机械设计基础
《机械设计基础》学习笔记

掌握牙嵌离合器、摩擦离合器和电磁离合器等三种类型的离合器,以及各自的工作原理和适用场合。
过盈连接与无键连接
过盈连接的原理和特点
了解过盈连接的基本原理、类型和特 点,如圆柱面过盈连接和圆锥面过盈 连接等。
无键连接的类型和应用
掌握胀套连接、冷缩配合连接和型面 连接等三种无键连接的类型,以及各 自的应用场景和特点。
环境适应性原则
考虑材料在特定环境下的适应性, 如高温、低温、腐蚀等环境。
04
材料的环境适应性考虑
温度环境
腐蚀环境
考虑材料在高温或低温环境下的性能变化, 选择耐温性好的材料。
根据腐蚀介质的种类和浓度选择耐蚀性好的 材料。
辐射环境
特殊环境
选择抗辐射性能好的材料,避免辐射对材料 性能的影响。
针对特殊环境要求选择相应的材料,如真空、 高压等环境。
动力学
研究物体机械运动与作用 力之间的关系,包括动量 定理、动量矩定理以及动 能定理等。
材料力学基础
01
02
03
04
材料的力学性能
研究材料在不同温度、不同介 质下的力学性能,包括强度、
刚度、稳定性以及疲劳等。
杆件的拉伸与压缩
分析杆件在拉伸与压缩时的应 力、变形以及强度条件。
剪切与挤压
研究剪切与挤压的实用计算方 法以及剪切胡克定律等。
蜗杆传动机构
组成与特点
类型与应用
由蜗杆和蜗轮组成,通过蜗杆与 蜗轮之间的啮合传递运动和动力。 具有传动比大、结构紧凑、传动 平稳等特点。
根据蜗杆的形状和啮合方式,可 分为圆柱蜗杆传动、环面蜗杆传 动等。广泛应用于各种减速装置 和传动系统中,如机床分度头、 汽车转向器等。
50个机械设计基础知识点

50个机械设计基础知识点1.刚体力学:研究物体在作用力下的平衡和运动。
2.静力学:研究物体在静止状态下的力学性质。
3.动力学:研究物体在运动状态下的力学性质。
4.运动学:研究物体的运动特性,如速度、加速度和位移。
5.力学系统:由若干物体组成,并且相互作用,受到外界力的作用。
6.力的合成:通过矢量相加的方法计算多个力的合力。
7.力的分解:将一个力分解为多个力的合力。
8.平衡:物体受到的合力和合力矩均为零。
9.功:力在物体上产生的位移所做的功。
10.能量:物体的能力做功的量度。
11.弹性力:物体受到变形后,恢复原状的力。
12.摩擦力:物体在运动或静止时受到的阻力。
13.运动学链:由多个刚体连接而成的机构,用来进行运动传递和转换。
14.齿轮传动:利用齿轮的互相啮合实现运动传递和转换。
15.杠杆机构:利用杠杆的原理实现力的放大或缩小的机构。
16.曲柄连杆机构:利用曲柄和连杆的结构实现运动转换。
17.铰链机构:通过铰链连接物体的机构,实现固定、旋转或滑动。
18.滑块机构:由滑块和导轨构成的机构,实现直线运动。
19.传动比:用来衡量运动传递的效率。
20.齿轮比:齿轮传动中两个齿轮的旋转速度比值。
21.离合器:用来连接或分离两个旋转物体的装置。
22.制动器:用来减速、停止或固定运动物体的装置。
23.轴承:用来支撑和减小机械运动中的摩擦力的装置。
24.轴线:用来连接和支撑旋转物体的直线。
25.键连接:通过键连接来实现轴线和轴承的固定。
26.螺纹连接:通过螺纹连接实现两个物体的拧紧或松开。
27.轴承间隙:轴承内外圈之间的间隙,用来调整摩擦力和轴承的转动。
28.轴向力:作用于轴线方向上的力。
29.径向力:作用于轴线垂直方向上的力。
30.弹簧:用来储存和释放能量的装置。
31.拉伸强度:材料抵抗拉伸破坏的能力。
32.压缩强度:材料抵抗压缩破坏的能力。
33.硬度:材料抵抗划伤或穿透的能力。
34.拉伸试验:测试材料的拉伸性能和强度。
机械设计基础

1、什么是零件、构件、机构、机器、机械?有什么联系?有什么区别?零件:制造的单元;构件:运动的单元;机构:具有确定运动的构件系统称为机构;机器:执行机械运动的装置,用来变换或传递能量、物料、信息;(机构只传递运动和力,机器还传递其他)机械:机器和机构的总称2、何谓运动副和运动副元素?运动副有哪些类型?各有几个自由度?用什么符号表示?运动副:两个构件直接接触组成的仍能产生某些相对运动的联接;运动副元素:直接接触的部分(点、线、面);1)按相对运动范围分有:平面运动副,空间运动副2)按运动副元素分有:①高副-点、线接触,应力高,②低副-面接触,应力低自由度:低副一个,高副两个:F=3n -2P L-P H3、什么是局部自由度?什么是复合铰链?什么是虚约束?如何判别?复合铰链:两个以上的构件在同一处以转动副相联。
局部自由度:构件局部运动所产生的自由度。
虚约束:对机构的运动实际不起作用的约束。
①两构件之间组成多个导路平行的移动副②两构件之间组成多个轴线重合的转动副③机构中传递运动不起独立作用的对称部分4、平面机构自由度的计算及注意事项?5、何谓形成速比系数K?它描述了机械的什么特性?他与极位夹角有何关系?在曲柄摇杆机构中,当曲柄与连杆两次共线时,摇杆位于两个极限位置,简称极位。
此两处曲柄之间的夹角θ称为极位夹角。
6、铰链四杆机构中,如何确定曲柄摇杆机构、双曲柄机构和双摇杆机构?按照给定的行程速度变化系数设计四杆机构的方法?铰链四杆机构有整转副的条件是最短杆与最长杆长度之和小于或等于其余两杆长度之和;整转副是有最短杆与其邻边组成的。
从哪个杆是机架来判断:最短杆为机架,机架上有两个整转副,双曲杆最短杆的邻边为机架,机架上只有一个整转副,曲柄摇杆最短杆对边为机架,机架上没有整转副,双摇杆7铰链四杆机构中,哪种机构可实现急回特性?曲柄摇杆、偏置曲柄滑块机构、摆动导杆机构8、平面机构中,传动角的大小对机构传力性能有何影响?压力角:从动件驱动力F 与力作用点绝对速度之间所夹锐角α。
机械设计基础第1章

K个构件具有K-1个转动副.
