最新 山西省2017年中考模拟考试数学试题(含答案)

合集下载

2017年山西省中考数学试卷和解析答案

2017年山西省中考数学试卷和解析答案

2017年山西省中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)计算﹣1+2的结果是()A.﹣3 B.﹣1 C.1 D.32.(3分)如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是()A.∠1=∠3 B.∠2+∠4=180°C.∠1=∠4 D.∠3=∠43.(3分)在体育课上,甲、乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的()A.众数B.平均数C.中位数D.方差4.(3分)将不等式组的解集表示在数轴上,下面表示正确的是()A.B.C.D.5.(3分)下列运算错误的是()A.(﹣1)0=1 B.(﹣3)2÷=C.5x2﹣6x2=﹣x2D.(2m3)2÷(2m)2=m46.(3分)如图,将矩形纸片ABCD沿BD折叠,得到△BC′D,C′D与AB交于点E.若∠1=35°,则∠2的度数为()A.20°B.30° C.35° D.55°7.(3分)化简﹣的结果是()A.﹣x2+2x B.﹣x2+6x C.﹣D.8.(3分)2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资就达到186亿吨油当量,达到我国陆上石油资总量的50%.数据186亿吨用科学记数法可表示为()A.186×108吨 B.18.6×109吨C.1.86×1010吨D.0.186×1011吨9.(3分)公元前5世纪,毕达哥拉斯学派中的一名成员希伯索斯发现了无理数,导致了第一次数学危机,是无理数的证明如下:假设是有理数,那么它可以表示成(p与q是互质的两个正整数).于是()2=()2=2,所以,q2=2p2.于是q2是偶数,进而q是偶数,从而可设q=2m,所以(2m)2=2p2,p2=2m2,于是可得p也是偶数.这与“p与q是互质的两个正整数”矛盾.从而可知“是有理数”的假设不成立,所以,是无理数.这种证明“是无理数”的方法是()A.综合法 B.反证法C.举反例法 D.数学归纳法10.(3分)如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A,B,C,D,得到四边形ABCD.若AC=10cm,∠BAC=36°,则图中阴影部分的面积为()A.5πcm2B.10πcm2C.15πcm2D.20πcm2二、填空题(本大题共5个小题,每小题3分)11.(3分)计算:4﹣9= .12.(3分)某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为元.13.(3分)如图,已知△ABC三个顶点的坐标分别为A(0,4),B(﹣1,1),C(﹣2,2),将△ABC向右平移4个单位,得到△A′B′C′,点A,B,C的对应点分别为A′、B′、C′,再将△A′B′C′绕点B′顺时针旋转90°,得到△A″B″C″,点A′、B′、C′的对应点分别为A″、B″、C″,则点A″的坐标为.14.(3分)如图,创新小组要测量公园内一棵树的高度AB,其中一名小组成员站在距离树10米的点E处,测得树顶A的仰角为54°.已知测角仪的架高CE=1.5米,则这棵树的高度为米.(结果保留一位小数.参考数据:sin54°=0.8090,cos54°=0.5878,tan54°=1.3764)15.(3分)一副三角板按如图方式摆放,得到△ABD和△BCD,其中∠ADB=∠BCD=90°,∠A=60°,∠CBD=45°,E为AB的中点,过点E作EF⊥CD于点F.若AD=4cm,则EF的长为cm.三、解答题(本大题共8个小题,共75分)16.(10分)(1)计算:(﹣2)3+()﹣2﹣•sin45°(2)分解因式:(y+2x)2﹣(x+2y)2.17.(6分)已知:如图,在▱ABCD中,延长AB至点E,延长CD至点F,使得BE=DF.连接EF,与对角线AC交于点O.求证:OE=OF.18.(7分)如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,其边长为2,点A,点C分别在x轴,y轴的正半轴上,函数y=2x的图象与CB交于点D,函数y=(k为常数,k≠0)的图象经过点D,与AB交于点E,与函数y=2x的图象在第三象限内交于点F,连接AF、EF.(1)求函数y=的表达式,并直接写出E、F两点的坐标;(2)求△AEF的面积.19.(7分)“春种一粒粟,秋收万颗子”,唐代诗人李绅这句诗中的“粟”即谷子(去皮后则称为“小米”),被誉为中华民族的哺育作物.我省有着“小杂粮王国”的美誉,谷子作为我省杂粮谷物中的大类,其种植面积已连续三年全国第一.2016年全国谷子种植面积为2000万亩,年总产量为150万吨,我省谷子平均亩产量为160kg,国内其他地区谷子的平均亩产量为60kg,请解答下列问题:(1)求我省2016年谷子的种植面积是多少万亩.(2)2017年,若我省谷子的平均亩产量仍保持160kg不变,要使我省谷子的年总产量不低于52万吨,那么,今年我省至少应再多种植多少万亩的谷子?20.(12分)从共享单车,共享汽车等共享出行到共享充电宝,共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速普及应用,越越多的企业与个人成为参与者与受益者.根据国家信息中心发布的《中国分享经济发展报告2017》显示,2016年我国共享经济市场交易额约为34520亿元,比上年增长103%;超6亿人参与共享经济活动,比上年增加约1亿人.如图是于该报告中的中国共享经济重点领域市场规模统计图:(1)请根据统计图解答下列问题:①图中涉及的七个重点领域中,2016年交易额的中位数是亿元.②请分别计算图中的“知识技能”和“资金”两个重点领域从2015年到2016年交易额的增长率(精确到1%),并就这两个重点领域中的一个分别从交易额和增长率两个方面,谈谈你的认识.(2)小宇和小强分别对共享经济中的“共享出行”和“共享知识”最感兴趣,他们上网查阅了相关资料,顺便收集到四个共享经济领域的图标,并将其制成编号为A,B,C,D的四张卡片(除编号和内容外,其余完全相同)他们将这四张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率(这四张卡片分别用它们的编号A,B,C,D表示)21.(7分)如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,与过点C的⊙O的切线交于点D.(1)若AC=4,BC=2,求OE的长.(2)试判断∠A与∠CDE的数量关系,并说明理由.22.(12分)综合与实践背景阅读早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”.它被记载于我国古代著名数学著作《周髀算经》中,为了方便,在本题中,我们把三边的比为3:4:5的三角形称为(3,4,5)型三角形,例如:三边长分别为9,12,15或3,4,5的三角形就是(3,4,5)型三角形,用矩形纸片按下面的操作方法可以折出这种类型的三角形.实践操作如图1,在矩形纸片ABCD中,AD=8cm,AB=12cm.第一步:如图2,将图1中的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB上的点E处,折痕为AF,再沿EF折叠,然后把纸片展平.第二步:如图3,将图2中的矩形纸片再次折叠,使点D与点F重合,折痕为GH,然后展平,隐去AF.第三步:如图4,将图3中的矩形纸片沿AH折叠,得到△AD′H,再沿AD′折叠,折痕为AM,AM与折痕EF交于点N,然后展平.问题解决(1)请在图2中证明四边形AEFD是正方形.(2)请在图4中判断NF与ND′的数量关系,并加以证明;(3)请在图4中证明△AEN(3,4,5)型三角形;探索发现(4)在不添加字母的情况下,图4中还有哪些三角形是(3,4,5)型三角形?请找出并直接写出它们的名称.23.(14分)如图,抛物线y=﹣x2+x+3与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,连接AC、BC.点P沿AC以每秒1个单位长度的速度由点A向点C运动,同时,点Q沿BO以每秒2个单位长度的速度由点B向点O运动,当一个点停止运动时,另一个点也随之停止运动,连接PQ.过点Q作QD⊥x轴,与抛物线交于点D,与BC交于点E,连接PD,与BC 交于点F.设点P的运动时间为t秒(t>0).(1)求直线BC的函数表达式;(2)①直接写出P,D两点的坐标(用含t的代数式表示,结果需化简)②在点P、Q运动的过程中,当PQ=PD时,求t的值;(3)试探究在点P,Q运动的过程中,是否存在某一时刻,使得点F为PD的中点?若存在,请直接写出此时t的值与点F的坐标;若不存在,请说明理由.2017年山西省中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)(2017•山西)计算﹣1+2的结果是()A.﹣3 B.﹣1 C.1 D.3【分析】直接利用有理数加减运算法则得出答案.【解答】解:﹣1+2=1.故选:C.【点评】此题主要考查了有理数加法,正确掌握运算法则是解题关键.2.(3分)(2017•山西)如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是()A.∠1=∠3 B.∠2+∠4=180°C.∠1=∠4 D.∠3=∠4【分析】根据同位角相等,两直线平行;同旁内角互补,两直线平行进行判断即可.【解答】解:由∠1=∠3,可得直线a与b平行,故A能判定;由∠2+∠4=180°,∠2=∠5,∠4=∠3,可得∠3+∠5=180°,故直线a与b平行,故B能判定;由∠1=∠4,∠4=∠3,可得∠1=∠3,故直线a与b平行,故C能判定;由∠3=∠4,不能判定直线a与b平行,故选:D.【点评】本题主要考查了平行线的判定,解题时注意:同位角相等,两直线平行;同旁内角互补,两直线平行.3.(3分)(2017•山西)在体育课上,甲、乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的()A.众数B.平均数C.中位数D.方差【分析】方差是反映一组数据的波动大小的一个量.方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好;【解答】解:因为方差是反映一组数据的波动大小的一个量.方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好;所以要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的方差.故选D.【点评】本题考查平均数、方差、众数、中位数等知识,解题的关键是理解方差的意义,属于中考常考题型.4.(3分)(2017•山西)将不等式组的解集表示在数轴上,下面表示正确的是()A.B.C.D.【分析】首先解出两个不等式的解集;根据在数轴上表示不等式解集的方法分别把每个不等式的解集在数轴上表示出即可.【解答】解:解不等式①得,x≤3解不等式②得,x>﹣4在数轴上表示为:故选:A.【点评】本题考查的是在数轴上表示不等式组的解集,把每个不等式的解集在数轴上表示出(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.(3分)(2017•山西)下列运算错误的是()A.(﹣1)0=1 B.(﹣3)2÷=C.5x2﹣6x2=﹣x2D.(2m3)2÷(2m)2=m4【分析】根据整式和有理数的除法的法则,乘方的性质,合并同类项的法则,零指数的性质,幂的乘方与积的乘方的运算法则计算即可.【解答】解:A、(﹣1)0=1,正确,不符合题意;B、(﹣3)2÷=4,错误,符合题意;C、5x2﹣6x2=﹣x2,正确,不符合题意;D、(2m3)2÷(2m)2=m4,正确,不符合题意;故选B.【点评】本题考查了整式和有理数的除法的法则,乘方的性质,合并同类项的法则,零指数的性质,幂的乘方与积的乘方的运算法则,熟记法则是解题的关键.6.(3分)(2017•山西)如图,将矩形纸片ABCD沿BD折叠,得到△BC′D,C′D与AB交于点E.若∠1=35°,则∠2的度数为()A.20°B.30° C.35° D.55°【分析】根据矩形的性质,可得∠ABD=35°,∠DBC=55°,根据折叠可得∠DBC'=∠DBC=55°,最后根据∠2=∠DBC'﹣∠DBA进行计算即可.【解答】解:∵∠1=35°,CD∥AB,∴∠ABD=35°,∠DBC=55°,由折叠可得∠DBC'=∠DBC=55°,∴∠2=∠DBC'﹣∠DBA=55°﹣35°=20°,故选:A.【点评】本题考查了长方形性质,平行线性质,折叠性质,角的有关计算的应用,关键是求出∠DBC′和∠DBA的度数.7.(3分)(2017•山西)化简﹣的结果是()A.﹣x2+2x B.﹣x2+6x C.﹣D.【分析】根据分式的运算法则即可求出答案.【解答】解:原式=﹣==﹣故选(C)【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.8.(3分)(2017•山西)2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资就达到186亿吨油当量,达到我国陆上石油资总量的50%.数据186亿吨用科学记数法可表示为()A.186×108吨 B.18.6×109吨C.1.86×1010吨D.0.186×1011吨【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:186亿吨=1.86×1010吨.故选:C.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.9.(3分)(2017•山西)公元前5世纪,毕达哥拉斯学派中的一名成员希伯索斯发现了无理数,导致了第一次数学危机,是无理数的证明如下:假设是有理数,那么它可以表示成(p与q是互质的两个正整数).于是()2=()2=2,所以,q2=2p2.于是q2是偶数,进而q是偶数,从而可设q=2m,所以(2m)2=2p2,p2=2m2,于是可得p也是偶数.这与“p与q是互质的两个正整数”矛盾.从而可知“是有理数”的假设不成立,所以,是无理数.这种证明“是无理数”的方法是()A.综合法 B.反证法C.举反例法 D.数学归纳法【分析】利用反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确,进而判断即可.【解答】解:由题意可得:这种证明“是无理数”的方法是反证法.故选:B.【点评】此题主要考查了反证法,正确把握反证法的一般步骤是解题关键.10.(3分)(2017•山西)如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A,B,C,D,得到四边形ABCD.若AC=10cm,∠BAC=36°,则图中阴影部分的面积为()A.5πcm2B.10πcm2C.15πcm2D.20πcm2【分析】根据已知条件得到四边形ABCD是矩形,求得图中阴影部分的面积=S扇形AOD+S扇形BOC=2S扇形AOD,根据等腰三角形的性质得到∠BAC=∠ABO=36°,由圆周角定理得到∠AOD=72°,于是得到结论.【解答】解:∵AC与BD是⊙O的两条直径,∴∠ABC=∠ADC=∠DAB=∠BCD=90°,∴四边形ABCD是矩形,∴△ABO与△CDO的面积的和=△AOD与△BOC的面积的和,∴图中阴影部分的面积=S扇形AOD+S扇形BOC=2S扇形AOD,∵OA=OB,∴∠BAC=∠ABO=36°,∴∠AOD=72°,∴图中阴影部分的面积=2×=10π,故选B.【点评】本题考查了扇形的面积,矩形的判定和性质,圆周角定理,熟练掌握扇形的面积公式是解题的关键.二、填空题(本大题共5个小题,每小题3分)11.(3分)(2017•山西)计算:4﹣9= 3.【分析】先化简,再做减法运算即可.【解答】解:原式=12=3,故答案为:3.【点评】本题主要考查了二次根式的加减法,先化简再求值是解答此题的关键.12.(3分)(2017•山西)某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a 元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为 1.08a 元.【分析】根据题意可以得到最后打折后的零售价,从而可以解答本题.【解答】解:由题意可得,该型号洗衣机的零售价为:a(1+20%)×0.9=1.08a(元),故答案为:1.08a.【点评】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.13.(3分)(2017•山西)如图,已知△ABC三个顶点的坐标分别为A(0,4),B(﹣1,1),C(﹣2,2),将△ABC向右平移4个单位,得到△A′B′C′,点A,B,C的对应点分别为A′、B′、C′,再将△A′B′C′绕点B′顺时针旋转90°,得到△A″B″C″,点A′、B′、C′的对应点分别为A″、B″、C″,则点A″的坐标为(6,0).【分析】由平移的性质和旋转的性质作出图形,即可得出答案.【解答】解:如图所示:∵A(0,4),B(﹣1,1),C(﹣2,2),将△ABC向右平移4个单位,得到△A′B′C′,∴A′、B′、C′的坐标分别为(4,4),B(3,1),C(2,2),再将△A′B′C′绕点B′顺时针旋转90°,得到△A″B″C″,则点A″的坐标为(6,0);故答案为:(6,0).【点评】本题考查了坐标与图形性质、平移的性质、旋转的性质;熟练掌握平移和旋转的性质是解决问题的关键.14.(3分)(2017•山西)如图,创新小组要测量公园内一棵树的高度AB,其中一名小组成员站在距离树10米的点E处,测得树顶A的仰角为54°.已知测角仪的架高CE=1.5米,则这棵树的高度为15.3 米.(结果保留一位小数.参考数据:sin54°=0.8090,cos54°=0.5878,tan54°=1.3764)【分析】在Rt△ACD中,求出AD,再利用矩形的性质得到BD=CE=1.5,由此即可解决问题.【解答】解:如图,过点C作CD⊥AB,垂足为D.则四边形CEBD是矩形,BD=CE=1.5m,在Rt△ACD中,CD=EB=10m,∠ACD=54°,∵tan∠ACE=,∴AD=CD•tan∠ACD≈10×1.38=13.8m.∴AB=AD+BD=13.8+1.5=15.3m.答:树的高度AB约为15.3m.故答案为15.3【点评】本题考查解直角三角形的应用﹣仰角俯角问题、锐角三角函数等知识,解题的关键是通过添加辅助线,构造直角三角形解决问题.15.(3分)(2017•山西)一副三角板按如图方式摆放,得到△ABD和△BCD,其中∠ADB=∠BCD=90°,∠A=60°,∠CBD=45°,E为AB的中点,过点E作EF⊥CD于点F.若AD=4cm,则EF的长为(+)cm.【分析】过A作AG⊥DC于G,得到∠ADC=45°,进而得到AG的值,在30°的直角三角形ABD和45°直角三角形BCD中,计算出BD,CB的值.再由AG∥EF∥BC,E是AB的中点,得到F为CG 的中点,最后由梯形中位线定理得到EF的长.【解答】解:过点A作AG⊥DC与G.∵∠CDB=∠CBD=45°,∠ADB=90°,∴∠ADG=45°.∴AG==2.∵∠ABD=30°,∴BD=AD=4.∵∠CBD=45°,∴CB==2.∵AG⊥CG,EF⊥CG,CB⊥CG,∴AG∥EF∥BC.又∵E是AB的中点,∴F为CG的中点,∴EF=(AG+BC)=(2+2)=+.故答案为:(+).【点评】本题主要考查的是梯形的中位线定理、特殊锐角三角函数值的应用,证得EF为梯形ABCG 的中位线是解题的关键.三、解答题(本大题共8个小题,共75分)16.(10分)(2017•山西)(1)计算:(﹣2)3+()﹣2﹣•sin45°(2)分解因式:(y+2x)2﹣(x+2y)2.【分析】(1)根据实数的运算,可得答案;(2)根据平方差公式,可得答案.【解答】解:(1)原式=﹣8+9﹣2=﹣1;(2)原式=[(y+2x)+(x+2y)][(y+2x)﹣(x+2y)]=3(x+y)(x﹣y).【点评】本题考查了因式分解,利用平方差公式是解题关键.17.(6分)(2017•山西)已知:如图,在▱ABCD中,延长AB至点E,延长CD至点F,使得BE=DF.连接EF,与对角线AC交于点O.求证:OE=OF.【分析】由平行四边形的性质得出AB∥CD,AB=CD,证出AE=CF,∠E=∠F,∠OAE=∠OCF,由ASA 证明△AOE≌△COF,即可得出结论.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵BE=DF,∴AB+BE=CD+DF,即AE=CF,∵AB∥CD,∴AE∥CF,∴∠E=∠F,∠OAE=∠OCF,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴OE=OF.【点评】本题考查了平行四边形的性质、全等三角形的判定与性质、平行线的性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.18.(7分)(2017•山西)如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,其边长为2,点A,点C分别在x轴,y轴的正半轴上,函数y=2x的图象与CB交于点D,函数y=(k为常数,k≠0)的图象经过点D,与AB交于点E,与函数y=2x的图象在第三象限内交于点F,连接AF、EF.(1)求函数y=的表达式,并直接写出E、F两点的坐标;(2)求△AEF的面积.【分析】(1)根据正方形的性质,以及函数上点的坐标特征可求点D的坐标为(1,2),根据待定系数法可求反比例函数表达式,进一步得到E、F两点的坐标;(2)过点F作FG⊥AB,与AB的延长线交于点G,根据两点间的距离公式可求AE=1,FG=3,再根据三角形面积公式可求△AEF的面积.【解答】解:(1)∵正方形OABC的边长为2,∴点D的纵坐标为2,即y=2,将y=2代入y=2x,得x=1,∴点D的坐标为(1,2),∵函数y=的图象经过点D,∴2=,解得k=2,∴函数y=的表达式为y=,∴E(2,1),F(﹣1,﹣2);(2)过点F作FG⊥AB,与BA的延长线交于点G,∵E(2,1),F(﹣1,﹣2),∴AE=1,FG=2﹣(﹣1)=3,∴△AEF的面积为:AE•FG=×1×3=.【点评】本题主要考查了待定系数法求函数解析式,以及正方形的性质,解题的关键是求得D(1,2),E(2,1),F(﹣1,﹣2).19.(7分)(2017•山西)“春种一粒粟,秋收万颗子”,唐代诗人李绅这句诗中的“粟”即谷子(去皮后则称为“小米”),被誉为中华民族的哺育作物.我省有着“小杂粮王国”的美誉,谷子作为我省杂粮谷物中的大类,其种植面积已连续三年全国第一.2016年全国谷子种植面积为2000万亩,年总产量为150万吨,我省谷子平均亩产量为160kg,国内其他地区谷子的平均亩产量为60kg,请解答下列问题:(1)求我省2016年谷子的种植面积是多少万亩.(2)2017年,若我省谷子的平均亩产量仍保持160kg不变,要使我省谷子的年总产量不低于52万吨,那么,今年我省至少应再多种植多少万亩的谷子?【分析】(1)可设我省2016年谷子的种植面积是x万亩,其他地区谷子的种植面积是y万亩,根据2016年全国谷子年总产量为150万吨列出方程组求解即可;(2)可设我省应种植z万亩的谷子,根据我省谷子的年总产量不低于52万吨列出不等式求解即可.【解答】解:(1)设我省2016年谷子的种植面积是x万亩,其他地区谷子的种植面积是y万亩,依题意有,解得.答:我省2016年谷子的种植面积是300万亩.(2)设我省应种植z万亩的谷子,依题意有,解得z≥325,325﹣300=25(万亩).答:今年我省至少应再多种植25万亩的谷子.【点评】考查了二元一次方程组的应用,一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系和不等关系.20.(12分)(2017•山西)从共享单车,共享汽车等共享出行到共享充电宝,共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速普及应用,越越多的企业与个人成为参与者与受益者.根据国家信息中心发布的《中国分享经济发展报告2017》显示,2016年我国共享经济市场交易额约为34520亿元,比上年增长103%;超6亿人参与共享经济活动,比上年增加约1亿人.如图是于该报告中的中国共享经济重点领域市场规模统计图:(1)请根据统计图解答下列问题:①图中涉及的七个重点领域中,2016年交易额的中位数是2038 亿元.②请分别计算图中的“知识技能”和“资金”两个重点领域从2015年到2016年交易额的增长率(精确到1%),并就这两个重点领域中的一个分别从交易额和增长率两个方面,谈谈你的认识.(2)小宇和小强分别对共享经济中的“共享出行”和“共享知识”最感兴趣,他们上网查阅了相关资料,顺便收集到四个共享经济领域的图标,并将其制成编号为A,B,C,D的四张卡片(除编号和内容外,其余完全相同)他们将这四张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率(这四张卡片分别用它们的编号A,B,C,D表示)【分析】(1)根据图表将2016年七个重点领域的交易额从小到大罗列出,根据中位数的定义即可得;(2)将(2016年的资金﹣2015年的资金)÷2015年的资金可分别求得两领域的增长率,结合增长率提出合理的认识即可;(3)画树状图列出所有等可能结果,根据概率公式求解可得.【解答】解:(1)由图可知,2016年七个重点领域的交易额分别为70、245、610、2038、3300、7233、20863,2016年交易额的中位数是2038亿元,故答案为:2038;(2)“知识技能”的增长率为:×100%=205%,“资金”的增长率为:≈109%,由此可知,“知识技能”领域交易额较小,其增长率最高,达到200%以上,其发展速度惊人.(3)画树状图为:共有12种等可能的结果数,其中抽到“共享出行”和“共享知识”的结果数为2,所以抽到“共享出行”和“共享知识”的概率==.【点评】本题主要考查条形统计图、折线统计图和列表法与树状图法求概率,根据条形图得出解题所需数据及画树状图列出所有等可能结果是解题的关键.21.(7分)(2017•山西)如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,与过点C的⊙O的切线交于点D.(1)若AC=4,BC=2,求OE的长.(2)试判断∠A与∠CDE的数量关系,并说明理由.【分析】(1)由圆周角定理得出∠ACB=90°,由勾股定理求出AB==2,得出OA=AB=,证明△AOE∽△ACB,得出对应边成比例即可得出答案;(2)连接OC,由等腰三角形的性质得出∠1=∠A,由切线的性质得出OC⊥CD,得出∠2+∠CDE=90°,证出∠3=∠CDE,再由三角形的外角性质即可得出结论.【解答】解:(1)∵AB为⊙O的直径,∴∠ACB=90°,在Rt△ABC中,由勾股定理得:AB===2,∴OA=AB=,∵OD⊥AB,∴∠AOE=∠ACB=90°,又∵∠A=∠A,∴△AOE∽△ACB,∴,即,解得:OE=;(2)∠CDE=2∠A,理由如下:连接OC,如图所示:∵OA=OC,∴∠1=∠A,∵CD是⊙O的切线,∴OC⊥CD,∴∠OCD=90°,∴∠2+∠CDE=90°,∵OD⊥AB,∴∠2+∠3=90°,∴∠3=∠CDE,∵∠3=∠A+∠1=2∠A,∴∠CDE=2∠A.【点评】本题考查了切线的性质、圆周角定理、勾股定理、相似三角形的判定与性质、等腰三角形的性质、直角三角形的性质、三角形的外角性质;熟练掌握圆周角定理和切线的性质是解决问题的关键.22.(12分)(2017•山西)综合与实践背景阅读早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”.它被记载于我国古代著名数学著作《周髀算经》中,为了方便,在本题中,我们把三边的比为3:4:5的三角形称为(3,4,5)型三角形,例如:三边长分别为9,12,15或3,4,5的三角形就是(3,4,5)型三角形,用矩形纸片按下面的操作方法可以折出这种类型的三角形.实践操作如图1,在矩形纸片ABCD中,AD=8cm,AB=12cm.第一步:如图2,将图1中的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB上的点E处,折痕为AF,再沿EF折叠,然后把纸片展平.第二步:如图3,将图2中的矩形纸片再次折叠,使点D与点F重合,折痕为GH,然后展平,隐去AF.第三步:如图4,将图3中的矩形纸片沿AH折叠,得到△AD′H,再沿AD′折叠,折痕为AM,AM与折痕EF交于点N,然后展平.问题解决(1)请在图2中证明四边形AEFD是正方形.(2)请在图4中判断NF与ND′的数量关系,并加以证明;(3)请在图4中证明△AEN(3,4,5)型三角形;探索发现(4)在不添加字母的情况下,图4中还有哪些三角形是(3,4,5)型三角形?请找出并直接写出它们的名称.【分析】(1)根据矩形的性质得到∠D=∠DAE=90°,由折叠的性质得得到AE=AD,∠AEF=∠D=90°,求得∠D=∠DAE=∠AEF=90°,得到四边形AEFD是矩形,由于AE=AD,于是得到结论;(2)连接HN,由折叠的性质得到∠AD′H=∠D=90°,HF=HD=HD′,根据正方形的想知道的∠HD′N=90°,根据全等三角形的性质即可得到结论;(3)根据正方形的性质得到AE=EF=AD=8cm,由折叠得,AD′=AD=8cm,设NF=xcm,则ND′=xcm,根据勾股定理列方程得到x=2,于是得到结论;(4)根据(3,4,5)型三角形的定义即可得到结论.【解答】(1)证明:∵四边形ABCD是矩形,∴∠D=∠DAE=90°,由折叠的性质得,AE=AD,∠AEF=∠D=90°,。

