前项的和为( )11111,2,3,4,24816n A . B . C .D .2122nn n ++21122n n n +-++2122n n n +-+21122n n n +--+7.若的三边长成公差为的 等差数列,最大角的正弦值为ΔABC a,b,c 232的面积为( )A .B .C .D .1541534213435348.在△ABC 中,已知,则B 等于( )a =2,b =2,A =450A . 30°B . 60°C . 30°或150°D . 60°或120°9.下列命题中正确的是( )A . a >b ⇒ac 2>bc 2B . a >b ⇒a 2>b 2C . a >b ⇒a 3>b 3D . a 2>b 2⇒a >b.10.满足条件,的的个数是 ( )a =4,b =32,A =45∘A . 1个B . 2个C . 无数个D . 不存在11.已知函数满足:则应满足( )f(x)=ax 2-c -4≤f(1)≤-1,-1≤f(2)≤5.f(3)A .B .C .D .-7≤f(3)≤26-4≤f(3)≤15-1≤f(3)≤20-283≤f(3)≤35312.已知数列{a n }是公差为2的等差数列,且成等比数列,则为( )a 1,a 2,a 5a2A . -2B . -3C . 2D . 313.等差数列的前10项和,则等于(){a n }S 10=15a 4+a 7A . 3B . 6C . 9D . 1014.等差数列的前项和分别为,若,则的值为( ){a n },{b n }n S n ,T nS nT n=2n3n +1a 3b 3A .B .C .D . 3547581219第II 卷(非选择题)二、填空题15.已知为等差数列,且-2=-1,=0,则公差={a n }a 7a 4a3d 16.在中,,,面积为,则边长=_________.△ABC A =60∘b =13c 17.已知中,,, ,则面积为_________.ΔABC c =3a =1acosB =bcosA ΔABC 18.若数列的前n 项和,则的通项公式____________{a n }S n =23a n +13{a n }19.直线下方的平面区域用不等式表示为________________.x -4y +9=020.函数的最小值是 _____________.y =x +4x -1(x >1)21.已知,且,则的最小值是______.x ,y ∈R +4x +y =11x +1y三、解答题22.解一元二次不等式(1) (2)-x 2-2x +3>0x 2-3x +5>0.(1)求边上的中线的长;BC AD (2)求△的面积。