• 2.局部自由度
与输出构件运动无关的自由度称 为局部自由度。
• 3.虚约束
• 对机构运动不起限制作用的重复约 束称为虚约束。
•
虚约束虽然对运动不起作用,
但有增加构件刚性、使构件受力均
衡等作用。
•
例题4 例题5
局部自由度
2
2
2
2
1
1 1
Hale Waihona Puke 11(a) 1
2
2
1
2
2
运动副表示
2
1 (b) 1
2 1
2
a)
b) 构件表示
c)
2 构件分类: 1) 固定构件(机架):用来支承运动构件的构件。 相对地面不动。 2)原动件(主动件):运动规律已知的活动构件。如: 原动机,又称输入构件。 3)从动件:机构中随着原动件的运动而运动的其余活 动构件。其中输出预期运动规律的从动件称输出构件。
第1章 平面机构的自由度和速度分析
本章要解决问题 构件组合具有确定相对运动的条件是什么? 怎样绘制机构运动简图。 何谓速度瞬心?速度瞬心有哪些用途?
基本要求 自由度、运动副、瞬心、复铰、局部自由度、虚约束; 能正确计算平面机构的自由度; 能绘制简单机械的机构运动简图;能正确判定瞬心。
重点 机构自由度的计算,机构运动简图绘制。 所有构件都在相互平行的平面内运动的机构称为平面机
• 瞬心数目 一个机构若有N个构件,则瞬心总数为
•
k=N(N-1)/2
瞬心位置 两构件相互接触 分为4种情况
• 三心定理 作平面运动的三构件的三瞬心必位于同一
机械设计基础

的初拉力 4)张紧轮装置: V 带传动用张紧轮 装置时,张紧轮应安装在带松 边内侧,尽量靠近大带轮,防止因张紧造成小轮包角过小,而且也避 免带的反向弯曲。 平带传动用张紧轮装置时, 张紧轮应安装在带松边 外侧, 尽量靠近小带轮,以增大小轮包角。 9、带传动的失效形式及设计准则? 1)打滑、疲劳破坏(脱层、撕裂、拉断) 2)保证带在工作中不打滑,同时具有足够的疲劳强度和一定的使用 寿命。
律时,在起点、中点和终点时,加速度有突变,因而推杆的惯性力也 将有突变,不过这一突变为有限值,所以,凸轮机构中由此而引起的 冲击称为柔性冲击。适用场合:中速、轻载。 3)简谐(余弦加速度)运动规律 运动特性:这种运动规律的加
速度在起点和终点时有有限数值的突变, 故也有柔性冲击。 适用场合: 中速、中载。 5、从动件作余弦加速度运动规律,当无远、近休止时,是否会产生 柔性冲击? 1)从动件作余弦加速度运动规律,当无远、近休止时,不会产生柔 性冲击; 2)从动件作余弦加速度运动规律,当有远、近休止时,会产生柔性。
四〃凸轮机构
1、凸轮机构由:凸轮、从动件、机架组成。 2、按凸轮形状分类,它分哪几种? 盘形凸轮、移动凸轮、圆柱凸轮 3、按从动件形状分哪几种? 顶尖从动件、滚子从动件、平底从动件 4、从动件常用的运动规律有哪三种?它们的运动特性怎样? 1)等速运动规律 运动特性:当采用匀速运动规律时,推杆在
运动的起始点和终止点因速度有突变, 在理论上加速度值为瞬时无穷 大,使推杆产生非常大的惯性力,致使凸轮受到很大的冲击,称为刚 性冲击。 2)等加速等减速运动规律 运动特性:当采用等加速等减速运动规
三〃平面连杆机构
1、铰链四杆机构的概念;铰链四杆机构的基本形式? 铰链四杆机构:所有运动副均为转动副的平面四杆机构。 曲柄摇杆机构、双曲柄机构、双摇杆机构。 2、曲柄存在的条件及应用? 1).最短杆和最长杆之和应小于或等于其他两杆长度之和; 2).连架杆和机架杆中必有一杆为最短杆。 3、急回特性及行程速度变化系数? 急回特性:主动件连续运转,从动件在空回行程(非工作行程)的平
机械设计基础

机械设计基础一.概论:1.机械设计课程主要讨论设计和计算的理论和方法。
2.机械零件设计应遵循的基本原则:3.强度:零件抵抗力的能力。
2、结构组成和自由度:1所谓的机架是指。
2.机构是机器中的单元体;构件是;零件组成。
3.两构件组成运动副必须具备的条件是两构件。
4.组成转动副的两个运动副元素的基本特征是。
5.由两个部件的表面接触形成的运动对称为引入约束的运动对,由导线接触形成的运动对称为引入约束的运动对。
6.机构的自由度数等于原动件数是机构具有的条件。
7.与机构运动相关的尺寸元素必须反映在机构的运动图上。
因此,应正确标记移动副、移动副和高副。
3、连杆结构:1.铰链四杆机构若则可能存在曲柄。
其中若最短杆是,则为;若最短杆是,则为;若最短杆是机架,则为;若则不存在曲柄(任何情况下均为双摇杆机构)。
2.最简单的平面连杆机构是机构。
3.为保证连杆机构良好的传力性能,当机构处于死点位置时,最小传动角应为4个传动角。