山西省2017年中考数学真题试题(含答案)

山西省2017年中考数学真题试题(含答案)

山西省2017年中考数学真题试题第Ⅰ卷 选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.计算12-+的结果是( )A .-3B .-1C .1D .32.如图,直线,a b 被直线c 所截,下列条件不能..判定直线a 与b 平行的是( )A .13∠=∠B .24180∠+∠=C .14∠=∠D .34∠=∠3.在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的( )A .众数B .平均数C .中位数D .方差4.将不等式组26040x x -≤⎧⎨+>⎩的解集表示在数轴上,下面表示正确的是( )A .B .C .D .5.下列运算错误..的是( )A 01)1-=B .291(3)44-÷= C . 22256x x x -=- D .3224(2)(2)m m m ÷= 6.如图,将矩形纸片ABCD 沿BD 折叠,得到BC D '∆,C D '与AB 交于点E .若135∠=,则2∠的度数为( )A .20B .30C . 35D .557.化简2442x x x x ---的结果是( ) A .22x x -+ B .26x x -+ C . 2x x -+ D .2x x - 8.2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上石油资源总量的50%.数据186亿吨用科学记数法可表示为( )A .818610⨯吨B .918.610⨯吨C .101.8610⨯吨D .110.18610⨯吨9.公元前5世纪,,是无理数的证明如下:是有理数,那么它可以表示成q p(p 与q 是互质的两个正整数).于是22()2q p ==,所以,222q p =.于是2q 是偶数,进而q 是偶数.从而可设2q m =,所以2222(2)2,2m p p m ==,于是可得p也是偶数.这与“p 与q 是互质的两个正整数”矛盾,从而可知是有理数”的假设不成立,是无理数.是无理数”的方法是( )A .综合法B .反证法C .举反例法D .数学归纳法10.右图是某商品的标志图案,AC 与BD 是O 的两条直径,首尾顺次连接点,,,A B C D ,得到四边形ABCD .若10,36AC cm BAC =∠=,则图中阴影部分的面积为( )A .25cm πB .210cm πC .215cm πD .220cm π第Ⅱ卷 非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分)11.计算:= .12.某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a 元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为 元.13.如图,已知ABC ∆三个顶点的坐标分别为(0,4),(1,1),(2,2)A B C --.将ABC ∆向右平移4个单位,得到A B C '''∆,点,,A B C 的对应点分别为,,A B C ''',再将A B C '''∆绕点B '顺时针旋转90,得到A B C ''''''∆,点,,A B C '''的对应点分别为,,A B C '''''',则点A ''的坐标为 .14.如图,创新小组要测量公园内一棵树的高度AB ,其中一名小组成员站在距离树10米的点E 处,测得树顶A 的仰角为54.已知测角仪的架高 1.5CE =米,则这颗树的高度为 米(结果保留一位小数.参考数据:sin540.8090=,cos540.5878=,tan54 1.3764=).15.一副三角板按如图方式摆放,得到ABD ∆和BCD ∆,其中90ADB BCD ∠=∠=,60A ∠=,45CBD ∠=.E 为AB 的中点,过点E 作EF CD ⊥于点F .若4AD cm =,则EF 的长为 cm .三、解答题 (本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(1)计算:321(2)()sin 453--+. (2)分解因式:22(2)(2)y x x y +-+.17.已知:如图,在ABCD 中,延长线AB 至点E ,延长CD 至点F ,使得BE DF =.连接EF ,与对角线AC 交于点O .求证:OE OF =.18.如图,在平面直角坐标系中,正方形OABC 的顶点O 与坐标原点重合,其边长为2,点A ,点C 分别在x 轴,y 轴的正半轴上.函数2y x =的图象与CB 交于点D ,函数k y x=(k 为常数,0k ≠)的图象经过点D ,与AB 交于点E ,与函数2y x =的图象在第三象限内交于点F ,连接,AF EF .(1)求函数k y x=的表达式,并直接写出,E F 两点的坐标. (2)求AEF ∆的面积.19.“春种一粒粟,秋收万颗子”,唐代诗人李绅这句诗中的“粟”即谷子(去皮后则称为“小米”),被誉为中华民族的哺育作物.我省有着“小杂粮王国”的美誉,谷子作为我省杂粮面积为2000万亩,年总产量为150万吨,我省谷子平均亩产量为160kg ,国内其他地区谷子的平均亩产量为60kg .请解答下列问题:(1)求我省2016年谷子的种植面积是多少万亩.(2)2017年,若我省谷子的平均亩产量仍保持160kg 不变,要使我省谷子的年总产量不低于52万吨,那么,今年我省至少应再多种植多少万亩的谷子?20.从共享单车,共享汽车等共享出行到共享充电宝,共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速普及应用,越来越多的企业与个人成为参与者与受益者.根据国家信息中心发布的《中国分享经济发展报告2017》显示,2016年我国共享经济市场交易额约为34520亿元,比上年增长103%;超6亿人参与共享经济活动,比上年增加约1亿人.下图是源于该报告中的中国共享经济重点领域市场规模统计图:(1)请根据统计图解答下列问题:①图中涉及的七个重点领域中,2016年交易额的中位数是_________亿元.②请分别计算图中的“知识技能”和“资金”两个重点领域从2015年到2016年交易额的增长率(精确到1%),并就这两个重点领域中的一个分别从交易额和增长率两个方面,谈谈你的认识.(2)小宇和小强分别对共享经济中的“共享出行”和“共享知识”最感兴趣,他们上网查阅了相关资料,顺便收集到四个共享经济领域的图标,并将其制成编号为A ,B ,C ,D 的四张卡片(除编号和内容外,其余完全相同).他们将这四张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张.请用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率(这四张卡片分别用它们的编号A ,B ,C ,D 表示).21.如图,ABC ∆内接于O ,且AB 为O 的直径,OD AB ⊥,与AC 交于点E ,与过点C 的O 的切线交于点D .(1)若4,2AC BC ==,求OE 的长.(2)试判断A ∠与CDE ∠的数量关系,并说明理由.22.综合与实践背景阅读 早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三,股四,弦五”.它被记载于我国古代著名数学著作《周髀算经》中.为了方便,在本题中,我们把三边的比为3:4:5的三角形称为(3,4,5)型三角形.例如:三边长分别为9,12,15或3,4,5)型三角形.用矩形纸片按下面的操作方法可以折出这种类型的三角形.实践操作 如图1,在矩形纸片ABCD 中,8,12AD cm AB cm ==.第一步:如图2,将图1中的矩形纸片ABCD 沿过点A 的直线折叠,使点D 落在AB 上的点E 处,折痕为AF ,再沿EF 折叠,然后把纸片展平.第二步:如图3,将图2中的矩形纸片再次折叠,使点D 与点F 重合,折痕为GH ,然后展平,隐去AF . 第三步:如图4,将图3中的矩形纸片沿AH 折叠,得到AD H '∆,再沿AD '折叠,折痕为AM ,AM 与折痕EF 交于点N ,然后展平.问题解决(1)请在图2中证明四边形AEFD 是正方形.(2)请在图4中判断NF 与ND '的数量关系,并加以证明.(3)请在图4中证明AEN ∆是(3,4,5)型三角形.探索发现(4)在不添加字母的情况下,图4中还有哪些三角形是(3,4,5)型三角形?请找出并直接写出它们的名称.23.综合与探究如图,抛物线293y x x =-++x 轴交于,A B 两点(点A 在点B 的左侧),与y 轴交于点C ,连接,AC BC .点P 沿AC 以每秒1个单位长度的速度由点A 向点C 运动,同时,点Q 沿BO 以每秒2个单位长度的速度由点B 向点O 运动,当一个点停止运动时,另一个点也随之停止运动,连接PQ ,过点Q 作QD x ⊥轴,与抛物线交于点D ,与BC 交于点E .连接PD ,与BC 交于点F .设点P 的运动时间为t 秒(0t >).(1)求直线BC的函数表达式.(2)①直接写出,P D两点的坐标(用含t的代数式表示,结果需化简).时,求t的值.②在点,P Q运动的过程中,当PQ PD(3)试探究在点,P Q运动的过程中,是否存在某一时刻,使得点F为PD的中点.若存在,请直接写出此时t的值与点F的坐标;若不存在,请说明理由.。