北师大版高二数学必修5质量检测题及答案

北师大版高二数学必修5质量检测题及答案

高二数学必修5质量检测题姓名:_________班级:________ 得分:________第Ⅰ卷(选择题 共60分)一、选择题:本答题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 3,…那么A .第12项B .第13项C .第14项D .第15项2. 已知数列{a n }中,12n n a a -= (n ≥2),且a 1=1,则这个数列的第7项为A .512B .256C .128D .643. 已知等差数列}{n a 中,610416,2,a a a +==则6a 的值是A . 15B . 10 C. 5 D. 84. 数列{n a }的通项公式是n a =331n n -(n ∈*N ),则数列{n a }是 A .递增数列 B .递减数列C .常数列D .不能确定该数列的增减性5.在ABC ∆中,6016A AB ∠=︒=,,面积S =,则AC 等于A.50B.C.100D. 6.对于任意实数a 、b 、c 、d ,以下四个命题中的真命题是A .若,0,a b c >≠则ac bc >B .若0,,a b c d >>>则ac bd >C .若,a b >则11a b< D .若22,ac bc >则a b > 7. 在等比数列{a n }中,3S =1,6S =4,则101112a a a ++的值是A .81B .64C .32D .278. 已知等比数列{}n a 满足1223412a a a a +=+=,,则5a =A .64B .81C .128D .2439.设函数()246,06,0x x x f x x x ⎧-+≥=⎨+<⎩,则不等式()()1f x f > 的解集是A.()()3,13,-+∞ B. ()()3,12,-+∞ C. ()()1,13,-+∞ D. ()(),31,3-∞-10. 用铁丝制作一个面积为1 m 2的直角三角形铁框,铁丝的长度最少是A. 5.2 mB. 5 mC. 4.8 mD. 4.6 m11.已知点P (x ,y )在不等式组20,10,220x y x y -≤⎧⎪-≤⎨⎪+-≥⎩表示的平面区域上运动, 则12z x y =-+的取值范围是 A .[-1,-1] B .[-1,1] C .[1,-1] D .[1,1]12.某观察站C 与两灯塔A 、B 的距离分别为x 米和3千米,测得灯塔A 在观察站C 的正西方向,灯塔B 在观察站C 西偏南30,若两灯塔A 、B千米,则x 的值为C.或二、填空题:本大题共5小题,每小题6分,共30分.把本大题答案填在第Ⅱ卷题中横线上.13. 不等式2(2)(23)0x x x ---<的解集为14. 已知数列{}n a 的前n 项和23n S n n =-,则其通项公式为=n a ________ 15. 在29和34之间插入2个数,使这4个数成等比数列,则插入的2个数的乘积为 16.已知点(3,1)和(-1,1)在直线320x y a -+=的同侧,则a 的取值范围是17.若2+22+ (2)>130,n ∈N*,则n 的最小值为_______.高二数学必修5质量检测题(卷)2009.11第Ⅱ卷(非选择题)二、填空题:本大题共5小题,每小题6分,共30分.把答案填在题中横线上.13. ; 14. .15. . 16. ; 17.__________.三、解答题:本大题共4小题,共60分.解答应写出文字说明、证明过程或演算步骤.18.(本题满分15分)设不等式2430x x -+<的解集为A ,不等式260x x +->的解集为B.(1)求A∩B; (2)若不等式20x ax b ++<的解集为A∩B,求,a b 的值.19. (本题满分15分)在锐角△ABC 中,已知AC =2AB =, 60A ∠=. 求:(1)BC 边的长;(2)分别用正弦定理、余弦定理求B ∠的度数.20. (本题满分15分)已知a ∈R, 解关于x 的不等式:220x x a a ---<21. (本题满分15分)某种汽车购买时费用为16.9万元,每年应交付保险费及汽油费共1万元;汽车的维修费第一年为1千元,以后每年都比上一年增加2千元.(Ⅰ)设使用n 年该车的总费用(包括购车费用)为n S ,试写出n S 的表达式;(Ⅱ)求这种汽车使用多少年报废最合算(即该车使用多少年平均费用最少).高二数学必修5质量检测题参考答案及评分标准2009.11一、选择题:本答题共12小题,每小题5分,共60分.1. B (根据石油中学 魏有柱供题改编)2. D (根据铁一中张爱丽供题改编)3. C (根据金台高中高二数学组供题改编)4.B (根据铁一中周粉粉供题改编)5.A. (根据十二厂中学闫春亮供题改编)6.D (根据金台高中高二数学组供题改编)7. D (根据石油中学夏战灵供题改编)8. B (根据石油中学高建梅供题改编)9.A ( 09天津高考题 )10. B (根据教材第94页练习改编)11. B (根据铁一中周粉粉供题改编)12.D (根据金台高中高二数学组及斗鸡中学张永春供题改编)二、填空题:13.{}123或x x x <-<< (根据铁一中孙敏供题改编);14. 64n -(根据铁一中周粉粉供题改编);15. 16(根据铁一中孙敏供题改编); 16.{|}75或a a a <->(根据斗鸡中学张永春、铁一中张爱丽、石油中学高建梅供题改编); 17.7(根据石油中学夏战灵供题改编).三、解答题:本大题共5小题,共60分.18.设不等式2430x x -+<的解集为A ,不等式260x x +->的解集为B.(1)求A∩B; (2)若不等式20x ax b ++<的解集为A∩B,求,a b 的值.(根据斗鸡中学张永春、石油中学高建梅等供题改编)解:(1) A={}13x x <<, (3分) B={}32或x x x <->(6分)A∩B ={}23x x << (9分)(2)∵不等式20x ax b ++<的解集为A∩B∴ 23a +=-(11分) 23b ⨯= (13分)得5a =-,6b = (15分)19.在锐角△ABC 中,已知AC =AB =, 60A ∠=. 求:(1)BC 边的长;(2)分别用正弦定理、余弦定理求B ∠的度数. 解:(1)由余弦定理得2222cos BC AB AC AB AC A =+-∠ (3分)=22122+-⨯ =3 (6分)∴BC =(7分)(2)45B ∠= ,能用正弦定理求出B ∠的度数得4分,过程略.能用余弦定理求出B ∠的度数得4分,过程略.(根据铁一中张爱丽供题改编)20. 已知a ∈R, 解关于x 的不等式:220x x a a ---<解:由题意得(1)()0x a x a --+< (3分)∴ 当1a a +<-时,即12a <-时,解集为(1,)a a +- (7分) 当1a a +>-时,即12a >-时,解集为(,1)a a -+ (11分) 当1a a +=-时,即12a =-时,解集为φ (15分) (根据铁一中孙敏、金台高中高二数学组。