5.平面连杆机构中,从动件压力角α与机构传动角γ之间的关系是.6.曲柄摇杆机构中,必然出现死点位置的原动件是。
7.曲柄摇杆机构共有个瞬心。
8.当连杆没有急回运动特性时,行程速比系数。
9.以曲柄为主动件色曲柄摇杆机构、曲柄滑块机构中,可能出现最小传动角的位置分别是,而导杆机构始终是90°。
四.凸轮机构:1.凸轮机构的基圆半径指2.凸轮机构中,若增大基圆半径rb,,则压力角作如下变化:3.使凸轮机构的压力角减小的有效方法是。
4.凸轮机构刚性冲击的原因是:。
灵活影响的原因是。
5.从动件的运动规律可以使凸轮机构产生刚性冲击(硬冲击),而规律可以使凸轮机构产生刚性冲击。
6.按滚子对心移动从动件设计制造的盘形凸轮廓线若将滚子直径rk改小则滚子对心移动从动件盘形凸轮机构的(rb变大α变大)。
五.齿轮机构:1.渐开线标准直齿轮必须满足两个条件:。
2.渐开线直齿圆柱齿轮的正确啮合条件是,连动传动条件是。
3.齿轮机构的基本参数中,与重合度无关的参数是。
机械设计基础

chapter11-1什么是运动副高副与低副有何区别答:运动副:使两构件直接接触;并能产生一定相对运动的连接..平面低副-凡是以面接触的运动副;分为转动副和移动副;平面高副-以点或线相接触的运动副..1-2什么是机构运动简图它有什么作用答:构件和运动副;并按比例定出各运动副位置;表示机构的组成和传动情况..这样绘制出的简明图形就称为机构运动简图..作用:机构运动简图不仅能表示出机构的传动原理;而且还可以用图解法求出机构上各有关点在所处位置的运动特性位移;速度和加速度..它是一种在分析机构和设计机构时表示机构运动的简便而又科学的方法..1-3平面机构具有确定运动的条件是什么答:机构自由度F>0;且与原动件数相等;则机构各构件间的相对运动是确定的;这就是机构具有确定运动的条件..复习自由度4个结论P17chapter22-1什么是曲柄摇杆机构的急回特性和死点位置答:急回特性:曲柄等速回转的情况下;摇杆往复运动速度快慢不同;摇杆反行程时的平均摆动速度必然大于正行程时的平均摆动速度;此即急回特性..死点位置:摇杆是主动件;曲柄是从动件;曲柄与连杆共线时;摇杆通过连杆加于曲柄的驱动力F正好通过曲柄的转动中心;所以不能产生使曲柄转动的力矩;机构的这种位置称为死点位置..即机构的从动件出现卡死或运动不确定的现象的那个位置称为死点位置从动件的传动角=0°..chapter33-2通常采用什么方法使凸轮与从动件之间保持接触答:力锁合:利用重力、弹簧力或其他外力使从动件与凸轮轮廓始终保持接触..形锁合:利用高副元素本身的几何形状使从动件与凸轮轮廓始终保持接触..3-3什么叫刚性冲击和柔性冲击用什么方法可以避免刚性冲击答:刚性冲击:从动件在运动开始和推程终止的瞬间;速度突变为零;理论上加速度为无穷大;产生无穷大的惯性力;机构受到极大的冲击;称为刚性冲击..柔性冲击:当从动件做等加速或等减速运动时;在某些加速度突变处;其惯性力也随之有限突变而产生冲击;这种由有限突变而引起的冲击比无穷大惯性力引起的刚性冲击轻柔了许多;故被称为柔性冲击..避免刚性冲击的方法:为了避免刚性冲击;常将这种运动规律已知的运动开始和终止两小段加以修正;使速度逐渐升高和逐渐降低..让从动件按正弦加速度运动既无刚性运动;也无柔性冲击chapter44-1棘轮机构、槽轮机构及不完全齿轮机构各有何运动特点是举出应用这些间歇运动机构的实例..1答:槽轮机构特点:结构简单;工作可靠;常用于只要求恒定旋转角的分度机构中;停歇运动主要依靠槽数和圆柱销数量运动系数应用:应用在转速不高;要求间歇转动的装置中..如:电影放映机自动传送链装置纺织机械棘轮机构特点:这种有齿的棘轮其进程的变化最少是1个齿距;且工作时有响声..应用:起重机绞盘牛头刨床的横向进给机构计数器不完全齿轮机构特点:普通齿轮传动;不同之处在于轮齿不布满整个圆周..主动轮上的锁住弧与从动轮上的锁住弧互相配合锁住;以保证从动轮停歇在预定位置上..应用:各种计数器多工位自动机半自动机chapter66-1设计机械零件时应满足哪些基本要求6-2按时间和应力的关系;应力可分为几类实际应力、极限应力和许用应力有什么不同答:随时间变化的特性;应力可分为静应力和变应力两类..许用应力:是设计零件时所依据的条件应力..σ极限应力:零件设计时所用的极限值;为材料的屈服极值..实际应力:零件工作时实际承受的应力..