山西省2017中考数学试卷(解析版)

山西省2017中考数学试卷(解析版)

2017年山西省中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分)1.计算﹣1+2的结果是()A.﹣3B.﹣1C.1D.32.如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是()A.∠1=∠3B.∠2+∠4=180°C.∠1=∠4D.∠3=∠43.在体育课上,甲、乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的()A.众数B.平均数C.中位数D.方差4.将不等式组的解集表示在数轴上,下面表示正确的是()A.B.C.D.5.下列运算错误的是()A.(﹣1)0=1B.(﹣3)2÷=C.5x2﹣6x2=﹣x2D.(2m3)2÷(2m)2=m46.如图,将矩形纸片ABCD沿BD折叠,得到△BC′D,C′D与AB交于点E.若∠1=35°,则∠2的度数为()A.20°B.30°C.35°D.55°7.化简﹣的结果是()A.﹣x2+2xB.﹣x2+6xC.﹣D.8.2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上石油资源总量的50%.数据186亿吨用科学记数法可表示为()A.186×108吨B.18.6×109吨C.1.86×1010吨D.0。

186×1011吨9.公元前5世纪,毕达哥拉斯学派中的一名成员希伯索斯发现了无理数,导致了第一次数学危机,是无理数的证明如下:假设是有理数,那么它可以表示成(p与q是互质的两个正整数).于是()2=()2=2,所以,q2=2p2.于是q2是偶数,进而q是偶数,从而可设q=2m,所以(2m)2=2p2,p2=2m2,于是可得p也是偶数.这与“p与q是互质的两个正整数”矛盾.从而可知“是有理数”的假设不成立,所以,是无理数.这种证明“是无理数"的方法是()A.综合法B.反证法C.举反例法D.数学归纳法10.如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A,B,C,D,得到四边形ABCD.若AC=10cm,∠BAC=36°,则图中阴影部分的面积为()A.5πcm2B.10πcm2C.15πcm2D.20πcm2二、填空题(本大题共5个小题,每小题3分)11.计算:4﹣9=.12.某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为元.13.如图,已知△ABC三个顶点的坐标分别为A(0,4),B(﹣1,1),C(﹣2,2),将△ABC向右平移4个单位,得到△A′B′C′,点A,B,C的对应点分别为A′、B′、C′,再将△A′B′C′绕点B′顺时针旋转90°,得到△A″B″C″,点A′、B′、C′的对应点分别为A″、B″、C″,则点A″的坐标为.14.如图,创新小组要测量公园内一棵树的高度AB,其中一名小组成员站在距离树10米的点E处,测得树顶A的仰角为54°.已知测角仪的架高CE=1。

山西省2017中考数学试卷(解析新版)

山西省2017中考数学试卷(解析新版)