高中数学必修5第一二章综合测试

高中数学必修5第一二章综合测试

高中数学必修5第一二章综合测试班级: 学号: 姓名: 成绩:一、选择题(本大题共12小题,每小题5分,共60分)1.△ABC 的内角A,B,C 的对边分别为a,b,c ,若c=2,b=6,B=120o,则a 等于( )A. B .2 CD2.在△ABC 中,已知b=2,B=45°,如果用正弦定理解三角形有两解,则边长a 的取值范围是 ( )A .222<<aB .42<<aC .22<<aD .222<<a3.在△ABC 中,角A,B,C 的对边分别为a,b,c,若(a 2+c 2-b 2)tanB=3ac,则角B 的值为( )A.6πB.3πC.6π或56π D.3π或23π4.设等比数列{a n }的前n 项和为S n ,若S 10∶S 5=1∶2,则S 15∶S 5等于( )A .3∶4B .2∶3C .1∶2D .1∶35.已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,以S n 表示{a n }的前n 项和,则使得S n 达到最大值的n 是( )A .21B .20C .19D .18 6.已知{a n }是等比数列,a 2=2, a 5=41,则a 1a 2+ a 2a 3+…+ a n a n+1=( )A .16(n --41)B .16(n --21)C .332(n --41) D .332(n --21)7.已知等差数列{a n }中,|a 3|=|a 9|,公差d<0,则使前n 项和S n 取最大值的正整数n 是( )A 、4或5B 、5或6C 、6或7D 、8或98.已知D 、C 、B 三点在地面同一直线上,DC=a ,从C 、D 两点测得A 的点仰角分别为α、β(α>β)则A 点离地面的高AB 等于 ( )A .)sin(sin sin βαβα-a B .)cos(sin sin βαβα-a C .)sin(cos cos βαβα-a D .)cos(cos cos βαβα-a9.已知等差数列{a n }的公差d≠0且a 1,a 3,a 9成等比数列,则a 1+a 3+a 9a 2+a 4+a 10等于( )A.1514 B.1213 C.1316 D.151610.某纯净水厂在净化过程中,每增加一次过滤可减少水中杂质的20%,要使水中杂质减少到原来的5%以下,则至少需过滤的次数为(lg 2≈0.301 0)( ) A .5 B .10 C .14 D .1511.在数列{a n }中,a 1=2,a n +1=a n +ln ⎝⎛⎭⎫1+1n ,则a n 等于( )A .2+ln nB .2+(n -1)ln nC .2+nln nD .1+n +ln n 12.已知数列1,12,21,13,22,31,14,23,32,41,…,则56是数列中的( )二、填空题(本大题共4小题,每小题4分,共16分)13.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若(3b – c)cosA=acosC ,则cosA=14.若AB=2, AC=BC ,则S △ABC 的最大值15.已知函数f(x)=2x ,等差数列{a x }的公差为2.若f(a 2+a 4+a 6+a 8+a 10)=4,则log 2[f(a 1)f(a 2)f(a 3)…f(a 10)]= 16.数列{a n }中,S n 是其前n 项和,若a 1=1,a n +1=13S n (n≥1),则a n =____________.三、解答题(本大题共6小题,共74分)17.(12分) 已知△ABC 的内角C B A ,,所对的边分别为,,,c b a 且53cos ,2==B a .(1) 若4=b , 求A sin 的值; (2) 若△ABC 的面积,4=∆ABC S 求c b ,的值.18.(12分) 已知数列{log 2(a n -1)} (n ∈N *)为等差数列,且a 1=3,a 3=9. (1)求数列{a n }的通项公式;(2)证明:1a 2-a 1+1a 3-a 2+…+1a n +1-a n <1.19.(12分) 求函数2474sin cos 4cos 4cos y x x x x =-+-的最大值与最小值20.(12分)某市2009年共有1万辆燃油型公交车.有关部门计划于2010年投入128辆电力型公交车,随后电力型公交车每年的投入比上一年增加50%,试问: (1)该市在2016年应该投入多少辆电力型公交车?(2)到哪一年底,电力型公交车的数量开始超过该市公交车总量的13?21.(12分) 在数列{a n }中,已知a 1=-1,且a n +1=2a n +3n -4 (n ∈N *). (1)求证:数列{a n +1-a n +3}是等比数列; (2)求数列{a n }的通项公式;(3)求和:S n =|a 1|+|a 2|+|a 3|+…+|a n | (n ∈N *).22.(14分) 设数列{a n }的首项a 1=1,前n 项和S n 满足关系式:3tS n -(2t +3)S n -1=3t (t >0,n =2,3,4,…).(1)求证:数列{a n }是等比数列;(2)设数列{a n }的公比为f (t ),作数列{b n },使b 1=1,b n =f ⎝⎛⎭⎫1b n -1 (n =2,3,4,…).求数列{b n }的通项b n ; (3)求和:b 1b 2-b 2b 3+b 3b 4-b 4b 5+…+b 2n -1b 2n -b 2n b 2n +1.。