静应力下:σ=σS/sσ=σB/ss=s1s2s36-4指出下列符号各表示什么材料:Q235、35、65Mn、20CrMnTi、ZG310-570、HT200.Q235:屈服强度为235;抗拉强度为375-460;伸长率为:26%的普通碳素钢..35:优质碳素钢数字表示碳的平均含量65Mn;优质碳素钢;平均含碳量为0.65%;含Mn量约为1%..20CrMnTi:合金钢;含碳量0.20%;平均含Cr;Mn;Ti量约为1%..ZG310-570:屈服强度为310MPa;抗拉强度为570MPa伸长率为15%;硬度为:40-50HRC的铸钢HT200:抗拉强度为200;硬度为170-241HBS的灰铸铁..6-5在强度计算时如何确定许用应力答:许用应力的确定通常有两种方法:对于一定材料制造的并在一定条件下工作的零件;根据过去机械制造的实践与理论分析;将他们所能安全工作的最大应力制成专门的表格..这种表格简单;具体;可靠;但每一种表格的适用范围较窄..:以几个系数的乘积来确定总的安全系数ss1s2s3S1——考虑计算载荷及应力准确性的系数;一般s1=1-1.5..S2——考虑材料力学性能均匀性的系数..S3——考虑零件重要程度的系数..6-8-101各代表什么-1:对称循环变应力下;疲劳极限为-1..20:脉动循环变应力下;疲劳极限为0..1:静应力下的疲劳极限..chapter77-1常见的螺栓中的螺纹式右旋还是左旋、是单线还是多线怎样判别多线螺纹与单线螺纹的特点如何答:常见的螺栓中的螺纹是右旋、单线..根据螺旋线绕行方向科判别右旋与左旋;根据螺旋线的数目可判别单线还是多线..螺旋升角较小;用在螺纹的锁紧;多线螺纹由于其螺纹升角较大;用于传递动力和运动..7-2螺纹主要类型有哪几种说明他们的特点及用途..答:机械制造中主要螺纹类型:三角形螺纹、矩形螺纹、梯形螺纹、锯齿形螺纹、半圆形螺纹..抗拉强度较高;连接自锁作用也较可靠;一般适用于薄壁零件及受冲击零件的连接..b.管螺纹半圆形螺纹:特点为螺纹深度较浅;是专门用来连接管子的..矩形螺纹:特点为刨面呈以及等缺点;没有自锁..梯形螺纹:特点为刨面为梯形;效率较矩形螺纹低;没有自锁..多用于车床丝杆等传动螺旋及起重螺旋中..锯齿形螺纹:效率较矩形螺纹略低;强度较大;没有自锁..在受载很大的起重螺旋及螺旋压力机中常采用..三角形螺纹用于连接;锯齿、梯形、矩形用于传动..7-3螺旋副的效率与哪些参数有关各参数变化大小对效率有何影响螺纹牙型角大小对效率有何影响答:A2tg为升角;ρ为摩擦角A1tg当摩擦角不变时;螺旋副的效率是升角的函数..牙型角变小;效率变大;牙型角变大;效率变小..举例矩形螺纹变为三角形螺纹7-4螺旋副自锁条件和意义是什么常用链接螺纹是否自锁答:自锁条件:一般情况:越小;自锁性能愈好:螺纹升角ρ:当量摩擦角..意义:不加支持力F;重物不会自动下滑..即螺旋副不会自动松脱;当拧紧螺母时;螺旋副的效率总是小于50%..常用链接螺纹自锁..7-5在螺纹连接中;为什么采用防松装置例举几种最典型的防松装置;会出其结构件图;说明其工作原理和机构简图..答:螺纹连接的自锁作用只有在静载荷下才是可靠的;在振动和变载荷下;螺纹副之间会产3生相对转动;从而出现自动松脱的现象;故需采用防松装置..举例:一利用摩擦力的防松装置:原理:在螺纹间经常保持一定的摩擦力;且附加摩擦力的大小尽可能不随载荷大小变化..1弹簧垫圈:工作原理:弹簧垫圈被压平后;利用其反弹力使螺纹间保持压紧力和摩擦力2双螺母:工作原理:梁螺母对顶;螺栓始终收到附加压力和附加摩擦力的作用..结构简单;用于低速重载..二利用机械方法防松装置:原理:利用机械装置将螺母和螺栓连成一体;消除了它们之间相对转动的可能性..1开口销:开口销从螺母的槽口和螺栓尾部的孔中穿过;起防松作用..效果良好..2止动垫圈:垫片内翅嵌入螺栓的槽内;待螺母拧紧后;再将垫片的外翅之一折嵌于螺母的一个槽内;..将止动片的折边;分别弯靠在螺母和被联接件的侧边起防松作用7-6将松螺栓连接合金螺栓连接受横向外力和轴向歪理的强度计算公示一起列出;是比较其异同;并作出必要的结论..7-10平键链接可能有哪些失效形式平键的尺寸如何确定答:失效形式:挤压破坏和剪切确定尺寸:按挤压和剪切的强度计算;再根据工作要求;确定键的种类;再按照轴的直径d查标准的键的尺寸;键的长度取l1.5d且要比轴上的轮毂短..chapter88-2带传动中的弹性滑动和打滑时怎样产生的它们对带传动有何影响答:弹性滑动:由于带的紧边与松边拉力不等;使带两边的弹性变形不等;所引起的带与轮面的微量相对滑动为弹性滑动..弹性滑动是不可避免的;对带传动影响不大打滑:机器出现过载;摩擦力不能克服从动轮上的阻力矩;带沿轮面全面滑动;从动轮转速急剧降低甚至不动;此现象即为打滑;是带传动的主要失效形式之一;可避免..8-3带传动中主要失效形式是什么设计中怎么样考虑答:主要失效形式:1.