2017年山西省中考数学试卷一、选择题(本大题共 10 个小题,每小题 3分,共 30 分)1.计算﹣ 1+2 的结果是( )A .﹣3B .﹣1C .1D .3A .20°B .30°C .35°D .55°7.化简 ﹣ 的结果是( )b 被直线c 所截,列条件不能判定直线 a 与 b 平行的是( A .∠ 1=∠3 B .∠ 2+∠4=180° C .∠1=∠4 D .∠ 3=∠43.在体育课上,甲、乙两名同学分别进行了 5次跳远测试, 经计算他们的平均成绩相同. 若 要比较这两名同学的成绩哪一个更为稳定,通常需要比较他A .众数B .平均数C .中位数D .方差的解集表示在数轴上,下面表示正确的是(4. 将不等式组 A . B ..D . D .5.下列运算错误的是( )A .( ﹣1)0=1B .(﹣ 3)2÷ =C .5x 2﹣6x 2=﹣x 2D .(2m 3)2÷(2m )2=m 46.如图,将矩形纸片 ABCD 沿 BD 折叠,得到△ BC ′D,C ′D 与 AB 交于点 .若∠ °,则∠2 的度数A .﹣x2+2x B.﹣x2+6x C.﹣D.8.2017 年 5 月18 日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186 亿吨油当量,达到我国陆上石油资源总量的50%.数据186 亿吨用科学记数法可表示为()A.186×108吨B.18.6×109吨C.1.86×1010吨D.0.186×1011吨9.公元前 5 世纪,毕达哥拉斯学派中的一名成员希伯索斯发现了无理数,导致了第一次数学危机,是无理数的证明如下:假设是有理数,那么它可以表示成(p 与q 是互质的两个正整数).于是()2= ()2=2,所以,q2=2p2.于是q2是偶数,进而q 是偶数,从而可设q=2m,所以(2m)2=2p2,p2=2m2,于是可得p 也是偶数.这与“p与q 是互质的两个正整数”矛盾.从而可知“ 是有理数”的假设不成立,所以,是无理数.这种证明“ 是无理数”的方法是()A .综合法B.反证法C.举反例法D.数学归纳法10.如图是某商品的标志图案,AC 与BD 是⊙ O 的两条直径,首尾顺次连接点A,B,C,D,得到四边形ABCD .若AC=10cm,∠ BAC=36°,则图中阴影部分的面积为()15π cm2 D.20π cm2A .5π cm2 B.10π cm2 C二、填空题(本大题共 5 个小题,每小题 3 分)11.计算: 4 ﹣9 =.12.某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为 a 元,商店将进价提高 20%后作为零售价进行销售,一段时间后,商店又以 9 折优惠价促销,这时该型号洗13.如图,已知△ ABC 三个顶点的坐标分别为 A (0,4),B (﹣ 1,1),C (﹣2,2), 将△ABC 向右平移 4个单位,得到△ A ′B ′,C ′点A ,B ,C 的对应点分别为 A ′、B ′、C ′,再将△ A ′B ′绕C ′点 B ′顺时针旋转 90°,得到△A ″B ″C ,″点 A ′、B ′、C ′的对应点分别为 A ″、B ″、的点E 处,测得树顶A 的仰角为 54°.已知测角仪的架高 CE=1.5M ,则这棵树的高度为 M (.结果保留一位小数.参考数据: sin54 °=0.8090,cos54°=0.5878,tan54 °=1.3764)15.一副三角板按如图方式摆放, 得到△ ABD 和△ BCD ,其中∠ ADB= ∠BCD=90°,∠A=60°, ∠CBD=4°5 ,E 为AB 的中点,过点 E 作EF ⊥CD于点14.如图,创新小组要测量公园内一棵树的高度 AB ,其中一名小组成员站在距离树10M衣机的零售价为F.若AD=4cm,则EF的长为cm.三、解答题(本大题共 8 个小题,共 75分)﹣ 2) 3+( )﹣ 2﹣ ?sin45 22 y+2x )2﹣(x+2y )2.17.已知:如图,在 ?ABCD 中,延长 AB 至点E ,延长 CD 至点 F ,使得BE=DF .连接EF ,与对角线 AC 交于点 O . 求证: OE=OF .18.如图,在平面直角坐标系中,正方形 OABC 的顶点 O 与坐标原点重合,其边长为 2, 点 A ,点 C 分别在 x 轴,y 轴的正半轴上,函数 y=2x 的图象与 CB 交于点 D ,函数 y= (k 为常数,k ≠0)的图象经过点 D ,与AB 交于点 E ,与函数 y=2x 的图象在第三象限内交于点 F ,连接 AF 、 EF .(1)求函数 y= 的表达式,并直接写出 E 、F 两点的坐标;16.( 1)计算:,唐代诗人李绅这句诗粟”即谷子(去皮后则称为“小M”),被誉为中华民族的哺育作物.我省有着“小杂粮王国”的美誉,谷子作为我省杂粮谷物中的大类,其种植面积已连续三年全国第一.2016 年全国谷子种植面积为2000 万亩,年总产量为150 万吨,我省谷子平均亩产量为160kg,国内其他地区谷子的平均亩产量为60kg,请解答下列问题:(1)求我省2016 年谷子的种植面积是多少万亩.(2)2017年,若我省谷子的平均亩产量仍保持160kg 不变,要使我省谷子的年总产量不低于52 万吨,那么,今年我省至少应再多种植多少万亩的谷子?20.从共享单车,共享汽车等共享出行到共享充电宝,共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速普及应用,越来越多的企业与个人成为参与者与受益者.根据国家信息中心发布的《中国分享经济发展报告2017》显示,2016年我国共享经济市场交易额约为34520亿元,比上年增长103%;超6亿人参与共享经济活动,比上年增加约 1 亿人.如图是源于该报告中的中国共享经济重点领域市场规模统计图:(1)请根据统计图解答下列问题:①图中涉及的七个重点领域中,2016 年交易额的中位数是亿元.②请分别计算图中的“知识技能”和“资金”两个重点领域从2015年到2016年交易额的增长率(精确到1%),并就这两个重点领域中的一个分别从交易额和增长率两个方面,谈谈你的认识.(2)小宇和小强分别对共享经济中的“共享出行”和“共享知识”最感兴趣,他们上网查阅了相关资料,顺便收集到四个共享经济领域的图标,并将其制成编号为 A ,B,C,D 的四张卡片(除编号和内容外,其余完全相同)他们将这四张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率(这四张卡片分别用它们的编号A,B,C,D表示)21.如图,△ ABC 内接于⊙ O,且AB 为⊙ O的直径,OD⊥AB ,与AC 交于点E,与过点 C 的⊙O 的切线交于点D.(1)若AC=4,BC=2,求OE 的长.(2)试判断∠ A 与∠ CDE 的数量关系,并说明理由.22.综合与实践背景阅读早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”.它被记载于我国古代著名数学著作《周髀算经》中,为了方便,在本题中,我们把三边的比为3:4:5 的三角形称为(3,4,5)型三角形,例如:三边长分别为9,12,15 或 3 ,4 ,5 的三角形就是(3,4,5)型三角形,用矩形纸片按下面的操作方法可以折出这种类型的三角形.实践操作如图1,在矩形纸片ABCD 中,AD=8cm ,AB=12cm.第一步:如图2,将图1中的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB上的点 E 处,折痕为AF,再沿EF 折叠,然后把纸片展平.第二步:如图3,将图2中的矩形纸片再次折叠,使点D与点F重合,折痕为GH,然后展平,隐去AF.第三步:如图 4,将图 3中的矩形纸片沿 AH 折叠,得到△ AD ′H,再沿 AD ′折叠,折痕为(1)请在图 2中证明四边形 AEFD 是正方形.(2)请在图 4中判断 NF 与 ND ′的数量关系,并加以证明;(3)请在图 4中证明△ AEN (3,4,5)型三角形; 探索发现 (4)在不添加字母的情况下,图 4 中还有哪些三角形是( 3,4,5)型三角形?请找出并 直接写出它们的名称.23.如图,抛物线 y=﹣ x 2+ x+3 与 x 轴交于 A 、 B 两点(点 A 在点 B 的左侧),与y 轴交于点 C ,连接 AC 、BC .点 P 沿AC 以每秒 1个单位长度的速度由点 A 向点 C 运 动,同时,点 Q 沿BO 以每秒 2个单位长度的速度由点 B 向点O 运动,当一个点停止运动 时,另一个点也随之停止运动,连接 PQ .过点 Q 作 QD ⊥x 轴,与抛物线交于点 D ,与 BC 交于点 E ,连接 PD ,与 BC 交于点 F .设点 P 的运动时间为 t 秒( t > 0).(1)求直线 BC 的函数表达式;(2)①直接写出 P ,D 两点的坐标(用含 t 的代数式表示,结果需化简) ②在点 P 、Q 运动的过程中,当 PQ=PD 时,求 t 的值;3)试探究在点 P ,Q 运动的过程中,是否存在某一时刻,使得点F 为 PD 的中点?若存2017 年山西省中考数学试卷参考答案与试卷解读一、选择题(本大题共 10 个小题,每小题 3分,共 30 分)1.计算﹣ 1+2 的结果是( )A .﹣3B .﹣1C .1D .3【考点】 19:有理数的加法.【分析】 直接利用有理数加减运算法则得出答案.【解答】 解:﹣ 1+2=1.故选: C .2.如图,直线 a ,b 被直线 c 所截,下列条件不能判定直线 a 与 b 平行的是( )A .∠ 1=∠3B .∠ 2+∠4=180°C .∠1=∠4D .∠ 3=∠4【考点】 J9:平行线的判定.【分析】 根据同位角相等,两直线平行;同旁内角互补,两直线平行进行判断即可.【解答】解:由∠ 1=∠3,可得直线 a 与 b 平行,故 A 能判定;由∠ 2+∠4=180°,∠ 2=∠5,∠ 4=∠3,可得∠ 3+∠5=180°,故直线 a 与b若不存在,请说明理由.平行,故B能判定;由∠1=∠4,∠4=∠3,可得∠1=∠3,故直线a与b平行,故C能判定;由∠ 3=∠4,不能判定直线a与 b 平行,3.在体育课上,甲、乙两名同学分别进行了 5次跳远测试, 经计算他们的平均成绩相同. 若 要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的( )A .众数B .平均数C .中位数D .方差【考点】 WA :统计量的选择; W1:算术平均数; W7:方差.【分析】 方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大, 稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好;【解答】 解:因为方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散 程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,所以要 比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的方差.故选 D .D .考点】 CB :解一元一次不等式组; C4:在数轴上表示不等式的解集.分析】 首先解出两个不等式的解;根据在数轴上表示不等式解集的方法分别把每个不等 式的解集在数轴上表示出来即可.解答】 解: 解不等式①得, x ≤3解不等式②得, x >﹣ 4在数轴上表示为:故选: A .5.下列运算错误的是( )4.将不等式组面表示正确的是 B . CA.(﹣1)0=1 B.(﹣3)2÷ = C.5x2﹣6x2=﹣x2 D.(2m3)2÷(2m)2=m4【考点】4H:整式的除法;1D:有理数的除法;1E:有理数的乘方;35:合并同类项;47:幂的乘方与积的乘方;6E:零指数幂.【分析】根据整式和有理数的除法的法则,乘方的性质,合并同类项的法则,零指数的性质,幂的乘方与积的乘方的运算法则计算即可.【解答】解:A、(﹣1)0=1,正确,不符合题意;B、(﹣3)2÷ =4,错误,符合题意;C、5x2﹣6x2=﹣x2,正确,不符合题意;D、(2m3)2÷(2m)2=m4,正确,不符合题意;故选B.6.如图,将矩形纸片ABCD 沿BD 折叠,得到△ BC′D,C′D与AB 交于点E.若∠ 1=35°,则∠2 的度数为()A.20°B.30°C.35°D.55°【考点】JA:平行线的性质.【分析】根据矩形的性质,可得∠ ABD=3°5 ,∠ DBC=5°5 ,根据折叠可得∠DBC'=∠DBC=5°5 ,最后根据∠ 2=∠DBC'﹣∠ DBA 进行计算即可.【解答】解:∵∠ 1=35°,CD∥AB,∴∠ ABD=3°5 ,∠ DBC=5°5 ,由折叠可得∠ DBC'= ∠DBC=5°5 ,∴∠ 2=∠DBC' ﹣∠ DBA=5°5 ﹣35°=20°,故选: A .7.化简的结果是()A .﹣x2+2x﹣x2+6x C.﹣D.B.考点】6B:分式的加减法.分析】根据分式的运算法则即可求出答案.解答】解:原式=故选(C)8.2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186 亿吨油当量,达到我国陆上石油资源总量的50%.数据186 亿吨用科学记数法可表示为()A.186×108吨B.18.6×109吨C.1.86×1010吨D.0.186×1011吨【考点】1I:科学记数法—表示较大的数.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤| a|<10,n 为整数,据此判断即可.【解答】解:186亿吨=1.86×1010吨.故选:C.9.公元前 5 世纪,毕达哥拉斯学派中的一名成员希伯索斯发现了无理数,导致了第一次数学危机,是无理数的证明如下:假设是有理数,那么它可以表示成(p 与q 是互质的两个正整数).于是()2= ()2=2,所以,q2=2p2.于是q2是偶数,进而q是偶数,从而可设q=2m,所以(2m)2=2p2,p2=2m2,于是可得p也是偶数.这与“p与q 是互质的两个正整数”矛盾.从而可知“ 是有理数”的假设不成立,所以,是无理数.这种证明“ 是无理数”的方法是()A .综合法B.反证法C.举反例法D.数学归纳法【考点】O3:反证法.【分析】利用反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确,进而判断即可.【解答】解:由题意可得:这种证明“ 是无理数”的方法是反证法.故选: B .10.如图是某商品的标志图案,AC 与BD 是⊙ O的两条直径,首尾顺次连接点A,B,C,D,得到四边形ABCD .若AC=10cm,∠ BAC=36°,则图中阴影部分的面积为()A .5π cm2 B.10π cm2 C.15π cm2 D .20π cm2【考点】MO:扇形面积的计算;M5:圆周角定理.【分析】根据已知条件得到四边形ABCD 是矩形,求得图中阴影部分的面积=S 扇形AOD+S扇形BOC=2S 扇形AOD ,根据等腰三角形的性质得到∠ BAC= ∠ ABO=3°6 ,由圆周角定理得到∠ AOD=72°,于是得到结论..【解答】解:∵ AC 与BD是⊙ O的两条直径,∴∠ABC=∠ADC=∠DAB= ∠BCD=9°0 ,∴四边形ABCD 是矩形,∴△ABO于△CDO的面积=△AOD 与△BOD 的面积,∴图中阴影部分的面积=S 扇形AOD +S扇形BOC=2S扇形AOD ,∵ OA=OB ,∴∠ BAC=∠ABO=3°6 ,∴∠ AOD=7°2 ,∴图中阴影部分的面积=2×=10π,故选B.二、填空题(本大题共 5 个小题,每小题 3 分)11.计算: 4 ﹣9 = 3 .【考点】78:二次根式的加减法.【分析】先化简,再做减法运算即可.【解答】解:原式=12 =3 ,故答案为: 3 .12.某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为 a 元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9 折优惠价促销,这时该型号洗衣机的零售价为 1.08a 元.考点】32:列代数式.分析】根据题意可以得到最后打折后的零售价,从而可以解答本题.解答】解:由题意可得,该型号洗衣机的零售价为:a(1+20%)×0.9=1.08a(元),故答案为: 1.08a.13.如图,已知△ ABC 三个顶点的坐标分别为A(0,4),B(﹣1,1),C(﹣2,2),将△ABC向右平移4个单位,得到△ A′B′,C′点A,B,C的对应点分别为A′、B′、C′,再将△ A′B′绕C′点B′顺时针旋转90°,得到△A″B″C″,点A′、B′、C′的对应点分别为A″、B″、C″,则点A″的坐标为(6,0).考点】R7:坐标与图形变化﹣旋转;Q3:坐标与图形变化﹣平移.分析】由平移的性质和旋转的性质作出图形,即可得出答案.解答】解:如图所示:∵A(0,4),B(﹣1,1),C(﹣2,2),将△ABC 向右平移 4 个单位,得到△ A′B′,C′ ∴A′、B′、C′的坐标分别为(4,4),B(3,1),C(2,2),再将△ A′B′绕C′点B′顺时针旋转90°,得到△ A″B″C,″则点A″的坐标为(6,0);故答案为:(6,0).14.如图,创新小组要测量公园内一棵树的高度A B ,其中一名小组成员站在距离树10M的点E处,测得树顶 A 的仰角为54°.已知测角仪的架高CE=1.5M,则这棵树的高度为15.3 M .(结果保留一位小数.参考数据:sin54 =°0.8090,cos54 °=0.5878,tan54 °=1.3764)考点】TA :解直角三角形的应用﹣仰角俯角问题.【分析】在Rt△ACD 中,求出AD ,再利用矩形的性质得到BD=CE=1.5,由此即可解决问题.【解答】解:解:如图,过点 C 作CD⊥AB ,垂足为D.则四边形CEBD 是矩形,BD=CE=1.5m,在Rt△ACD 中,CD=EB=10m,∠ ACD=5°4 ,∵tan∠ACE= ,∴AD=CD?tan∠ACD≈10×1.38=13.8m.∴AB=AD +BD=13.8+1.5=15.3m.答:树的高度AB 约为15.3m.故答案为15.315.一副三角板按如图方式摆放,得到△ ABD 和△ BCD ,其中∠ ADB=∠BCD=90°,∠A=60°,∠CBD=4°5 ,E为AB 的中点,过点 E 作EF⊥CD 于点F.若AD=4cm ,则EF的长为(+ )cm.【考点】LL :梯形中位线定理.【分析】过 A 作AG⊥Dc 于G,得到∠ ADC=4°5 ,进而得到AG 的值,在30°的直角三角形ABD 和45°直角三角形BCD 中,计算出BD,CB 的值.再由AG ∥EF∥BC,E 是AB 的中点,得到 F 为CG 的中点,最后由梯形中位线定理得到EF 的长.【解答】解:过点 A 作AG⊥DC 与G.∵∠ DCB=∠CBD=4°5 ,∠ADB=9°0 , ∴解 ADG=4°5 .∴AG= =2 .∵∠ ABD=3°0 , ∴ BD= AD=4 .∵∠ CBD=4°5 ,∵AG ⊥CG ,EF ⊥CG ,CB ⊥CG , ∴AG ∥EF ∥BC . 又∵E 是AB 的中点,∴F 为 CG 的中点,∴EF= (AG+BC ) = (2 +2 )= + . 故答案为:( + ).三、解答题(本大题共 8 个小题,共 75分)16.( 1)计算:(﹣ 2)3+( )﹣2﹣ ?sin45 ° (2)分解因式:( y+2x )2﹣( x+2y )2.【考点】 54:因式分解﹣运用公式法; 2C :实数的运算; 6F :负整数指数幂; T5:特殊角 的三角函数值. 【分析】 (1)根据实数的运算,可得答案; (2)根据平方差公式,可得答案.【解答】 解:(1)原式=﹣8+9﹣2=﹣1;(2)原式 =[(y+2x )+(x+2y )][ (y+2x )﹣(x+2y )]=3(x+y )(x ﹣y ) 17.已知:如图,在 ?ABCD 中,延长 AB 至点 E ,延长 CD 至点 F ,使得 BE=DF .连接 EF ,与对角线 AC 交于点 O .求证: OE=OF .CB= =2 .【考点】L5:平行四边形的性质;KD :全等三角形的判定与性质.【分析】由平行四边形的性质得出AB∥CD,AB=CD,证出AE=CF,∠ E=∠F,∠ OAE= ∠OCF,由ASA 证明△ AOE≌△ COF,即可得出结论.【解答】证明:∵四边形ABCD 是平行四边形,∴AB∥CD,AB=CD,∵BE=DF,∴AB +BE=CD+DF,即AE=CF,∵AB∥CD,∴AE∥CF,∴∠ E=∠F,∠ OAE=∠ OCF,在△AOE 和△COF中,,∴△ AOE≌△ COF(ASA ),∴OE=OF.18.如图,在平面直角坐标系中,正方形OABC 的顶点O 与坐标原点重合,其边长为2,点A,点 C 分别在x 轴,y 轴的正半轴上,函数y=2x 的图象与CB 交于点 D ,函数y= (k 为常数,k≠0)的图象经过点D,与AB交于点E,与函数y=2x的图象在第三象限内交于点F,连接AF、EF.(1)求函数y= 的表达式,并直接写出E、F 两点的坐标;分析】 (1)根据正方形的性质,以及函数上点的坐标特征可求点 D的坐标为( 根据待定系数法可求反比例函数表达式,进一步得到 E 、F 两点的坐标;(2)过点 F 作 FG ⊥AB ,与 AB 的延长线交于点 G ,根据两点间的距离公式可求FG=3,再根据三角形面积公式可求△ AEF 的面积. 【解答】解:( 1)∵正方形 OABC 的边长为 2, ∴点 D 的纵坐标为 2,即 y=2, 将 y=2 代入 y=2x ,得x=1,∴点 D 的坐标为( 1,2),∵函数 y= 的图象经过点 D ,∴ 2= ,∴,解得 k=2,∴函数 y= 的表达式为 y= , ∴E (2,1), F (﹣ 1,﹣ 2);(2)过点 F 作FG ⊥AB ,与AB 的延长线交于点 G ,∵E (2,1), F (﹣ 1,﹣ 2),∴AE=1,FG=2﹣(﹣ 1)=3,∴△AEF 的面积为: AE?FG= ×1×3= .LE :正方形的性质.1,2), 2)求△ AEF 的面次函数的交点19.“春种一粒粟,秋收万颗子”,唐代诗人李绅这句诗中的“粟”即谷子(去皮后则称为“小M”),被誉为中华民族的哺育作物.我省有着“小杂粮王国”的美誉,谷子作为我省杂粮谷物中的大类,其种植面积已连续三年全国第一.2016 年全国谷子种植面积为2000 万亩,年总产量为150 万吨,我省谷子平均亩产量为160kg,国内其他地区谷子的平均亩产量为60kg,请解答下列问题:(1)求我省2016 年谷子的种植面积是多少万亩.(2)2017年,若我省谷子的平均亩产量仍保持160kg 不变,要使我省谷子的年总产量不低于52 万吨,那么,今年我省至少应再多种植多少万亩的谷子?【考点】C9:一元一次不等式的应用;9A:二元一次方程组的应用.【分析】(1)可设我省2016年谷子的种植面积是x 万亩,其他地区谷子的种植面积是y 万亩,根据2016年全国谷子年总产量为150 万吨列出方程组求解即可;(2)可设我省应种植z 万亩的谷子,根据我省谷子的年总产量不低于52 万吨列出不等式求解即可.【解答】解:(1)设我省2016年谷子的种植面积是x 万亩,其他地区谷子的种植面积是y 万亩,依题意有,解得.答:我省2016年谷子的种植面积是300 万亩.(2)设我省应种植z 万亩的谷子,依题意有,,解得z≥325,325﹣300=25(万亩).答:今年我省至少应再多种植25 万亩的谷子.20.从共享单车,共享汽车等共享出行到共享充电宝,共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速普及应用,越来越多的企业与个人成为参与者与受益者.根据国家信息中心发布的《中国分享经济发展报告2017》显示,2016 年我国共享经济市场交易额约为34520亿元,比上年增长103%;超6亿人参与共享经济活动,比上年增加约 1 亿人.如图是源于该报告中的中国共享经济重点领域市场规模统计图:1)请根据统计图解答下列问题:①图中涉及的七个重点领域中,2016 年交易额的中位数是2038 亿元.②请分别计算图中的“知识技能”和“资金”两个重点领域从2015年到2016年交易额的增长率精确到1%),并就这两个重点领域中的一个分别从交易额和增长率两个方面,谈谈你的认识.(2)小宇和小强分别对共享经济中的“共享出行”和“共享知识”最感兴趣,他们上网查阅了相关资料,顺便收集到四个共享经济领域的图标,并将其制成编号为 A ,B ,C ,D 的四张卡片(除编号和内容外,其余完全相同)他们将这四张卡片背面朝上,洗匀放好,从中随 机抽取一张(不放回),再从中随机抽取一张,请用列表或画树状图的方法求抽到的两张 卡片恰好是 “共享出行 ”和“共享知识 ”的概率(这四张卡片分别用它们的编号 A ,B , C ,D 表示)【考点】 X6:列表法与树状图法; VC :条形统计图; VD :折线统计图; W4:中位数. 【分析】 (1)根据图表将 2016 年七个重点领域的交易额从小到大罗列出来,根据中位数 的定义即可得;(2)将÷ 2015年的资金可分别求得两领域的增长率,结合增长率提出合理的认识即可;(3)画树状图列出所有等可能结果,根据概率公式求解可得.【解答】解:( 1)由图可知, 2016年七个重点领域的交易额分别为 70、245、610、2038、 3300、7233、20863,2016 年交易额的中位数是 2038 亿元, 故答案为: 2038;由此可知, “知识技能”领域交易额较小,当增长率最高,达到 200%以上,其发展速度惊人. 3)画树状图为:共有 12种等可能的结果数,其中抽到 “共享出行 ”和“共享知识 ”的结果数为 2, 所以抽到 “共享出行 ”和“共享知识 ”的概率= = .21.如图,△ ABC 内接于⊙ O ,且 AB 为⊙ O 的直径, OD ⊥AB ,与 AC 交于点 E ,与过点2)知识技能 ”的增长率为: ×100%=205%, 资金”的增长率为: 109%,C 的⊙O 的切线交于点D.1)若AC=4 ,BC=2 ,求OE 的长.2)试判断∠ A 与∠ CDE 的数量关系,并说明理由.【考点】MC:切线的性质;KQ:勾股定理;S9:相似三角形的判定与性质.【分析】(1)由圆周角定理得出∠ ACB=9°0 ,由勾股定理求出AB= =2 ,得出OA= AB= ,证明△ AOE∽△ACB ,得出对应边成比例即可得出答案;(2)连接OC,由等腰三角形的性质得出∠ 1=∠A,由切线的性质得出OC⊥CD,得出∠ 2+∠CDE=9°0 ,证出∠3=∠CDE,再由三角形的外角性质即可得出结论.【解答】解:(1)∵AB 为⊙O的直径,∴∠ ACB=9°0 ,在Rt△ ABC 中,由勾股定理得:AB= = =2 ,∴ OA= AB= ,∵OD⊥AB,∴∠ AOE=∠ACB=9°0 ,又∵∠ A=∠A,∴△AOE∽△ACB,∴,即,∴,即,(2)∠ CDE=2∠A ,理由如下:连接OC,如图所示:∵OA=OC ,∴∠ 1=∠A ,∵CD 是⊙O 的切线,∴OC⊥CD,∴∠ OCD=9°0 ,∴∠ 2+∠CDE=9°0 ,∵OD⊥AB,∴∠ 2+∠3=90°,∴∠3=∠CDE,∵∠3=∠A+∠1=2∠A,∴∠ CDE=2∠A .22.综合与实践背景阅读早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”.它被记载于我国古代著名数学著作《周髀算经》中,为了方便,在本题中,我们把三边的比为3:4:5 的三角形称为(3,4,5)型三角形,例如:三边长分别为9,12,15 或 3 ,4 ,5 的三角形就是(3,4,5)型三角形,用矩形纸片按下面的操作方法可以折出这种类型的三角形.实践操作如图1,在矩形纸片ABCD 中,AD=8cm ,AB=12cm.第一步:如图2,将图 1 中的矩形纸片ABCD 沿过点 A 的直线折叠,使点 D 落在AB 上的点 E 处,折痕为AF,再沿EF 折叠,然后把纸片展平.第二步:如图3,将图2中的矩形纸片再次折叠,使点D与点F重合,折痕为GH,然后展平,隐去AF.第三步:如图4,将图3中的矩形纸片沿AH折叠,得到△ AD′H,再沿AD′折叠,折痕为AM ,AM 与折痕EF 交于点N,然后展平.问题解决(1)请在图2中证明四边形AEFD 是正方形.(2)请在图4中判断NF 与ND′的数量关系,并加以证明;(3)请在图4中证明△ AEN(3,4,5)型三角形;探索发现(4)在不添加字母的情况下,图 4 中还有哪些三角形是(3,4,5)型三角形?请找出并直接写出它们的名称.【考点】RB:几何变换综合题.【分析】(1)根据矩形的性质得到∠ D=∠DAE=9°0 ,由折叠的性质得得到AE=AD ,∠AEF= ∠D=90°,求得∠D=∠DAE=∠AEF=90°,得到四边形AEFD 是矩形,由于AE=AD ,于是得到结论;(2)连接HN ,由折叠的性质得到∠ AD′H=∠D=90°,HF=HD=H′D ,根据正方形的想知道的∠ HD′N=90°,根据全等三角形的性质即可得到结论;(3)根据正方形的性质得到AE=EF=AD=8cm ,由折叠得,AD′=AD=8cm,设NF=xcm,则ND′ =xcm,根据勾股定理列方程得到x=2,于是得到结论;(4)根据(3,4,5)型三角形的定义即可得到结论.【解答】(1)证明:∵四边形ABCD 是矩形,∴∠ D=∠DAE=9°0 ,由折叠的性质得,AE=AD ,∠AEF= ∠D=90°,∴∠ D=∠ DAE= ∠AEF=90°,∴四边形AEFD 是矩形,∵AE=AD ,∴矩形AEFD 是正方形;2)解:NF=ND′,理由:连接HN,由折叠得,∠ AD′H=∠D=90°,HF=HD=H′D ,∵四边形AEFD 是正方形,∴∠ EFD=90°,∵∠ AD′H=90°,∴∠ HD′N=90°,在Rt△ HNF 与Rt △ HND′中,,∴Rt△HNF≌Rt△HND′,∴NF=ND′;(3)解:∵四边形AEFD 是正方形,∴ AE=EF=AD=8cm ,由折叠得,AD′=AD=8cm,设NF=xcm,则ND′ =xcm,在Rt△ AEN 中,222∵AN2=AE2+EN2,∴(8+x )2=82+(8﹣x )2,解得:x=2,∴ AN=8+x=10cm,EN=6cm,∴EN:AE:AN=3 :4:5,∴△ AEN 是(3,4,5)型三角形;(4)解:图 4 中还有△ MFN ,△ MD′H,△ MDA 是(3,4,5)型三角形,∵CF∥AE,∴△ CFN∽△ AEN ,∵EN:AE:AN=3 :4:5,∴FN:CF:CN=3:4:5,∴△ MFN 是(3,4,5)型三角形;同理,△ MD′H,△MDA 是(3,4,5)型三角形.23.如图,抛物线y=﹣x2+ x+3 与x 轴交于A、 B 两点(点 A 在点 B 的左侧),与y轴交于点C,连接AC、BC.点P沿AC以每秒1个单位长度的速度由点A 向点C运动,同时,点Q沿BO以每秒2个单位长度的速度由点B向点O运动,当一个点停止运动时,另一个点也随之停止运动,连接PQ.过点Q作QD⊥x轴,与抛物线交于点D,与BC 交于点E,连接PD,与BC 交于点F.设点P的运动时间为t 秒(t> 0).(1)求直线BC 的函数表达式;(2)①直接写出P,D 两点的坐标(用含t 的代数式表示,结果需化简)②在点P、Q 运动的过程中,当PQ=PD时,求t 的值;(3)试探究在点P,Q 运动的过程中,是否存在某一时刻,使得点 F 为PD 的中点?若存在,请直接写出此时t 的值与点 F 的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)更好函数的解读式得到B(9,0),C(0,3 ),解方程组即可得到结论;(2)①过p作PG⊥x轴于G,解直角三角形得到∠ CAO=6°0 ,得到PG= t,AG= t,于是得到P(t﹣3,t),把OQ=9﹣2t 代入二次函数的解读式即可得到D(9﹣2t,﹣t2+ t),②过P作PH⊥QD 于H,得到四边形PGQH 是矩形,列方程即可得到即可;(3)根据折叠坐标公式得到F(﹣t+3,﹣t2+ t),由点 F 在直线BC 上,列方程即可得到结论.【解答】解:(1)由y=0得﹣x2+ x+3 =0,解得: x 1=﹣3, x 2=9,∴B (9,0), 由 x=0 得 y=3 ,∴C (0,3 ), 设直线 BC 的解读式为 y=kx +b ,∴直线 BC 的解读式为 y=﹣ x+3 ;(2)①过 p 作PG ⊥x 轴于 G ,∵A (﹣ 3,0), C (0,3 ),∴OA=3 .OC=3 ,∴ tan ∠CAO= ,∴∠ CAO=6°0 ,∵AP=t ,∴PG= t ,AG= t ,∴OG=3﹣ t ,∴P ( t ﹣3, t ),∵DQ ⊥ x 轴,BQ=2t , ∴OQ=9﹣2t ,②过 P 作 PH ⊥QD 于 H ,则四边形 PGQH 是矩形,∴HQ=PG ,∵ PQ=PD ,PH ⊥ QD ,∴ DQ=2HQ=2PG ,∵ P ( t ﹣3, t),D (9﹣2t ,﹣﹣ t 2+ t=2 × t ,解得: t 1=0(舍去), t 2= ,∴当 PQ=PD 时,t 的值是;∴D (9﹣3)∵点 F 为 PD 的中点, ∴t=3,∴F ( , )2017年 7月16日∴F 的横坐标为: ( t ﹣ 3+9﹣2t )=﹣ t+3, t 2+ t , ∴F (﹣ t+3,﹣ t 2+ t ), ∵点 F 在直线 BC 上,∴﹣ t 2+ t=﹣ (﹣t+3)+3 , F 的纵坐标为 ( t ﹣t 2+ t ) =﹣。