北师大版高中数学必修5模块测试试题及答案

北师大版高中数学必修5模块测试试题及答案

数学必修5第一部分(选择题 共50分)一、 选择题(每小题5分,10小题,共50分)1、在ABC ∆中,︒===452232B b a ,,,则A 为( )A .︒︒︒︒︒︒30.15030.60.12060D CB 或或2、在ABC ∆中,bc c b a ++=222,则A 等于( )A ︒︒︒︒30.45.60.120.D C B3、在ABC ∆中,1660=︒=b A ,,面积3220=S ,则a 等于( ) A. 610.B. 75C . 49D. 514、等比数列{}n a 中293a a =,则313239310log log log log a a a a ++++ 等于( ) A .9 B .27 C .81 D .2435、三个数a ,b ,c 既是等差数列,又是等比数列,则a ,b ,c 间的关系为 ( ) A .b-a =c-b B .b 2=a c C .a =b=c D .a =b=c ≠06、等比数列{}n a 的首项1a =1,公比为q ,前n 项和是n S ,则数列⎭⎬⎫⎩⎨⎧n a 1的前n 项和是( )A .1-n SB .n n q S -C .n n q S -1D .11--n n q S7、在等差数列{}n a 中,前四项之和为40,最后四项之和为80,所有项之和是210,则项数n 为( )A .12B .14C .15D .16 8、已知,,a b c R ∈,则下列选项正确的是 ( )A.22a b am bm >⇒>B.a ba b c c>⇒> C .11,0a b ab a b >>⇒< D.2211,0a b ab a b>>⇒<9、已知x y xy +=,则y x +的取值范围是( )A .]1,0(B .),2[+∞C .]4,0(D .),4[+∞10、⎪⎪⎩⎪⎪⎨⎧≥≥-<-<+0011234x y y x y x 表示的平面区域内的整点的个数是( )A .8个B .5个C .4个D .2个第二部分(非选择题 共100分)二、填空题(每小题5分,4小题,共20分)11、已知0,0>>y x ,且191=+yx ,求y x +的最小值 _____________ 12、当x 取值范围是_____________ 时,函数122-+=x x y 的值大于零 13、在等比数列}{n a 中,08,204321=+=+a a a a ,则=10S14、不等式组6003x y x y x -+≥⎧⎪+≥⎨⎪≤⎩表示的平面区域的面积是三、解答题(共六个题,前两题每题10分,后面每题15分,共80分)15、在△ABC 中,BC =a ,AC =b ,a ,b 是方程02322=+-x x 的两个根,且()1cos 2=+B A 。