张紧力不足导致的打滑;2.张紧力过大导致的疲劳损坏;3.疲劳寿命..设计是必须要考虑:在保证不打滑的情况下确保工况系数;带应有一定的疲劳强度或寿命..chapter99-1齿轮传动的最基本要求是什么齿廓的形状符合什么条件才能满足上述要求答:基本要求是:传动比恒定..齿廓的形状是:渐开线形、摆线形、圆弧齿时满足上述要求..齿廓的形状必须满足不论轮齿齿廓在任何位置接触;过触点所做齿廓的公法线均须通过节点..49-2分度圆和节圆;压力角和啮合角有何区别答:分度圆:为了便于齿廓各部分尺寸的计算;在齿轮上选择一个圆作为计算的基准;该圆称为齿轮的分度圆.标准齿轮分度圆与节圆重合且s=e标准化的齿轮上压力角和模数均为标准值的圆称为分度圆.节圆:通过节点的两圆具有相同的圆周速度;他们之间作纯滚动;这两圆称为齿轮的节圆..分度圆、节圆区别:分度圆是齿轮铸造成立后本身具有的;而节圆是在两齿轮运动啮合时根据其速度而确定出来的..压力角:渐开线上任一点法向压力的方向线即渐开线在该点的法线和该点速度方向之间的夹角称为该点的压力角..啮合角:过节点的两节圆的公切线;与两齿廓公法线间的夹角..压力角、啮合角区别:选取点的不同;压力角的大小也就不同;而只要两齿轮的大小确定;则其啮合角也就随确定..9-3一对渐开线标准齿轮正确啮合的条件什么答:1.两齿轮的模数必须相等m1m2;122.两齿轮分度圆上的压力角必须相等9-4为什么要限制齿轮的最少齿数对于α=20、正常齿制的标准直齿圆柱齿轮;最少齿数是多少答:限制最少齿数是为了;要使所设计齿数大于不产生根切的最少齿数;当α=20的标准直齿圆柱齿轮;则ha=1;则zmin=17..9-12齿轮轮齿有哪几种失效形式开式传动和闭式传动的失效形式是否相同在设计及使用中应该怎样防止这些失效答:失效形式有:1轮齿折断2齿面胶合3齿面磨粒磨损4齿面点蚀5塑性变形开式传动和闭式传动的失效形式不完全相同:其中磨损和疲劳破坏主要为开式齿轮传动的失效形式;而齿面点蚀和折断主要为闭式齿轮传动的失效形式..为了防止轮齿折断:在设计时应使用抵抗冲击和过载能力较强的材料..为了避免齿面磨粒磨损:可采用闭式传动或加防护罩等;为了避免轮齿齿面点蚀:应使用接触应力较大的材料;为了防止齿面胶合:必须采用粘度大的润滑油低速传动或抗胶合能力强的润滑油高速传动..9-13选择齿轮材料时;为什么软齿面齿轮的小齿轮比大齿轮的材料要好些或热处理硬度要5o高些答:主要由于小齿轮转速高;应力循环次数多;则寿命较短;为了使大小齿轮的寿命接近;则在材料的选取方面要好些或热处理要更高些..9-16在轮齿的弯曲强度计算中;齿形系数YF与什么因素有关答:齿形系数YF只与齿形有关;即与压力角α;齿顶高系数ha以及齿数Z有关..chapter1010-2蜗杆传动的啮合效率受哪些因素的影响答:蜗杆传动的啮合效率为:tanr;则效率受导程角和当量摩擦角的影响..tanr'10-3蜗杆传动的传动比等于什么为什么蜗杆传动可得到大的传动比答:蜗杆传动传动比:i=n1/n2=z2/z1传动比与齿数成反比因为蜗杆的齿数可以非常小;;因而可以得到很大的传动比..10-4蜗杆传动中;为什么要规定d1与m对应的标准值答:当用滚刀加工蜗轮时;为了保证蜗杆与该蜗轮的正确啮合;所用蜗轮滚刀的齿形及直径必须与相啮合的蜗杆相同;这样;每一种尺寸的蜗杆;就对应有一把蜗轮刀滚;因此规定蜗杆分度圆直径d为标准值;且与模数m相搭配;其次;蜗轮加工的刀具昂贵;规定蜗杆分度圆直径d为标准值且与模数相搭配可以减少加工刀具的数量..10-7为什么蜗杆传动常用青铜涡轮而不采用钢制涡轮答:因为青铜的耐磨性;抗胶合性能及切削加工性能均好;而啮合处有较大的滑动速度;会青铜的熔点较高;所以用青铜涡轮而不用钢制涡轮..10-9为什么对连续工作的蜗杆传动不仅要进行强度计算;而且还要进行热平衡计算答:蜗杆传动由于摩擦损失大;效率较低;因而发热量就很大、若热量不能散逸将使润滑油的粘度降低;润滑油从啮合齿间被挤出进而导致胶合..chapter1111-1定轴轮系中;输入轴与输出轴之间的传动比如何确定与主动齿轮的齿数有何关系如何判定输出轴的转向答:轮系的总传动比等于组成该轮系的各对齿轮的传动比的连成积;其值等于所有从动轮齿数的连成积与所有主动轮齿连成积之比..传动比判定方向:a.通常规定若最末从动轮与第一个主动轮的回转方向相同时;传动比为正号;若两轮回转方向相反时;则取为负号b.若传动比的计算结果为正;则表示输入轴与输出轴的转向相同;为负则表示转向相反..c.还可以用画箭头标志的方法表示转向:外啮合的齿轮转向相反;内啮合的齿轮转向相同.chapter1212-1心轴与转轴有何区别试列举应用的实例..