山西省2017年中考数学真题试卷和答案

山西省2017年中考数学真题试卷和答案

山西省2017年中考数学真题试卷和答案一、选择题(每小题3分,共30分)。

1.计算﹣1+2的结果是()A.﹣3 B.﹣1 C.1 D.32.如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是()A.∠1=∠3 B.∠2+∠4=180°C.∠1=∠4 D.∠3=∠43.在体育课上,甲、乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的()A.众数B.平均数C.中位数D.方差4.将不等式组的解集表示在数轴上,下面表示正确的是()A.B.C.D.5.下列运算错误的是()A.(﹣1)0=1 B.(﹣3)2÷=C.5x2﹣6x2=﹣x2D.(2m3)2÷(2m)2=m46.如图,将矩形纸片ABCD沿BD折叠,得到△BC′D,C′D与AB交于点E.若∠1=35°,则∠2的度数为()A.20°B.30°C.35°D.55°7.化简﹣的结果是()A.﹣x2+2x B.﹣x2+6x C.﹣D.8.2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上石油资源总量的50%.数据186亿吨用科学记数法可表示为()A.186×108吨B.18.6×109吨 C.1.86×1010吨D.0.186×1011吨9.公元前5世纪,毕达哥拉斯学派中的一名成员希伯索斯发现了无理数,导致了第一次数学危机,是无理数的证明如下:假设是有理数,那么它可以表示成(p与q是互质的两个正整数).于是()2=()2=2,所以,q2=2p2.于是q2是偶数,进而q是偶数,从而可设q=2m,所以(2m)2=2p2,p2=2m2,于是可得p也是偶数.这与“p与q是互质的两个正整数”矛盾.从而可知“是有理数”的假设不成立,所以,是无理数.这种证明“是无理数”的方法是()A.综合法B.反证法C.举反例法D.数学归纳法10.如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A,B,C,D,得到四边形ABCD.若AC=10cm,∠BAC=36°,则图中阴影部分的面积为()A.5πcm2B.10πcm2C.15πcm2D.20πcm2二、填空题(每题3分,共15分)。

2017年山西省中考数学试卷(含答案解析)

2017年山西省中考数学试卷(含答案解析)