人教A版高中数学必修五必修五 综合测试题 (第三套).docx

人教A版高中数学必修五必修五 综合测试题 (第三套).docx

必修五 综合测试题 (第三套)一.选择题:1. 已知等差数列}{n a 中,12497,1,16a a a a 则==+的值是( )A . 15B . 30 C. 31 D. 642. 若全集U=R,集合M ={}24x x >,S =301x xx ⎧-⎫>⎨⎬+⎩⎭,则()U M S I ð=( ) A.{2}x x <- B. {23}x x x <-≥或 C. {3}x x ≥ D. {23}x x -≤<3. 若1+2+22+ (2)>128,n ÎN*,则n 的最小值为( ) A. 6 B. 7 C. 8 D. 9 4. 在ABC V 中,60B =o ,2b ac =,则ABC V 一定是( )A 、等腰三角形B 、等边三角形C 、锐角三角形D 、钝角三角形 5. 若不等式022>++bx ax的解集为⎭⎬⎫⎩⎨⎧<<-3121|x x ,则a -b 值是( )A.-10B.-14C. 10D. 14 6. 在等比数列{a n }中,4S =1,8S =3,则20191817a a a a +++的值是( )A .14B .16C .18D .207.已知12=+y x ,则y x 42+的最小值为( ) A .8 B .6 C .22 D .238. 黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案,则第n 个图案中有白色地面砖的块数是( ) A.42n +B.42n -C.24n +D.33n +9. 已知变量y x ,满足⎪⎩⎪⎨⎧≥<+≤+-12553034x y x y x ,目标函数是y x z +=2,则有( )A .3,12min max ==z zB .,12max=z z 无最小值C .z z ,3min=无最大值 D .z 既无最大值,也无最小值10.在R 上定义运算:(1)x y x y ⊗⊗=-,若不等式()()1x a x a -⊗+<对任意实数x 成立,则实数a 的取值范围是( ) A .11a -<< B .02a << C .1322a -<< D .3122a -<< 二填空题: 11. 在数列{}n a 中,11a =,且对于任意正整数n ,都有1n n a a n +=+,则100a =______第1个 第2个 第3个12.在⊿ABC 中,5:4:21sin :sin :sin=C B A ,则角A =13.某校要建造一个容积为83m ,深为2m 的长方体无盖水池,池底和池壁的造价每平方米分别为240元和160元,那么水池的最低总造价为 元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修5一、选择题1.数列1,3,6,10,…的一个通项公式是()(A )a n =n 2-(n-1) (B )a n =n 2-1 (C )a n =2)1(+n n (D )a n =2)1(-n n 2.已知数列3,3,15,…,)12(3-n ,那么9是数列的( )(A )第12项(B )第13项 (C )第14项(D )第15项3.已知等差数列{a n }的公差d ≠0,若a 5、a 9、a 15成等比数列,那么公比为 ( ) A .B .C .D .4.等差数列{a n }共有2n+1项,其中奇数项之和为4,偶数项之和为3,则n 的值是( )A.3 B.5 C.7 D.9 5.△ABC 中,cos cos A a Bb=,则△ABC 一定是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等边三角形6.已知△ABC 中,a =4,b =43,∠A =30°,则∠B 等于( )A .30° B .30°或150° C .60°D .60°或120° 7.在△ABC 中,∠A =60°,a =6,b =4,满足条件的△ABC ( )(A )无解 (B )有解 (C )有两解 (D )不能确定 8.若110a b <<,则下列不等式中,正确的不等式有 ①a b ab +< ②a b > ③a b < ④2b aa b+> ( ) A .1个 B .2个 C .3个 D .4个9.下列不等式中,对任意x ∈R 都成立的是 ( ) A .2111x <+ B .x 2+1>2x C .lg(x 2+1)≥lg2x D .244x x +≤1 10.下列不等式的解集是空集的是( )A.x 2-x+1>0 B.-2x 2+x+1>0 C.2x -x 2>5 D.x 2+x>2 11.不等式组 (5)()0,03x y x y x -++≥⎧⎨≤≤⎩表示的平面区域是( ) (A ) 矩形( B ) 三角形(C ) 直角梯形(D ) 等腰梯形12.给定函数)(x f y =的图象在下列图中,并且对任意)1,0(1∈a ,由关系式)(1n n a f a =+得到的数列}{n a 满足)(*1N n a a n n ∈>+,则该函数的图象是()A B C D二、填空题:13.若不等式ax 2+bx +2>0的解集为{x |-3121<<x },则a +b =________. 14.140,0,1x y x y>>+=若且,则x y +的最小值是 . 15.黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:o 1 1 x yo 11 x yo 1 1 x yo 11 xy则第n 个图案中有白色地面砖 块.16. 已知钝角△ABC 的三边a =k ,b=k+2,c=k+4,求k 的取值范围 --------------. 。