心轴只承受弯矩;不承受转矩;如:装带轮和凸轮的轴;转轴既承受弯矩;又承受转矩..如:齿轮减速器中的轴;是机器中最常见的轴..12-4轴的结构和尺寸与哪些因素有关答:轴的结构决定因素:载荷及载荷分布、轴上标准件、轴上已确定的零件、轴上零件的装配位置及固定方法、轴的加工工艺性、轴上零件的装配工艺性等..轴尺寸决定因素:轴沿轴向尺寸及形状是由轴上各零件的相互举例;尺寸和安装情况;与轴的制造情况及轴上载荷弯矩、转矩、轴向力分布情况等决定的..计算题:1.已知一对外啮合的标准直齿圆柱齿轮的齿数分别为z1=20z2=80;模数m=2;计算两个齿轮的齿顶圆;齿根圆和分度圆的直径;以及齿轮传动的中心距..解:由公式及系数得:齿顶圆直径:dz2hm44mma11*da2z22hm60mmdf2z22h*2c*m51mmd2z2m28256df1z12h2cm35mm齿根圆直径:m20240分度圆直径:d1z1; 中心距:az1z22m96248mm。
机械设计基础

机械设计基础概述机械设计是指通过对机械系统的结构、运动和力学性能的分析、计算和优化,设计出满足特定功能和性能要求的机械产品的过程。
机械设计基础是机械设计的基本理论和方法的总称,它包括机械设计的基本原理、基本计算方法以及常用的机械设计软件的使用等内容。
机械设计的基本原理1.基本材料力学: 机械设计中需要考虑材料的力学性能,如强度、刚度、韧度等。
了解基本材料力学理论对合理选材和结构设计有重要意义。
2.运动学:运动学研究物体在空间中的运动规律,机械设计中需要分析物体的运动轨迹和速度等参数,以确定机构的工作性能。
3.动力学:动力学研究物体的运动状态和受力情况,机械设计中需要对机械系统受到的各种力进行分析和计算,以确保机械系统的安全和稳定性。
4.刚体力学:刚体力学是研究刚体受力和运动的力学学科,机械设计中需要对机械构件进行刚体分析,以计算各个构件的应力和变形,从而确定结构的稳定性。
5.机构学:机构学是研究机械构件之间相对运动和传动的学科,机械设计中需要对机构的结构和运动进行分析,以满足特定的功能和工艺要求。
机械设计的基本计算方法1.强度计算:在机械设计中,强度是一个重要的考虑因素。
常用的强度计算方法有应力计算、应变计算和变形计算等。
通过这些计算方法可以评估机械结构的强度,从而避免结构因载荷过大而破坏的问题。
2.变形计算:机械结构在受到载荷作用时,会发生一定的变形。
变形计算是对机械结构的变形进行分析和计算,以保证结构的稳定性和工作性能。
3.高强度螺栓组合计算:在机械设计中经常会使用螺栓连接各个构件,螺栓组合的计算是为了确定螺栓的尺寸和数量,以满足机械结构的强度要求。
4.刚度计算:机械结构的刚度对于机构运动的精度和稳定性有很大的影响。
刚度计算是对机械结构的刚度进行分析和计算,以确保机构的工作性能。
5.选择轴承和传动元件:在机械设计中,选择合适的轴承和传动元件对于机械结构的运动效果和寿命有重要的影响。
选择轴承和传动元件的计算方法包括轴承尺寸计算、带传动计算等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《机械设计基础》实验指导书班级:姓名:学号:昆明理工大学机电工程学院机械原理及机械设计教研室工程训练中心二OO五年二月前言实验是机械设计基础课程中重要的实践性环节,通过实验不仅可以验证理论,加深对理论知识的理解,而且可以培养同学的动手能力,观察分析能力和勇于探索的创新精神。
为了搞好实验教学,对做实验的同学提出如下明确要求:一、预习实验在上实验课前,必须认真预习实验讲义或实验指导书,了解实验的目的、实验用仪器设备的结构及工作原理、实验操作步骤,复习与实验有关的理论知识。
二、上实验1.按时上、下课,不得迟到、早退和旷课。
2.上课时要认真回答老师提问,要虚心接受教师的指导。
3.上课时遵守学生实验守则,精心操作,注意安全。
4.上课时要注意观察,认真分析,准确地记录实验原始数据,并经指导教师检查、签字。
5.实验结束后要及时关掉电源,对所用仪器设备进行整理,恢复到原始状态。
6.经指导老师允许后方可离开。
三、撰写实验报告1.实验报告要用统一的实验报告纸撰写;2.书写要工整,曲线要画在坐标纸上,要用曲线板绘制;3.对实验结果要进行分析。
希望同学们认真执行“规范”,并遵守实验室的各项规定,爱护公物,保持环境卫生,养成良好的工作习惯。