2017年山西省中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)计算﹣1+2的结果是()A.﹣3 B.﹣1 C.1 D.32.(3分)如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是()A.∠1=∠3 B.∠2+∠4=180°C.∠1=∠4 D.∠3=∠43.(3分)在体育课上,甲、乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的()A.众数B.平均数C.中位数D.方差4.(3分)将不等式组的解集表示在数轴上,下面表示正确的是()A.B.C.D.5.(3分)下列运算错误的是()A.(﹣1)0=1 B.(﹣3)2÷=C.5x2﹣6x2=﹣x2D.(2m3)2÷(2m)2=m4 6.(3分)如图,将矩形纸片ABCD沿BD折叠,得到△BC′D,C′D与AB交于点E.若∠1=35°,则∠2的度数为()A.20°B.30°C.35°D.55°7.(3分)化简﹣的结果是()A.﹣x2+2x B.﹣x2+6x C.﹣D.8.(3分)2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上石油资源总量的50%.数据186亿吨用科学记数法可表示为()A.186×108吨B.18.6×109吨 C.1.86×1010吨D.0.186×1011吨9.(3分)公元前5世纪,毕达哥拉斯学派中的一名成员希伯索斯发现了无理数,导致了第一次数学危机,是无理数的证明如下:假设是有理数,那么它可以表示成(p与q是互质的两个正整数).于是()2=()2=2,所以,q2=2p2.于是q2是偶数,进而q是偶数,从而可设q=2m,所以(2m)2=2p2,p2=2m2,于是可得p也是偶数.这与“p与q是互质的两个正整数”矛盾.从而可知“是有理数”的假设不成立,所以,是无理数.这种证明“是无理数”的方法是()A.综合法B.反证法C.举反例法D.数学归纳法10.(3分)如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A,B,C,D,得到四边形ABCD.若AC=10cm,∠BAC=36°,则图中阴影部分的面积为()A.5πcm2B.10πcm2C.15πcm2D.20πcm2二、填空题(本大题共5个小题,每小题3分)11.(3分)计算:4﹣9=.12.(3分)某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为元.13.(3分)如图,已知△ABC三个顶点的坐标分别为A(0,4),B(﹣1,1),C(﹣2,2),将△ABC向右平移4个单位,得到△A′B′C′,点A,B,C的对应点分别为A′、B′、C′,再将△A′B′C′绕点B′顺时针旋转90°,得到△A″B″C″,点A′、B′、C′的对应点分别为A″、B″、C″,则点A″的坐标为.14.(3分)如图,创新小组要测量公园内一棵树的高度AB,其中一名小组成员站在距离树10米的点E处,测得树顶A的仰角为54°.已知测角仪的架高CE=1.5米,则这棵树的高度为米.(结果保留一位小数.参考数据:sin54°=0.8090,cos54°=0.5878,tan54°=1.3764)15.(3分)一副三角板按如图方式摆放,得到△ABD和△BCD,其中∠ADB=∠BCD=90°,∠A=60°,∠CBD=45°,E为AB的中点,过点E作EF⊥CD于点F.若AD=4cm,则EF的长为cm.三、解答题(本大题共8个小题,共75分)16.(10分)(1)计算:(﹣2)3+()﹣2﹣•sin45°(2)分解因式:(y+2x)2﹣(x+2y)2.17.(6分)已知:如图,在▱ABCD中,延长AB至点E,延长CD至点F,使得BE=DF.连接EF,与对角线AC交于点O.求证:OE=OF.18.(7分)如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,其边长为2,点A,点C分别在x轴,y轴的正半轴上,函数y=2x的图象与CB交于点D,函数y=(k 为常数,k≠0)的图象经过点D,与AB交于点E,与函数y=2x的图象在第三象限内交于点F,连接AF、EF.(1)求函数y=的表达式,并直接写出E、F两点的坐标;(2)求△AEF的面积.19.(7分)“春种一粒粟,秋收万颗子”,唐代诗人李绅这句诗中的“粟”即谷子(去皮后则称为“小米”),被誉为中华民族的哺育作物.我省有着“小杂粮王国”的美誉,谷子作为我省杂粮谷物中的大类,其种植面积已连续三年全国第一.2016年全国谷子种植面积为2000万亩,年总产量为150万吨,我省谷子平均亩产量为160kg,国内其他地区谷子的平均亩产量为60kg,请解答下列问题:(1)求我省2016年谷子的种植面积是多少万亩.(2)2017年,若我省谷子的平均亩产量仍保持160kg不变,要使我省谷子的年总产量不低于52万吨,那么,今年我省至少应再多种植多少万亩的谷子?20.(12分)从共享单车,共享汽车等共享出行到共享充电宝,共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速普及应用,越来越多的企业与个人成为参与者与受益者.根据国家信息中心发布的《中国分享经济发展报告2017》显示,2016年我国共享经济市场交易额约为34520亿元,比上年增长103%;超6亿人参与共享经济活动,比上年增加约1亿人.如图是源于该报告中的中国共享经济重点领域市场规模统计图:(1)请根据统计图解答下列问题:①图中涉及的七个重点领域中,2016年交易额的中位数是亿元.②请分别计算图中的“知识技能”和“资金”两个重点领域从2015年到2016年交易额的增长率(精确到1%),并就这两个重点领域中的一个分别从交易额和增长率两个方面,谈谈你的认识.(2)小宇和小强分别对共享经济中的“共享出行”和“共享知识”最感兴趣,他们上网查阅了相关资料,顺便收集到四个共享经济领域的图标,并将其制成编号为A,B,C,D的四张卡片(除编号和内容外,其余完全相同)他们将这四张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率(这四张卡片分别用它们的编号A,B,C,D表示)21.(7分)如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,与过点C的⊙O的切线交于点D.(1)若AC=4,BC=2,求OE的长.(2)试判断∠A与∠CDE的数量关系,并说明理由.22.(12分)综合与实践背景阅读早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”.它被记载于我国古代著名数学著作《周髀算经》中,为了方便,在本题中,我们把三边的比为3:4:5的三角形称为(3,4,5)型三角形,例如:三边长分别为9,12,15或3,4,5的三角形就是(3,4,5)型三角形,用矩形纸片按下面的操作方法可以折出这种类型的三角形.实践操作如图1,在矩形纸片ABCD中,AD=8cm,AB=12cm.第一步:如图2,将图1中的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB上的点E 处,折痕为AF,再沿EF折叠,然后把纸片展平.第二步:如图3,将图2中的矩形纸片再次折叠,使点D与点F重合,折痕为GH,然后展平,隐去AF.第三步:如图4,将图3中的矩形纸片沿AH折叠,得到△AD′H,再沿AD′折叠,折痕为AM,AM与折痕EF交于点N,然后展平.问题解决(1)请在图2中证明四边形AEFD是正方形.(2)请在图4中判断NF与ND′的数量关系,并加以证明;(3)请在图4中证明△AEN(3,4,5)型三角形;探索发现(4)在不添加字母的情况下,图4中还有哪些三角形是(3,4,5)型三角形?请找出并直接写出它们的名称.23.(14分)如图,抛物线y=﹣x2+x+3与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,连接AC、BC.点P沿AC以每秒1个单位长度的速度由点A向点C运动,同时,点Q沿BO以每秒2个单位长度的速度由点B向点O运动,当一个点停止运动时,另一个点也随之停止运动,连接PQ.过点Q作QD⊥x轴,与抛物线交于点D,与BC交于点E,连接PD,与BC交于点F.设点P的运动时间为t秒(t>0).(1)求直线BC的函数表达式;(2)①直接写出P,D两点的坐标(用含t的代数式表示,结果需化简)②在点P、Q运动的过程中,当PQ=PD时,求t的值;(3)试探究在点P,Q运动的过程中,是否存在某一时刻,使得点F为PD的中点?若存在,请直接写出此时t的值与点F的坐标;若不存在,请说明理由.2017年山西省中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)(2017•山西)计算﹣1+2的结果是()A.﹣3 B.﹣1 C.1 D.3【分析】直接利用有理数加减运算法则得出答案.【解答】解:﹣1+2=1.故选:C.【点评】此题主要考查了有理数加法,正确掌握运算法则是解题关键.2.(3分)(2017•山西)如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是()A.∠1=∠3 B.∠2+∠4=180°C.∠1=∠4 D.∠3=∠4【分析】根据同位角相等,两直线平行;同旁内角互补,两直线平行进行判断即可.【解答】解:由∠1=∠3,可得直线a与b平行,故A能判定;由∠2+∠4=180°,∠2=∠5,∠4=∠3,可得∠3+∠5=180°,故直线a与b平行,故B能判定;由∠1=∠4,∠4=∠3,可得∠1=∠3,故直线a与b平行,故C能判定;由∠3=∠4,不能判定直线a与b平行,故选:D.【点评】本题主要考查了平行线的判定,解题时注意:同位角相等,两直线平行;同旁内角互补,两直线平行.3.(3分)(2017•山西)在体育课上,甲、乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的()A.众数B.平均数C.中位数D.方差【分析】方差是反映一组数据的波动大小的一个量.方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好;【解答】解:因为方差是反映一组数据的波动大小的一个量.方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好;所以要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的方差.故选D.【点评】本题考查平均数、方差、众数、中位数等知识,解题的关键是理解方差的意义,属于中考常考题型.4.(3分)(2017•山西)将不等式组的解集表示在数轴上,下面表示正确的是()A.B.C.D.【分析】首先解出两个不等式的解集;根据在数轴上表示不等式解集的方法分别把每个不等式的解集在数轴上表示出来即可.【解答】解:解不等式①得,x≤3解不等式②得,x>﹣4在数轴上表示为:故选:A.【点评】本题考查的是在数轴上表示不等式组的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.(3分)(2017•山西)下列运算错误的是()A.(﹣1)0=1 B.(﹣3)2÷=C.5x2﹣6x2=﹣x2D.(2m3)2÷(2m)2=m4【分析】根据整式和有理数的除法的法则,乘方的性质,合并同类项的法则,零指数的性质,幂的乘方与积的乘方的运算法则计算即可.【解答】解:A、(﹣1)0=1,正确,不符合题意;B、(﹣3)2÷=4,错误,符合题意;C、5x2﹣6x2=﹣x2,正确,不符合题意;D、(2m3)2÷(2m)2=m4,正确,不符合题意;故选B.【点评】本题考查了整式和有理数的除法的法则,乘方的性质,合并同类项的法则,零指数的性质,幂的乘方与积的乘方的运算法则,熟记法则是解题的关键.6.(3分)(2017•山西)如图,将矩形纸片ABCD沿BD折叠,得到△BC′D,C′D与AB交于点E.若∠1=35°,则∠2的度数为()A.20°B.30°C.35°D.55°【分析】根据矩形的性质,可得∠ABD=35°,∠DBC=55°,根据折叠可得∠DBC'=∠DBC=55°,最后根据∠2=∠DBC'﹣∠DBA进行计算即可.【解答】解:∵∠1=35°,CD∥AB,∴∠ABD=35°,∠DBC=55°,由折叠可得∠DBC'=∠DBC=55°,∴∠2=∠DBC'﹣∠DBA=55°﹣35°=20°,故选:A.【点评】本题考查了长方形性质,平行线性质,折叠性质,角的有关计算的应用,关键是求出∠DBC′和∠DBA的度数.7.(3分)(2017•山西)化简﹣的结果是()A.﹣x2+2x B.﹣x2+6x C.﹣D.【分析】根据分式的运算法则即可求出答案.【解答】解:原式=﹣==﹣故选(C)【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.8.(3分)(2017•山西)2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上石油资源总量的50%.数据186亿吨用科学记数法可表示为()A.186×108吨B.18.6×109吨 C.1.86×1010吨D.0.186×1011吨【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:186亿吨=1.86×1010吨.故选:C.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.9.(3分)(2017•山西)公元前5世纪,毕达哥拉斯学派中的一名成员希伯索斯发现了无理数,导致了第一次数学危机,是无理数的证明如下:假设是有理数,那么它可以表示成(p与q是互质的两个正整数).于是()2=()2=2,所以,q2=2p2.于是q2是偶数,进而q是偶数,从而可设q=2m,所以(2m)2=2p2,p2=2m2,于是可得p也是偶数.这与“p与q是互质的两个正整数”矛盾.从而可知“是有理数”的假设不成立,所以,是无理数.这种证明“是无理数”的方法是()A.综合法B.反证法C.举反例法D.数学归纳法【分析】利用反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确,进而判断即可.【解答】解:由题意可得:这种证明“是无理数”的方法是反证法.故选:B .【点评】此题主要考查了反证法,正确把握反证法的一般步骤是解题关键.10.(3分)(2017•山西)如图是某商品的标志图案,AC 与BD 是⊙O 的两条直径,首尾顺次连接点A ,B ,C ,D ,得到四边形ABCD .若AC=10cm ,∠BAC=36°,则图中阴影部分的面积为( )A .5πcm 2B .10πcm 2C .15πcm 2D .20πcm 2【分析】根据已知条件得到四边形ABCD 是矩形,求得图中阴影部分的面积=S 扇形AOD +S 扇形BOC =2S 扇形AOD ,根据等腰三角形的性质得到∠BAC=∠ABO=36°,由圆周角定理得到∠AOD=72°,于是得到结论.【解答】解:∵AC 与BD 是⊙O 的两条直径,∴∠ABC=∠ADC=∠DAB=∠BCD=90°,∴四边形ABCD 是矩形,∴△ABO 与△CDO 的面积的和=△AOD 与△BOC 的面积的和,∴图中阴影部分的面积=S 扇形AOD +S 扇形BOC =2S 扇形AOD ,∵OA=OB ,∴∠BAC=∠ABO=36°,∴∠AOD=72°,∴图中阴影部分的面积=2×=10π,故选B .【点评】本题考查了扇形的面积,矩形的判定和性质,圆周角定理,熟练掌握扇形的面积公式是解题的关键.二、填空题(本大题共5个小题,每小题3分)11.(3分)(2017•山西)计算:4﹣9= 3 .【分析】先化简,再做减法运算即可.【解答】解:原式=12=3,故答案为:3.【点评】本题主要考查了二次根式的加减法,先化简再求值是解答此题的关键.12.(3分)(2017•山西)某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为 1.08a元.【分析】根据题意可以得到最后打折后的零售价,从而可以解答本题.【解答】解:由题意可得,该型号洗衣机的零售价为:a(1+20%)×0.9=1.08a(元),故答案为:1.08a.【点评】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.13.(3分)(2017•山西)如图,已知△ABC三个顶点的坐标分别为A(0,4),B(﹣1,1),C(﹣2,2),将△ABC向右平移4个单位,得到△A′B′C′,点A,B,C的对应点分别为A′、B′、C′,再将△A′B′C′绕点B′顺时针旋转90°,得到△A″B″C″,点A′、B′、C′的对应点分别为A″、B″、C″,则点A″的坐标为(6,0).【分析】由平移的性质和旋转的性质作出图形,即可得出答案.【解答】解:如图所示:∵A(0,4),B(﹣1,1),C(﹣2,2),将△ABC向右平移4个单位,得到△A′B′C′,∴A′、B′、C′的坐标分别为(4,4),B(3,1),C(2,2),再将△A′B′C′绕点B′顺时针旋转90°,得到△A″B″C″,则点A″的坐标为(6,0);故答案为:(6,0).【点评】本题考查了坐标与图形性质、平移的性质、旋转的性质;熟练掌握平移和旋转的性质是解决问题的关键.14.(3分)(2017•山西)如图,创新小组要测量公园内一棵树的高度AB,其中一名小组成员站在距离树10米的点E处,测得树顶A的仰角为54°.已知测角仪的架高CE=1.5米,则这棵树的高度为15.3米.(结果保留一位小数.参考数据:sin54°=0.8090,cos54°=0.5878,tan54°=1.3764)【分析】在Rt△ACD中,求出AD,再利用矩形的性质得到BD=CE=1.5,由此即可解决问题.【解答】解:如图,过点C作CD⊥AB,垂足为D.则四边形CEBD是矩形,BD=CE=1.5m,在Rt△ACD中,CD=EB=10m,∠ACD=54°,∵tan∠ACE=,∴AD=CD•tan∠ACD≈10×1.38=13.8m.∴AB=AD+BD=13.8+1.5=15.3m.答:树的高度AB约为15.3m.故答案为15.3【点评】本题考查解直角三角形的应用﹣仰角俯角问题、锐角三角函数等知识,解题的关键是通过添加辅助线,构造直角三角形解决问题.15.(3分)(2017•山西)一副三角板按如图方式摆放,得到△ABD和△BCD,其中∠ADB=∠BCD=90°,∠A=60°,∠CBD=45°,E为AB的中点,过点E作EF⊥CD于点F.若AD=4cm,则EF的长为(+)cm.【分析】过A作AG⊥DC于G,得到∠ADC=45°,进而得到AG的值,在30°的直角三角形ABD 和45°直角三角形BCD中,计算出BD,CB的值.再由AG∥EF∥BC,E是AB的中点,得到F 为CG的中点,最后由梯形中位线定理得到EF的长.【解答】解:过点A作AG⊥DC与G.∵∠CDB=∠CBD=45°,∠ADB=90°,∴∠ADG=45°.∴AG==2.∵∠ABD=30°,∴BD=AD=4.∵∠CBD=45°,∴CB==2.∵AG⊥CG,EF⊥CG,CB⊥CG,∴AG∥EF∥BC.又∵E是AB的中点,∴F为CG的中点,∴EF=(AG+BC)=(2+2)=+.故答案为:(+).【点评】本题主要考查的是梯形的中位线定理、特殊锐角三角函数值的应用,证得EF为梯形ABCG的中位线是解题的关键.三、解答题(本大题共8个小题,共75分)16.(10分)(2017•山西)(1)计算:(﹣2)3+()﹣2﹣•sin45°(2)分解因式:(y+2x)2﹣(x+2y)2.【分析】(1)根据实数的运算,可得答案;(2)根据平方差公式,可得答案.【解答】解:(1)原式=﹣8+9﹣2=﹣1;(2)原式=[(y+2x)+(x+2y)][(y+2x)﹣(x+2y)]=3(x+y)(x﹣y).【点评】本题考查了因式分解,利用平方差公式是解题关键.17.(6分)(2017•山西)已知:如图,在▱ABCD中,延长AB至点E,延长CD至点F,使得BE=DF.连接EF,与对角线AC交于点O.求证:OE=OF.【分析】由平行四边形的性质得出AB∥CD,AB=CD,证出AE=CF,∠E=∠F,∠OAE=∠OCF,由ASA证明△AOE≌△COF,即可得出结论.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵BE=DF,∴AB+BE=CD+DF,即AE=CF,∵AB∥CD,∴∠E=∠F,∠OAE=∠OCF,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴OE=OF.【点评】本题考查了平行四边形的性质、全等三角形的判定与性质、平行线的性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.18.(7分)(2017•山西)如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,其边长为2,点A,点C分别在x轴,y轴的正半轴上,函数y=2x的图象与CB交于点D,函数y=(k为常数,k≠0)的图象经过点D,与AB交于点E,与函数y=2x的图象在第三象限内交于点F,连接AF、EF.(1)求函数y=的表达式,并直接写出E、F两点的坐标;(2)求△AEF的面积.【分析】(1)根据正方形的性质,以及函数上点的坐标特征可求点D的坐标为(1,2),根据待定系数法可求反比例函数表达式,进一步得到E、F两点的坐标;(2)过点F作FG⊥AB,与AB的延长线交于点G,根据两点间的距离公式可求AE=1,FG=3,再根据三角形面积公式可求△AEF的面积.【解答】解:(1)∵正方形OABC的边长为2,∴点D的纵坐标为2,即y=2,将y=2代入y=2x,得x=1,∴点D的坐标为(1,2),∵函数y=的图象经过点D,解得k=2,∴函数y=的表达式为y=,∴E(2,1),F(﹣1,﹣2);(2)过点F作FG⊥AB,与BA的延长线交于点G,∵E(2,1),F(﹣1,﹣2),∴AE=1,FG=2﹣(﹣1)=3,∴△AEF的面积为:AE•FG=×1×3=.【点评】本题主要考查了待定系数法求函数解析式,以及正方形的性质,解题的关键是求得D(1,2),E(2,1),F(﹣1,﹣2).19.(7分)(2017•山西)“春种一粒粟,秋收万颗子”,唐代诗人李绅这句诗中的“粟”即谷子(去皮后则称为“小米”),被誉为中华民族的哺育作物.我省有着“小杂粮王国”的美誉,谷子作为我省杂粮谷物中的大类,其种植面积已连续三年全国第一.2016年全国谷子种植面积为2000万亩,年总产量为150万吨,我省谷子平均亩产量为160kg,国内其他地区谷子的平均亩产量为60kg,请解答下列问题:(1)求我省2016年谷子的种植面积是多少万亩.(2)2017年,若我省谷子的平均亩产量仍保持160kg不变,要使我省谷子的年总产量不低于52万吨,那么,今年我省至少应再多种植多少万亩的谷子?【分析】(1)可设我省2016年谷子的种植面积是x万亩,其他地区谷子的种植面积是y万亩,根据2016年全国谷子年总产量为150万吨列出方程组求解即可;(2)可设我省应种植z万亩的谷子,根据我省谷子的年总产量不低于52万吨列出不等式求解即可.【解答】解:(1)设我省2016年谷子的种植面积是x万亩,其他地区谷子的种植面积是y万亩,依题意有,解得.答:我省2016年谷子的种植面积是300万亩.(2)设我省应种植z万亩的谷子,依题意有,解得z≥325,325﹣300=25(万亩).答:今年我省至少应再多种植25万亩的谷子.【点评】考查了二元一次方程组的应用,一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系和不等关系.20.(12分)(2017•山西)从共享单车,共享汽车等共享出行到共享充电宝,共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速普及应用,越来越多的企业与个人成为参与者与受益者.根据国家信息中心发布的《中国分享经济发展报告2017》显示,2016年我国共享经济市场交易额约为34520亿元,比上年增长103%;超6亿人参与共享经济活动,比上年增加约1亿人.如图是源于该报告中的中国共享经济重点领域市场规模统计图:(1)请根据统计图解答下列问题:①图中涉及的七个重点领域中,2016年交易额的中位数是2038亿元.②请分别计算图中的“知识技能”和“资金”两个重点领域从2015年到2016年交易额的增长率(精确到1%),并就这两个重点领域中的一个分别从交易额和增长率两个方面,谈谈你的认识.(2)小宇和小强分别对共享经济中的“共享出行”和“共享知识”最感兴趣,他们上网查阅了相关资料,顺便收集到四个共享经济领域的图标,并将其制成编号为A,B,C,D的四张卡片(除编号和内容外,其余完全相同)他们将这四张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率(这四张卡片分别用它们的编号A,B,C,D表示)【分析】(1)根据图表将2016年七个重点领域的交易额从小到大罗列出来,根据中位数的定义即可得;(2)将(2016年的资金﹣2015年的资金)÷2015年的资金可分别求得两领域的增长率,结合增长率提出合理的认识即可;(3)画树状图列出所有等可能结果,根据概率公式求解可得.【解答】解:(1)由图可知,2016年七个重点领域的交易额分别为70、245、610、2038、3300、7233、20863,2016年交易额的中位数是2038亿元,故答案为:2038;(2)“知识技能”的增长率为:×100%=205%,“资金”的增长率为:≈109%,由此可知,“知识技能”领域交易额较小,其增长率最高,达到200%以上,其发展速度惊人.(3)画树状图为:共有12种等可能的结果数,其中抽到“共享出行”和“共享知识”的结果数为2,所以抽到“共享出行”和“共享知识”的概率==.【点评】本题主要考查条形统计图、折线统计图和列表法与树状图法求概率,根据条形图得出解题所需数据及画树状图列出所有等可能结果是解题的关键.21.(7分)(2017•山西)如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,与过点C的⊙O的切线交于点D.(1)若AC=4,BC=2,求OE的长.(2)试判断∠A与∠CDE的数量关系,并说明理由.【分析】(1)由圆周角定理得出∠ACB=90°,由勾股定理求出AB==2,得出OA=AB=,证明△AOE∽△ACB,得出对应边成比例即可得出答案;(2)连接OC,由等腰三角形的性质得出∠1=∠A,由切线的性质得出OC⊥CD,得出∠2+∠CDE=90°,证出∠3=∠CDE,再由三角形的外角性质即可得出结论.【解答】解:(1)∵AB为⊙O的直径,∴∠ACB=90°,在Rt△ABC中,由勾股定理得:AB===2,∴OA=AB=,∵OD⊥AB,∴∠AOE=∠ACB=90°,又∵∠A=∠A,∴△AOE∽△ACB,∴,即,解得:OE=;(2)∠CDE=2∠A,理由如下:连接OC,如图所示:∵OA=OC,∴∠1=∠A,∵CD是⊙O的切线,∴OC⊥CD,∴∠OCD=90°,∴∠2+∠CDE=90°,∵OD⊥AB,∴∠2+∠3=90°,∴∠3=∠CDE,∵∠3=∠A+∠1=2∠A,∴∠CDE=2∠A.【点评】本题考查了切线的性质、圆周角定理、勾股定理、相似三角形的判定与性质、等腰三角形的性质、直角三角形的性质、三角形的外角性质;熟练掌握圆周角定理和切线的性质是解决问题的关键.22.(12分)(2017•山西)综合与实践背景阅读早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”.它被记载于我国古代著名数学著作《周髀算经》中,为了方便,在本题中,我们把三边的比为3:4:5的三角形称为(3,4,5)型三角形,例如:三边长分别为9,12,15或3,4,5的三角形就是(3,4,5)型三角形,用矩形纸片按下面的操作方法可以折出这种类型的三角形.实践操作如图1,在矩形纸片ABCD中,AD=8cm,AB=12cm.第一步:如图2,将图1中的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB上的点E 处,折痕为AF,再沿EF折叠,然后把纸片展平.第二步:如图3,将图2中的矩形纸片再次折叠,使点D与点F重合,折痕为GH,然后展平,隐去AF.第三步:如图4,将图3中的矩形纸片沿AH折叠,得到△AD′H,再沿AD′折叠,折痕为AM,AM与折痕EF交于点N,然后展平.问题解决(1)请在图2中证明四边形AEFD是正方形.(2)请在图4中判断NF与ND′的数量关系,并加以证明;(3)请在图4中证明△AEN(3,4,5)型三角形;探索发现(4)在不添加字母的情况下,图4中还有哪些三角形是(3,4,5)型三角形?请找出并直接写出它们的名称.【分析】(1)根据矩形的性质得到∠D=∠DAE=90°,由折叠的性质得得到AE=AD,∠AEF=∠D=90°,求得∠D=∠DAE=∠AEF=90°,得到四边形AEFD是矩形,由于AE=AD,于是得到结论;(2)连接HN,由折叠的性质得到∠AD′H=∠D=90°,HF=HD=HD′,根据正方形的想知道的∠HD′N=90°,根据全等三角形的性质即可得到结论;(3)根据正方形的性质得到AE=EF=AD=8cm,由折叠得,AD′=AD=8cm,设NF=xcm,则ND′=xcm,根据勾股定理列方程得到x=2,于是得到结论;(4)根据(3,4,5)型三角形的定义即可得到结论.【解答】(1)证明:∵四边形ABCD是矩形,∴∠D=∠DAE=90°,由折叠的性质得,AE=AD,∠AEF=∠D=90°,∴∠D=∠DAE=∠AEF=90°,∴四边形AEFD是矩形,∵AE=AD,。