17、不等式13x x+≤的解为 。

18、若0>x ,则42x x--的最大值是 。

19、设等差数列{}n a 的前n 项和为n S ,若111a =-,466a a +=-,则当n S 取最小值时,n 等于 。

20、对于满足0≤a ≤4的实数a ,使x 2+ax>4x +a -3恒成立的x 取值范围是________. 21、不等式2313x x a a +--≤-对任意实数x 恒成立,则实数a 的取值范围为 。

三、解答题:1.(本小题满分12分)已知A 、B 、C 为ABC ∆的三内角,且其对边分别为a 、b 、c ,若21sin sin cos cos =-C B C B . (Ⅰ)求A ; (Ⅱ)若4,32=+=c b a ,求ABC ∆的面积.2.(本小题满分12分)已知数列{}n a 是一个等差数列,且21a =,55a =-。

(Ⅰ)求{}n a 的通项n a ;(Ⅱ)求{}n a 前n 项和n S 的最大值. 3.已知10<<m ,解关于x 的不等式13>-x mx. 4.(本小题满分14分)设函数x x f a log )(=(1,0≠>a a a 为常数且),已知数列),(1x f ),(2x f ),(n x f 是公差为2的等差数列,且21a x =.(Ⅰ)求数列}{n x 的通项公式; (Ⅱ)当21=a 时,求证:3121<+++n x x x . 5.(本小题满分14分)某房地产开发商投资81万元建一座写字楼,第一年装修费为1万元,以后每年增加2万元,把写字楼出租,每年收入租金30万元.(Ⅰ)若扣除投资和各种装修费,则从第几年开始获取纯利润?(Ⅱ)若干年后开发商为了投资其他项目,有两种处理方案:①年平均利润最大时以46万元出售该楼; ②纯利润总和最大时,以10万元出售该楼,问哪种方案盈利更多?6、已知全集U ={x | x 2-7x+10≥0},A={x | |x -4| >2} ,B={x | 5x 2x --≥0},求:C U A ,A B7、已知函数f(x)=3x 2+bx +c ,不等式f(x)>0的解集为(-∞,-2)∪(0,+∞).(1) 求函数f(x)的解析式;(2) 已知函数g(x)=f(x)+mx -2在(2,+∞)上单调增,求实数m 的取值范围; (3) 若对于任意的x ∈[-2,2],f(x)+n ≤3都成立,求实数n 的最大值. 8、在△ABC 中,角A 、B 、C 所对应的边为c b a ,,(1)若,cos 2)6sin(A A =+π求A 的值;(2)若cb A 3,31cos ==,求C sin 的值.9、建造一间地面面积为122m 的背面靠墙的猪圈, 底面为长方形的猪圈正面的造价为120元/2m , 侧面的造价为80元/2m , 屋顶造价为1120元. 如果墙高3m , 且不计猪圈背面的费用, 问怎样设计能使猪圈的总造价最低, 最低总造价是多少元?10、在等差数列{}n a 中,11a =,前n 项和n S 满足条件242,1,2,1n n S n n S n +==+,(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)记(0)n an n b a p p =>,求数列{}n b 的前n 项和n T 。