按照“机械设计基础”课程教学大纲和“机械设计基础实验教学大纲”的要求,编写了此实验指导书,共有“机构、机械零件认识实验”、“机构运动简图测绘实研”、“轴系部件分析与测绘实验”和“减速器结构分析及拆装实验”四个必做实验,其中“减速器结构分析及拆装实验”将安排在机械设计基础课程设计中进行。
实验成绩占课程总成绩的10%,实验成绩根据实验操作和实验报告来综合评定。
机械原理及机械设计教研室、实验室二OO五年二月目录实验一机构、机械零件认识实验(2h) (1)实验二机构运动简图测绘实验(2h) (7)实验三轴系部件分析与测绘实验(2h) (12)实验一机构、机械零件认识实验Ⅰ机构认识实验一、实验目的1.初步了解《机械原理》课程所研究的各种常用机构的结构、类型、特点及应用实例。
2.增强学生对机构与机器的感性认识。
二、实验方法陈列室展示各种常用机构的模型,通过模型的动态展示,增强学生对机构与机器的感性认识。
实验教师只作简单介绍,提出问题,供学生思考,学生通过观察,对常用机构的结构、类型、特点有一定的了解。
对学习机械原理课程产生一定的兴趣。
三、实验内容(一)对机器的认识通过实物模型和机构的观察,学生可以认识到:机器是由一个机构或几个机构按照一定运动要求组合而成的。
所以只要掌握各种机构的运动特性,再去研究任何机器的特性就不困难了。
在机械原理中,运动副是以两构件的直接接触形式的可动联接及运动特征来命名的。
如:高副、低副、转动副、移动副等。
(二)平面四杆机构平面连杆机构中结构最简单,应用最广泛的是四杆机构,四杆机构分成三大类:即铰链四杆机构;单移动副机构;双移动副机构。
1.铰链四杆机构分为:曲柄摇杆机构、双曲柄机构、双摇杆机构,即根据两连架杆为曲柄,或摇杆来确定。
2.单移动副机构,它是以一个移动副代替铰链四杆机构中的一个转动副演化而成的。
可分为:曲柄滑块机构,曲柄摇块机构、转动导杆机构及摆动导杆机构等。
3.双移动副机构是带有两个移动副的四杆机构,把它们倒置也可得到:曲柄移动导杆机构、双滑块机构及双转块机构。
(三)凸轮机构凸轮机构常用于把主动构件的连续运动,转变为从动件严格地按照预定规律的运动。
只要适当设计凸轮廓线,便可以使从动件获得任意的运动规律。
由于凸轮机构结构简单、紧凑,因此广泛应用于各种机械,仪器及操纵控制装置中。
凸轮机构主要有三部分组成,即:凸轮(它有特定的廓线)、从动件(它由凸轮廓线控制着)及机架。
凸轮机构的类型较多,学生在参观这部分时应了解各种凸轮的特点和结构,找出其中的共同特点。
(四)齿轮机构齿轮机构是现代机械中应用最广泛的一种传动机构。
具有传动准确、可靠、运转平稳、承载能力大、体积小、效率高等优点,广泛应用于各种机器中。
根据轮齿的形状齿轮分为:直齿圆柱齿轮、斜齿圆柱齿轮、圆锥齿轮及蜗轮、蜗杆。
根据主、从动轮的两轴线相对位置,齿轮传动分为:平行轴传动、相交轴传动、交错轴传动三大类。
1.平行轴传动的类型有:外、内啮合直齿轮机构、斜齿圆柱齿轮机构、人字齿轮机构、齿轮齿条机构等。
2.相交轴传动的类型有圆锥齿轮机构,轮齿分布在一个截锥体上,两轴线夹角常为90°。
3.交错轴传动的类型有:螺旋齿轮机构、圆柱蜗轮蜗杆机构,弧面蜗轮蜗杆机构等。
在参观这部分时,学生应注意了解各种机构的传动特点,运动状况及应用范围等。
4.齿轮机构参数齿轮基本参数有齿数z、模数m、分度圆压力角α、齿顶高系数h*a、顶隙系数c*等。
参观这部分时,学生需要掌握:什么是渐开线?渐开线是如何形成的?什么是基圆和渐开线发生线?并注意观察基圆、发生线、渐开线三者间关系,从而得出渐开线有什么性质?再就观察摆线的形成,要了解什么是发生圆?什么是基圆?动点在发生圆上位置发生变化时,能得到什么样轨迹的摆线?同时还要通过参观总结出:齿数、模数、压力角等参数变化对齿形有何影响?(五)周转轮系通过各种类型周转轮系的动态模型演示,学生应该了解什么是定轴轮系?什么是周转轮系?根据自由度不同,周转轮系又分为行星轮系和差动轮系。
它们有什么差异和共同点?差动轮系为什么能将一个运动分解为两个运动或将两个运动合成为一个运动?周转轮系的功用、形式很多,各种类型都有它自己的缺点和优点。
在我们今后的应用中应如何避开缺点,发挥优点等等都是需要学生实验后认真思考和总结的问题。
Ⅱ机械零件认识实验一、实验目的1.初步了解《机械设计》课程所研究的各种常用零件的结构、类型、特点及应用。
2.了解各种标准零件的结构形式及相关的国家标准。
3.了解各种传动的特点及应用。
4.增强对各种零部的结构及机器的感性认识。
二、实验方法学生们通过对实验指导书的学习及“机械零件陈列柜”中的各种零件的展示,实验教学人员的介绍,答疑及同学的观察去认识机器常用的基本零件,使理论与实际对应起来,从而增强同学对机械零件的感性认识。