最新山西省2017年名校中考模拟数学试题及答案

最新山西省2017年名校中考模拟数学试题及答案

最新山西省2017年名校中考模拟数学试题时间120分钟满分120分 2017.2.20 一、选择题(每题3分,共24分)1.﹣3的倒数是()A.3B.﹣ C.D.﹣2.下列运算中正确的是()A.(2x+y)(2x﹣y)=2x2﹣y2B.6x•2x=12xC.|﹣3|=3﹣D.﹣=13.不等式组的解集在数轴上表示正确的是()A.B.C.D.4.一名同学在6次体育模拟考试中的成绩分别是43,42,43,49,43,42分,这组数据的众数和中位数分别是()A.42,42 B.43,43 C.42,43 D.43,425.△ABC中,∠B=90°,AB=6cm,BC=8cm.将△ABC沿射线BC方向平移10cm,得到△DEF,A,B,C的对应点分别是D,E,F,则下列说法错误的是()A.四边形ABED是矩形 B.AD CFC.BC=CF D.DF=CF6.…依次观察图形,照此规律,从左向右第五个图形是()A.B.C.D.7.抛物线y=ax2+bx+c(a≠0)的图象如图所示,则下列说法正确的是()A.a+b+c>0 B.abc>0 C.b2﹣4ac<0 D.2a+b<08.如图,在等腰直角△ABC中,B=90°,以点A为圆心任意长为半径画弧,与AB,AC分别交于点M,N,分别以点M,N为圆心大于MN长为半径画弧,两弧交于点P,且点P刚好落在边BC上,AB=10cm,下列说法中:①AB=AD;②AP平分∠BAC;③△PDC的周长是10cm;④AN=ND,正确的是()A.①②③B.①②④C.①③④D.②③④二、填空题(每题3分,共24分)9.2016年,运城市完成农村危房改造6.08万户,6.08万这个数字用科学记数法表示为.10.等腰三角形两边长分别是3和6,则该三角形的周长为.11.如图,AB∥CD,CE平分ACD,∠1=35°,∠2= .12.﹣9x m y2n与8x5+n y12﹣m是同类项,则2m+3n的值为.13.如图,A,B是数轴上的两点,在线段AB上任取一点C,则点C到原点的距离不大于2的概率是.14.若(m﹣2)2=3,则m2﹣4m+6的值为.15.如图,在Rt△ABC中,∠B=90°,DE⊥AC,DE=3,AE=4,CE=6,则BC的长度为.16.如图,已知⊙P的半径为2,圆心P在抛物线y=x2﹣1上运动,当⊙P与x轴相切时,圆心P的坐标为.三、解答题(共72分)17.计算:(﹣)﹣1+﹣|2+4|﹣(2016)0.18.化简求值:(1﹣)÷,并从﹣1,0,1中任意选一个数代入求值19.某零件厂准备生产2000个零件,甲车间独立生产了一半后,由于要尽快投入市场,乙车间也加入了该零件的生产,乙车间每天生产的零件是甲车间的1.5倍,结果用14天完成了任务,甲车间每天生产零件多少个?20.(10分)正方形ABCD的中点E为正方形边上D→C→B之间任意一点,且满足DM⊥AE于点M,BN⊥AE于点N.(1)求证:△ABN≌DAM.(2)DM,MN,NB有怎样的数量关系?证明你的结论.21.九年级某班举办了一次辩论赛,为奖励在辩论中表现突出的同学,班委将奖品分成了四个等级,各等级奖品获奖人数以及在获奖同学中所占的百分比,分别如条形和扇形统计图所示,请根据以上信息回答下列问题.(1)本次比赛共有人获奖,请补全条形图.(2)在扇形统计图中,二等奖对应的圆心角的度数是.(3)在上述获奖同学中任意抽取两名,用列举法求这两名同学均获得一等奖的概率.22.如图,在△ABC中,AB=BC,以BC为直径的⊙O与AC交于点D,DE⊥AB于点E.(1)求证:DE是⊙O的切线.(2)若sinA=,DE=,求⊙O的直径.23.如图,抛物线y=ax2+x+c过A(﹣1,0),B(0,2)两点.(1)求抛物线的解析式.(2)M为抛物线对称轴与x轴的交点,N为x轴上对称轴上任意一点,若tan∠ANM=,求M到AN的距离.(3)在抛物线的对称轴上是否存在点P,使△PAB为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.参考答案一、选择题(每题3分,共24分)1.故选:B.2.故选C.3.故选B.4.故选B.5.故选C.6.故选D7.故选D.8.故选:A.二、填空题(每题3分,共24分)9. 6.08×104.10 15 .11.145°.12.为.13..14. 5 .15. 6 .16.(,2)或(﹣,2).三、解答题17.计算:(﹣)﹣1+﹣|2+4|﹣(2016)0.【考点】实数的运算;零指数幂;负整数指数幂.【分析】本题涉及负整数指数幂、二次根式化简、绝对值、负指数幂4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:(﹣)﹣1+﹣|2+4|﹣(2016)0=﹣2+2﹣2﹣4﹣1=﹣7.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、二次根式化简、绝对值、负指数幂等考点的运算.18.化简求值:(1﹣)÷,并从﹣1,0,1中任意选一个数代入求值.【考点】分式的化简求值.【专题】常规题型;分式.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,确定出m的值,代入计算即可求出值.【解答】解:原式=•=m+1,当m=1时,原式=1+1=2.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.某零件厂准备生产2000个零件,甲车间独立生产了一半后,由于要尽快投入市场,乙车间也加入了该零件的生产,乙车间每天生产的零件是甲车间的1.5倍,结果用14天完成了任务,甲车间每天生产零件多少个?【考点】分式方程的应用.【分析】设甲车间每天生产零件x个,则乙车间每天生产的零件1.5x个,根据用14天完成任务,列方程求解.【解答】解:设甲车间每天生产零件x个,则乙车间每天生产的零件1.5x个,由题意得, +=14,解得:x=100,经检验:x=100是分式方程的解,且符合题意.答:甲车间每天生产零件100个.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.20.正方形ABCD的中点E为正方形边上D→C→B之间任意一点,且满足DM⊥AE于点M,BN⊥AE于点N.(1)求证:△ABN≌DAM.(2)DM,MN,NB有怎样的数量关系?证明你的结论.【考点】正方形的性质;全等三角形的判定与性质.【分析】(1)只要证明∠ADM=∠NAB,根据AAS即可判定.(2)结论:DM=MN+BN,由△ABN≌△DAM推出DM=AN,AM=BN,由此即可证明.【解答】(1)证明:∵四边形ABCD是正方形,∴AD=AB,∠DAB=90°,∵∠DAM+∠NAB=90°,∠DAM+∠ADM=90°,∴∠NAB=∠ADM,∵DM⊥AE,BN⊥AE,∴∠AMD=∠ANB=90°,在△ABN和△DAM中,,∴△ABN≌△DAM.(2)结论:DM=MN+BN.理由:∵△ABN≌△DAM,∴DM=AN,AM=BN,∴DM=AM+MN=BN+MN.【点评】本题考查正方形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形并且进行证明,属于中考常考题型.21.九年级某班举办了一次辩论赛,为奖励在辩论中表现突出的同学,班委将奖品分成了四个等级,各等级奖品获奖人数以及在获奖同学中所占的百分比,分别如条形和扇形统计图所示,请根据以上信息回答下列问题.(1)本次比赛共有50 人获奖,请补全条形图.(2)在扇形统计图中,二等奖对应的圆心角的度数是144°.(3)在上述获奖同学中任意抽取两名,用列举法求这两名同学均获得一等奖的概率.【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)根据统计图中的数据可以求得本次比赛获奖的人数,也可得到获得四等奖的人数,从而可将条形图补充完整;(2)根据条形图可以得到在扇形统计图中,二等奖对应的圆心角的度数;(3)根据题意可以求得求这两名同学均获得一等奖的概率.【解答】解:(1)10÷20%=50,故答案为:50,四等奖的学生有:50﹣10﹣20﹣16=4,补全的条形图如右图所示,(2)在扇形统计图中,二等奖对应的圆心角的度数是:360°×=144°,故答案为:144°;(3)在上述获奖同学中任意抽取两名,第一位同学是一等奖的概率是,第二位同学是一等奖的概率是:,故这两名同学均获得一等奖的概率是:,即这两名同学均获得一等奖的概率是.【点评】本题考查列表法与树状图法、扇形统计图、条形统计图,解题的关键是明确题意,找出所求问题需要的条件.22.(10分)(2016•曲靖模拟)如图,在△ABC中,AB=BC,以BC为直径的⊙O与AC交于点D,DE⊥AB于点E.(1)求证:DE是⊙O的切线.(2)若sinA=,DE=,求⊙O的直径.【考点】切线的判定;等腰三角形的性质;解直角三角形.【分析】(1)连接OD,根据等腰三角形的性质和平行线的判定定理得到OD∥AB,根据垂直的定义和平行线的性质得到∠DEA=90°,根据切线的判定定理证明即可;(2)连接BD,根据相似三角形的性质列出比例式,计算即可.【解答】(1)证明:连接OD,∵OD=OC,∴∠C=∠ODC,∵AB=BC,∴∠A=∠C,∴∠ODC=∠A,∴OD∥AB,∴∠ODE=∠DEA;∵DE⊥AB,∴∠DEA=90°,∴∠ODE=90°,即DE⊥OD,∴DE是⊙O的切线;(2)连接BD,∵BC为⊙O的直径,∴BD⊥AC,又DE⊥AB,∴AD2=AE•AB,∵sinA=,DE=,∴AD=3,AE=4,∴(3)2=4×AB,解得,AB=,∴BC=,即⊙O的直径为.【点评】本题考查的是切线的判定,掌握切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线是解题的关键.23.如图,抛物线y=ax2+x+c过A(﹣1,0),B(0,2)两点.(1)求抛物线的解析式.(2)M为抛物线对称轴与x轴的交点,N为x轴上对称轴上任意一点,若tan∠ANM=,求M到AN的距离.(3)在抛物线的对称轴上是否存在点P,使△PAB为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)直接用待定系数法求出抛物线解析式;(2)先确定出抛物线对称轴,从而确定出MN ,用tan ∠ANM=,最后用面积公式求解即可;(3)设出点P 的坐标,表示出AB ,AP ,BP ,分三种情况求解即可.【解答】解:(1)∵抛物线y=ax 2+x+c 过A (﹣1,0),B (0,2)两点,∴∴,∴抛物线解析式为y=﹣x 2+x+2;(2)由(1)有,抛物线解析式为y=﹣x 2+x+2;∴抛物线对称轴为x=1,∴M (1,0),∴AM=2,∵tan ∠ANM=,∴,∴MN=4,∵N 为x 轴上对称轴上任意一点,∴N (1,4),∴AN==2,设M 到AN 的距离为h ,在Rt △AMN 中, AM ×MN=AN ×h ,∴h===,∴M到AN的距离;(3)存在,理由:设点P(1,m),∵A(﹣1,0),B(0,2),∴AB=,AP=,BP=,∵△PAB为等腰三角形,∴①当AB=AP时,∴=,∴m=±1,∴P(1,1)或P(1,﹣1),②当AB=BP时,∴=,∴m=4或m=0,∴P(1,4)或P(1,0);③当AP=BP时,∴=,∴m=,∴P(1,);即:满足条件的点P的坐标为P(1,1)或P(1,﹣1)或P(1,4)或P(1,0)或P(1,).【点评】此题是二次函数综合题,主要考查了待定系数法,抛物线对称轴的确定,三角形面积的计算,等腰三角形的性质,解本题的关键是求出抛物线解析式,分类讨论是解本题的难点.。

山西省2017年中考数学真题试题(含解析)

山西省2017年中考数学真题试题(含解析)