答案:1---12 CCCAA, DABDC, DA13.-14, 14.9 15. 4n+2 16. (2,6) 17、0x <或12x ≥18、-2 19、6 20、x <-1或x >3. 21、(,1][4,)-∞-+∞1. 解:(Ⅰ)21sin sin cos cos =-C B C B 21)cos(=+∴C B 又π<+<C B 0 ,3π=+∴C Bπ=++C B A ,32π=∴A . (Ⅱ)由余弦定理A bc c b a cos 2222⋅-+= 得 32cos22)()32(22π⋅--+=bc bc c b 即:)21(221612-⋅--=bc bc ,4=∴bc323421sin 21=⋅⋅=⋅=∴∆A bc S ABC . 2.解:(Ⅰ)设{}n a 的公差为d ,由已知条件,11145a d a d +=⎧⎨+=-⎩,解出13a =,2d =-.所以1(1)25n a a n d n =+-=-+.(Ⅱ)21(1)42n n n S na d n n -=+=-+24(2)n =--. 所以2n =时,n S 取到最大值4.3. 解:原不等式可化为:[x (m -1)+3](x -3)>00<m <1, ∴-1<m -1<0, ∴ 31313>-=--m m ; ∴ 不等式的解集是⎭⎬⎫⎩⎨⎧-<<m x x 133|.4.解:(Ⅰ)21()log 22a f x a d === n n x f n 22)1(2)(=⨯-+=∴n n n a a x nx 22log :==即(Ⅱ)当21=a 时,nn x ⎪⎭⎫⎝⎛=41314113141141414121<⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=-⋅⎪⎭⎫ ⎝⎛-=+++nnn x x x5.解:(Ⅰ)设第n 年获取利润为y 万元n 年共收入租金30n 万元,付出装修费构成一个以1为首项,2为公差的等差数列, 共222)1(n n n n =⨯-+因此利润)81(302n n y +-=,令0>y 解得:273<<n所以从第4年开始获取纯利润.(Ⅱ)年平均利润n nn n n W --=+-=8130)81(302 1281230=-≤(当且仅当n n=81,即n=9时取等号) 所以9年后共获利润:12469+⨯=154(万元) 利润144)15()81(3022+--=+-=n n n y所以15年后共获利润:144+ 10=154 (万元)两种方案获利一样多,而方案①时间比较短,所以选择方案①.6、解:}2x 5x |x {U ≤≥=或 …………………………………………2分 }2x 6x |x {A <>=或 ………………………………………………2分 }2x 5x |x {B ≤>=或 ……………………………………………2分 }2x 6x 5|x {A C U =≤≤=或 …………………………………………2分 }6x 2x |x {B A ><=或 …………………………………………2分7、解:(1) ⎩⎪⎨⎪⎧f (0)=0,f (-2)=0⎩⎪⎨⎪⎧b =6,c =0,∴ f(x)=3x 2+6x ;(2) g(x)=3⎣⎢⎡⎦⎥⎤x +⎝ ⎛⎭⎪⎫1+m 62-2-3×⎝ ⎛⎭⎪⎫1+m 62,-⎝ ⎛⎭⎪⎫1+m 6≤2,m ≥-18;(3) f(x)+n ≤3即n ≤-3x 2-6x +3,而x ∈[-2,2]时,函数y =-3x 2-6x +3的最小值为-21,∴ n ≤-21,实数n 的最大值为-21. 8、解:(1)由题设知cos ,cos 3sin ,cos 26sincos 6cossin ≠==+A A A A A A 所以从而ππ,.3,0,3tan ππ=<<=A a A 所以因为(2)由.,cos 23,31cos 222222c b a A bc c b a c b A -=-+===得及故△ABC 是直角三角形,且31cos sin ,2===A CB 所以π.9、设猪圈底面正面的边长为xm , 则其侧面边长为12x m --- 2分那么猪圈的总造价576012312038021123601120x x y x x =⨯+⨯⨯⨯+=++, --- 3分因为57603602880x x +≥=, --- 2分 当且仅当5760360xx =, 即4x =时取“=”, --- 1分所以当猪圈正面底边为4米侧面底边为3米时, 总造价最低为4000元. --- 2分 10、解:(Ⅰ)设等差数列{}n a 的公差为d ,由2421n n S n S n +=+得:1213a a a +=,所以22a =,即211d a a =-=,又1211122()42212n n n n n n a nd a nS a nd a n a a n S a a n ++⨯+++===+++⨯=2(1)1n n a n a +++,所以n a n =。

相关文档
最新文档