并通过展示的机械设备、机器模型等,使学生们清楚知道机器的基本组成要素—机械零件。
三、实验内容(一)螺纹联接螺纹联接是利用螺纹零件工作的,主要用作紧固零件。
基本要求是保证联接强度及联接可靠性,同学们应了解如下内容:1.螺纹的种类:常用的螺纹主要有普通螺纹、米制锥螺纹、管螺纹、梯形螺纹、矩形螺纹和锯齿螺纹。
前三种主要用于联接,后三种主要用于传动。
除矩形螺纹外,都已标准化。
除管螺纹保留英制外,其余都采用米制螺纹。
2.螺纹联接的基本类型:常用的有普通螺栓联接,双头螺柱联接、螺钉联接及紧定螺钉联接。
除此之外,还有一些特殊结构联接。
如专门用于将机座或机架固定在地基上的地脚螺栓联接,装在大型零部件的顶盖或机器外壳上便于起吊用的吊环螺钉联接及应用在设备中的T型槽螺栓联接等。
3.螺纹联接的防松:防松的根本问题在于防止螺旋副在受载时发生相对转动。
防松的方法,按其工作原理可分为摩擦防松、机械防松及铆冲防松等。
摩擦防松简单、方便,但没有机械防松可靠。
对重要联接,特别是在机器内部的不易检查的联接,应采机械防松。
常见的摩擦防松方法有对顶螺母,弹簧垫圈及自锁螺母等;机械防松方法有开口销与六角开槽螺母、止动垫圈及串联钢丝等;铆冲防松主要是将螺母拧紧后把螺栓未端伸出部分铆死,或利用冲头在螺栓未端与螺母的旋合处打冲,利用冲点防松。
(二)标准联接零件标准联接零件一般是由专业企业按国标(GB)成批生产,供应市场的零件。
这类零件的结构形式和尺寸都已标准化,设计时可根据有关标准选用。
通过实验学生们要能区分螺栓与螺钉;能了解各种标准化零件的结构特点,使用情况;了解各类零件有那些标准代号,以提高学生们对标准化意识。
1.螺栓:一般是与螺母配合使用以联接被联接零件,无需在被联接的零件上加工螺纹,其联接结构简单,装拆方便,种类较多,应用最广泛。
其国家标准有:GB5782~5786六角头螺栓、GB31.1~31.3六角头带孔螺栓、GB8方头螺栓、GB27六角头铰制孔用螺栓、GB37T形槽用螺栓、GB799地脚螺栓及GB897~900双头螺栓等。
2.螺钉:螺钉联接不用螺母,而是紧定在被联接件之一的螺纹孔中,其结构与螺栓相同,但头部形状较多以适应不同装配要求。
常用于结构紧凑场合。
其国家标准有:GB65开槽圆柱头螺钉;GB67开槽盘头螺钉;GB68开槽沉头螺钉;GB818十字槽盘头螺钉;GB819十字槽沉头螺钉;GB820十字槽半沉头螺钉;GB70内六角圆柱头螺钉;GB71开槽锥端紧定螺钉;GB73开槽平端紧定螺钉;GB74开槽凹端紧定螺钉;GB75开槽长圆柱端紧定螺钉;GB834滚花高头螺钉;GB77~80各种内六角紧定螺钉;GB83~86各类方头紧定螺钉;GB845~847各类十字自攻螺钉;GB5282~5284各类开槽自攻螺钉;GB6560~6561各类十字头自攻锁紧螺钉;GB825吊环螺钉等。
3.螺母:螺母形式很多,按形状可分为六角螺母、四方螺母及圆螺母;按联接用途可分为普通螺母,锁紧螺母及悬置螺母等。
应用最广泛的是六角螺母及普通螺母。
其国家标准有:GB6170~6171、GB6175~61761型及2型A、B级六角螺母;GB411型C级螺母;GB6172A、B级六角薄螺母;GB6173A、B六角薄型细牙螺母;GB6178、GB61801、2型A、B级六角开槽螺母;GB9457、GB94581、2型,A、B级六角开槽细牙螺母;GB56六角厚螺母;GB6184六角锁紧螺母;GB39方螺母;GB806滚花高螺母;GB923盖形螺母;GB805扣紧螺母;GB812、GB810圆螺母及小圆螺母;GB62蝶形螺母等。
4.垫圈:垫圈种类有平垫、弹簧垫及锁紧垫圈等。
平垫圈主要用于保护被联接件的支承面,弹簧及锁紧垫圈主要用于摩擦和机械防松场合,其国家标准有:GB97.1~97.2、GB95~96、GB848、GB5287各类大、小及特大平垫圈;GB852工字钢用方斜垫圈;GB853槽钢用方斜垫圈;GB861.1及GB862.1内齿、外齿锁紧垫圈;GB93、GB7244、GB859各种类弹簧垫圈;GB854~855单耳、双耳止动垫圈;GB856外舌止动垫圈;GB858圆螺母止动垫圈。
5.挡圈:常用于轴端零件固定之用。
其国家标准有:GB891~892螺钉、螺栓紧固轴端挡圈;GB893.1~893.2A型B型孔用弹性挡圈;GB894.1~894.2A型B型轴用弹性挡圈;GB895.1~895.2孔用、轴用钢丝挡圈;GB886轴肩挡圈等。
(三)键联接键联接:键是一种标准零件,通常用来实现轴与轮毂之间的周向固定以传递转矩,有的还能实现轴上零件的轴向固定或轴向滑动的导向。