山西省2017年中考数学真题试题第Ⅰ卷 选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)-+的结果是( )1.计算12A.-3 B.-1 C.1 D.3【答案】C.【解析】试题分析:﹣1+2=1.故选C.考点:有理数的加法.2.如图,直线a,b被直线c所截,下列条件不能)..判定直线a与b平行的是(A.∠1=∠3 B.∠2+∠4=180° C.∠1=∠4 D.∠3=∠4【答案】D.考点:平行线的判定.3.在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的()A.众数 B.平均数 C.中位数 D.方差 【答案】D. 【解析】试题分析:由于方差能反映数据的稳定性,需要比较这两名学生立定跳远成绩的方差.故选D. 考点:在数轴上表示不等式的解集;解一元一次不等式组. 5.下列运算错误..的是( )A.01)1= B.219(3)44=-÷C.22256x x x -=- D.3224(2)(2)m m m ÷= 【答案】B.考点:有理数的除法;合并同类项;整式的除法;零指数幂.6.如图,将矩形纸片ABCD 沿BD 折叠,得到△BC ′D ,C ′D 与AB 交于点E .若∠1=35°,则∠2的度数为( )A.20B.30C.35D.55【答案】A.【解析】试题分析:由翻折的性质得,∠DBC =∠DBC ′,∵∠C =90°,∴∠DBC =∠DBC ′=90°-35°=55°,∵矩形的对边AB ∥DC ,∴∠1=∠DBA =35°,∴∠2=∠DBC ′-∠DBA =55°-35°=20°.故选A. 考点:平行线的性质;翻折变换(折叠问题). 7.化简2424xx x x ---的结果是( ) A.22x x -+ B.26x x -+ C.2x x -+ D.2x x - 【答案】C.考点:分式的加减法.8.2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上石油资源总量的50%.数据186亿吨用科学记数法可表示为( )A.818610⨯吨 B.918.610⨯吨 C.101.8610⨯吨 D.110.18610⨯吨 【答案】C. 【解析】试题分析:将186亿用科学记数法表示为:101.8610⨯.故选C. 考点:科学记数法—表示较大的数.9.公元前5世纪,,是无理数的证明如下:是有理数,那么它可以表示成q p (p 与q 是互质的两个正整数).于是22()2q p==,所以,222p q =.于是2q 是偶数,进而q 是偶数.从而可设2q m =,所以2222(2)2,2m p p m ==,于是可得p也是偶数.这与“p 与q 是互质的两个正整数”矛盾,从而可知是有理数”的假设不成立,是无理数.是无理数”的方法是( )A.综合法 B.反证法 C.举反例法 D.数学归纳法 【答案】B. 【解析】试题分析:显然选项A 中13不是“正方形数”;选项B、D 中等式右侧并不是两个相邻“三角形数”之和. 故选B. 考点:反证法.10.右图是某商品的标志图案,AC 与BD 是⊙O 的两条直径,首尾顺次连接点A 、B 、C 、D ,得到四边形ABCD .若AC =10cm ,∠BAC =36°,则图中阴影部分的面积为( )A.25cm π B.210cm π C.215cm π D.220cm π 【答案】B.考点:矩形的性质;扇形面积的计算;圆周角定理第Ⅱ卷 非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分)11.计算:-= .【答案】 . 【解析】试题分析:原式=-=. 考点:二次根式的加减法.12.某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a 元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为 元.【答案】1.08a . 【解析】试题分析:根据题意得:a •(1+20%)×90%=1.08a ;故答案为:1.08a . 考点:列代数式.13.如图,已知△ABC 三个顶点的坐标分别为A (0,4),B (-1,1),C (-2,2).将△ABC 向右平移4个单位,得到A B C '''∆,点A 、B 、C 的对应点分别为,,A B C ''',再将A B C '''∆绕点B '顺时针旋转90,得到A B C ''''''∆,点,,A B C '''的对应点分别为,,A B C '''''',则点A ''的坐标为 .【答案】(6,0).考点:平移的性质;旋转的性质;综合题.14.如图,创新小组要测量公园内一棵树的高度AB ,其中一名小组成员站在距离树10米的点E 处,测得树顶A 的仰角为54°.已知测角仪的架高CE =1.5米,则这颗树的高度为 米(结果保留一位小数.参考数据:sin 540.8090=,cos540.5878=,tan 54 1.3764=).【答案】15.3. 【解析】试题分析:如图,在Rt△ACD 中,AD =CD •tan54°≈10×1.3764=13.764米,AC ≈1.5+13.764≈15.3米. 故答案为:15.3米.考点:解直角三角形的应用﹣仰角俯角问题.15.一副三角板按如图方式摆放,得到△ABD 和△BCD ,其中∠ADB =∠BCD =90°,∠A =60°,∠CBD =45°.E 为AB 的中点,过点E 作EF ⊥CD 于点F .若AD =4cm ,则EF 的长为 cm ..考点:直角三角形的性质;梯形中位线定理;综合题.三、解答题 (本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(1)计算:321(2)()sin 453--+ .(2)分解因式:22(2)(2)y x x y +-+. 【答案】(1)-1;(2)3()()x y x y +- .考点:实数的运算;完全平方公式;平方差公式;负整数指数幂;特殊角的三角函数值.17.已知:如图,在 ABCD 中,延长线AB 至点E ,延长CD 至点F ,使得BE =DF .连接EF ,与对角线AC 交于点O .求证:OE =OF .【答案】证明见解析. 【解析】试题分析:先由平行四边形的性质得出AB =CD ,AB ∥DC ,再得出∠F =∠E ,CF =AE ,∠DCA =∠CAB ,即可推出△COF ≌△AOE ,从而得到结论.试题解析:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥DC ,∴∠F =∠E ,∠DCA =∠CAB ,∵AB =CD ,FD =BE ,∴CF =AE ,在△COF 和△AOE 中,∵∠F =∠E ,CF =AE ,∠DCA =∠CAB ,∴△COF ≌△AOE ,∴∴OE =OF . 考点:平行四边形的性质;全等三角形的判定与性质.18.如图,在平面直角坐标系中,正方形OABC 的顶点O 与坐标原点重合,其边长为2,点A ,点C 分别在x 轴,y 轴的正半轴上.函数2y x =的图象与CB 交于点D ,函数ky x=(k 为常数,0k ≠)的图象经过点D ,与AB 交于点E ,与函数2y x =的图象在第三象限内交于点F ,连接AF 、EF .(1)求函数kyx=的表达式,并直接写出E、F两点的坐标.(2)求△AEF的面积.【答案】(1)2yx=,E(2,1),f(-1,-2);(2)32.考点:反比例函数综合题.19.“春种一粒粟,秋收万颗子”,唐代诗人李绅这句诗中的“粟”即谷子(去皮后则称为“小米”),被誉为中华民族的哺育作物.我省有着“小杂粮王国”的美誉,谷子作为我省杂粮面积为2000万亩,年总产量为150万吨,我省谷子平均亩产量为160kg,国内其他地区谷子的平均亩产量为60kg.请解答下列问题:(1)求我省2016年谷子的种植面积是多少万亩.(2)2017年,若我省谷子的平均亩产量仍保持160kg不变,要使我省谷子的年总产量不低于52万吨,那么,今年我省至少应再多种植多少万亩的谷子?【答案】(1)300;(2)25.考点:一元一次不等式的应用;二元一次方程组的应用.20.从共享单车,共享汽车等共享出行到共享充电宝,共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速普及应用,越来越多的企业与个人成为参与者与受益者.根据国家信息中心发布的《中国分享经济发展报告2017》显示,2016年我国共享经济市场交易额约为34520亿元,比上年增长103%;超6亿人参与共享经济活动,比上年增加约1亿人.下图是源于该报告中的中国共享经济重点领域市场规模统计图:(1)请根据统计图解答下列问题:①图中涉及的七个重点领域中,2016年交易额的中位数是_________亿元.②请分别计算图中的“知识技能”和“资金”两个重点领域从2015年到2016年交易额的增长率(精确到1%),并就这两个重点领域中的一个分别从交易额和增长率两个方面,谈谈你的认识.(2)小宇和小强分别对共享经济中的“共享出行”和“共享知识”最感兴趣,他们上网查阅了相关资料,顺便收集到四个共享经济领域的图标,并将其制成编号为A,B,C,D的四张卡片(除编号和内容外,其余完全相同).他们将这四张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张.请用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率(这四张卡片分别用它们的编号A,B,C,D表示).【答案】(1)①2038;②答案见解析;(2)16.②“知识技能”的增长率=610200200-=2.05=205%“资金”的增长率=208631000010000-=1.0863≈109%对两个领域的认识,答案不唯一.例如:“知识技能”领域交易额较小,但增长率最高,达到了200%以上,其发展速度惊人,或“资金”交易额最大,2016年达到2万亿以上,成倍增长,带动共享经济市场规模不断扩大.(2)列表如下:由列表可知一共有12种可能出现的结果,且每种结果出现的可能性相同,其中抽到“共享出行”和“共享知识”的结果有2种,∴,P(抽到“共享出行”和“共享知识”)=212=16.考点:列表法与树状图法;用样本估计总体;扇形统计图;条形统计图.21.如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,与过点C的⊙O的切线交于点D.(1)若AC=4,BC=2,求OE的长.(2)试判断∠A与∠CDE的数量关系,并说明理由.【答案】(2)∠CDE=2∠A.(2)∠CDE=2∠A.理由如下:连结OC,∵OA=OC,∴∠1=∠A,∵CD是⊙O的切线,∴OC⊥CD,∴∠OCD=90°,∴∠2+∠CDE=90°,∵OD ⊥AB,∴∠2+∠3=90°,∴∠3=∠CDE.∵∠3=∠A+∠1=2∠A,∴∠CDE=2∠A.考点:切线的性质;探究型;和差倍分.22.综合与实践背景阅读 早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三,股四,弦五”.它被记载于我国古代著名数学著作《周髀算经》中.为了方便,在本题中,我们把三边的比为3:4:5的三角形称为(3,4,5)型三角形.例如:三边长分别为9,12,15或的三角形就是(3,4,5)型三角形.用矩形纸片按下面的操作方法可以折出这种类型的三角形.实践操作 如图1,在矩形纸片ABCD中,AD=8cm,AB=12cm.第一步:如图2,将图1中的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB上的点E处,折痕为AF,再沿EF折叠,然后把纸片展平.第二步:如图3,将图2中的矩形纸片再次折叠,使点D与点F重合,折痕为GH,然后展平,隐去AF. 第三步:如图4,将图3中的矩形纸片沿AH折叠,得到△AD′H,再沿AD′折叠,折痕为AM,AM与折痕EF 交于点N,然后展平.问题解决(1)请在图2中证明四边形AEFD是正方形.(2)请在图4中判断NF与ND′的数量关系,并加以证明.(3)请在图4中证明△AEN是(3,4,5)型三角形.探索发现(4)在不添加字母的情况下,图4中还有哪些三角形是(3,4,5)型三角形?请找出并直接写出它们的名称.【答案】(1)证明见解析;(2)NF=ND′,证明见解析;(3)证明见解析;(4)△MFN,△MD′H,△MDA.考点:勾股定理的应用;新定义;阅读型;探究型;压轴题. 23.综合与探究如图,抛物线2x x y +=与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,连接AC 、BC .点P 沿AC 以每秒1个单位长度的速度由点A 向点C 运动,同时,点Q 沿BO 以每秒2个单位长度的速度由点B 向点O 运动,当一个点停止运动时,另一个点也随之停止运动,连接PQ ,过点Q 作QD ⊥x 轴,与抛物线交于点D ,与BC 交于点E .连接PD ,与BC 交于点F .设点P 的运动时间为t 秒(0t >).(1)求直线BC 的函数表达式.(2)①直接写出P 、D 两点的坐标(用含t 的代数式表示,结果需化简). ②在点P 、Q 运动的过程中,当PQ =PD 时,求t 的值.(3)试探究在点P 、Q 运动的过程中,是否存在某一时刻,使得点F 为PD 的中点.若存在,请直接写出此时t 的值与点F 的坐标;若不存在,请说明理由.【答案】(1)x y +=(2)①P (132t -),D (29t -,2 );②154;(3)t =3,F (34).(3)由中点坐标公式和F 在直线BC 上得到2690t t -+=,解得t =3.把t =3代入得到F 的坐标.试题解析:(1)由y =0,得20x x =++,解得:13x =-,29x =,∴点A 的坐标为(-3,0),点B 的坐标为(9,0).由x =0,得y =C 的坐标为(0,.(2)①过点P 作PG ⊥x 轴于点G .∵A (-3,0),B (9,0),C (0,AO =3,BO =9,OC =tan∠CAO =CO AO == ,∴∠CAO =60°,∴∠APG =30°,∵AP =t ,∴AG =12t ,PG ,∴OG =3-12t ,∴P (132t -).∵OQ =29t -,∴D 的横坐标为29t -,∵D 在抛物线2x y x +=上,∴D 的纵坐标为22)2)y t t +=--+=2+,∴D D (29t -,2+ ).综上所述:P (132t -),D (92t -,2+ ); ②过点P 作PG ⊥x 轴于点G ,PH ⊥QD 于点H .∵QD ⊥x 轴,∴四边形PGQH 是矩形,∴HQ =PG .∵PQ =PD ,PH ⊥QD ,∴QD =2HQ =2PG .∵P 、D 两点的坐标分别为P (132t -),D (29t -,2+ ),∴2=2,解得:10t=(舍去),215 4t=,∴当PQ=PD时,t的值为154.考点:二次函数综合题;动点型;存在型;压轴题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新 山西省2017年中考模拟考试数学试题时间120分钟 满分120分 2017.4.24一、选择题(每小题3分,共30分)1.在-3,-2,0,3中,大小在_1和、2之间的数是 A .-3 B .-2 C .0 D .32.某同学画出了如图所示的几何体的三种视图,其中正确的是A .①②B .①③C .②③D .②3.微信根据移动ID 所带来的数据,发布了‚微信用户春节迁徙数据报告‛,该报告显 示,2016年1月24日春运首日至2月4日期间,人口流入最多的省份是河南.作为劳务输 出.大省,河南约有313万微信用户在春节期间返乡.313万用科学记数法可表示为A.3.13×102B.313×104C.3.13×105D.3.13×106 4.如图,在平行四边形ABCD 中,EF ∥AB 交AD 于E ,交 BD 于F ,DE :EA=3:4,EF=3,则CD 的长为A .4B .7C .3D .125.已知,一次函数y 1 =ax+b 与反比例函数xky =2的图象 如图所示,当y 1<y 2时,x 的取值范围是 A .x<2 B .0<x<2或x>5 C .2<r<5 D .r>56.已知边长为m 的正方形面积为12,则下列关于m 的说 法中,错误的是①m 是无理数; ②m 是方程m 2 -12=0的解;③m 满足不等式组 ⎩⎨⎧<->-0504m m ④m 是12的算术平方根.A.①② B .①③ C .③ D .①②④7.如图,挂在弹簧称上的长方体铁块浸没在水中,提着弹簧称匀速上移,直至铁块浮出水面停留在空中(不计空气阻力),弹簧称的读数F(kg)与时间t(s)的 函数图象大致是8.如图,在△ABC 中,∠ACB=90°,分别以点A 和点B 为圆心,以相同的长(大于21AB )为半径作弧,两弧相交于点M 和点 N ,作直线MN 交AB 于点D ,交BC 于点E .若AC=3,AB=5, 则DE 等于A .2B .310C .815 D . 215 9.如图将2×2的正方形网格放置在平面直角 坐标系中,每个小正方形的顶点称为格点,每个小正 方形的边长都是1,正方形ABCD 的顶点都在格点上,若直线y=kx(k ≠0)与正方形ABCD 有公共点, 则k 不可能是A.3 B .2 C .1 D .2110.在平面直角坐标系中,正方形A 1B 1C 1D 1、D 1 E 1E 2B 2、A 2B 2 C 2D 2、D 2 E 3E4B 3……按如图所示的方式放置,其中点B 1在y 轴上,点C 1、E 1、E 2、C 2、E 3、E 4、C 3……在x 轴上,已知正方形A 1B 1C 1D 1的边长为l , ∠B 1C 1O= 60°, B 1C 1∥B 2C 2∥B 3C 3……, 则正方形A 2017B 2017 C 2017 D 2017的边长是A .(21)2016B .(21)2017C .(33)2016D .(33)2017二、填空题(每小题3分,共15分)11.|-2|-(π-3)0= .12.用等腰直角三角板画∠AOB=45°,将三角板沿OB 方向平移到如图所示的虚线处 后,再绕点M 逆时针旋转22。

,则三角板的斜边与射线OA 的夹角α的度数为。

13. 一只昆虫在如图所示的树枝上寻觅食物,假定昆虫在每个岔路口都会随机选择一条 路径,则它获取食物的概率是.14.如图,在△ABC 中,CA=CB ,∠ACB=90°,AB=2,点D 为AB 的中点,以点D 为圆心作圆心角为90°的扇形DEF ,点C 恰在弧EF 上,则图中阴影部分的面积为.15.如图,在Rt △ABC 中,∠ACB=90°,AB=5,AC=3,点D 是BC 上一动点,连接 AD ,将△ACD 沿AD 折叠,点C 落在点E 处,连接DE 交AB 于点F.当△DEB 是直角三 角形时,DF 的长为.三、解答题(本题满分75分,共8道小题)16.(8分)先化简,后求值:⎪⎭⎫ ⎝⎛--+÷--2526332m m m m m ,其中m 是方程x 2+2x-3=0 的根.17.(9分)中华文明,源远流长;中华汉字,寓意深广.为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的‚汉字听写‛大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:请根据所给信息,解答下列问题:(1)a= ,b=,(2)请补全频数分布直方图;(3)这次比赛成绩的中位数会落在____分数段;(4)若成绩在90分以上(包括90分)的为‚优‛等,则该校参加这次比赛的3000名学生中成绩‚优‛等约有多少人?18.(9分)在Rt△ABC中,∠ACB=90°,以点A为圆心,AC为半径,作OA交AB于点D,交CA的延长线于点E,过点E作AB的平行线EF交OA于点F,连接AF、BF,DF.(1)求证:BF⊥AF;(2)当∠CAB等于多少度时,四边形ADFE为菱形?请给予证明.19.(9分)某中学广场上有旗杆如图1所示,在学习了解直角三角形以后,数学兴趣小组测量了旗杆的高度.如图2,某一时刻,旗杆AB的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC为4米,落在斜坡上的影长CD为3米,AB⊥BC,同一时刻,光线与水平面的夹角为72°,1米的竖立标杆PQ在斜坡上的影长QR为2米,求旗杆的高度(结果精确到0.1米).(参考数据:sin72°≈O. 95,cos72°≈0. 31,tan72°≈3.08)20.(9分)某经销商销售一种产品,这种产品的成本价为10元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克,且10≤x≤18)之间的函数关系如图所示:(1)求y(千克)与销售价z的函数关系式;(2)该经销商想要每天获得150元的销售利润,销售价应定为多少?21. (10分)数学李老师给学生出了这样一个问题:探究函数1+=x xy 的图象与性质. 小斌根据学习函数的经验,对函数1+=x xy 的图象与性质进行了探究. 下面是小斌的探究过程,请您补充完成:(1)函数1+=x xy 的自变量x 的取值范围是;(2)列出y 与x 的几组对应值,请直接写出m 的值,m=;(3)请在平面直角坐标系xOy 中,描出以上表中各对对应值为坐标 的点,并画出该函数的图象;(4)结合函数的图象,写出函数1+=x x y 的一条性质.22.(10分)我们把两条中线互相垂直的三角形称为‚中垂三角形‛,例如图1,图2,图3中,AF,BE是△ABC的中线,AF⊥BE,垂足为P,像△ABC这样的三角形均为‚中垂三角形‛,设BC=a,AC-b,AB=c.【特例探索】(1)如图1,当∠ABE=45°,c=22时,a=,b=;如图2,当∠ABE=30°,c=4时,a=,b=;——’【归纳证明】(2)请你观察(1)中的计算结果,猜想a2,b2,c2三者之间的关系,用等式表示出来,请利用图3证明你发现的关系式;【拓展应用】(3)如图4,在□ABCD中,点E,F,G分别是AD,BC,CD的中点,BE⊥EG,AD=25,AB=3.求AF的长.23.(11分)如图,抛物线c bx x y ++=221与y 轴交于点C(0,-4),与x 轴交于点A 、 B ,且B 点的坐标为(2,0). (1)求抛物线的解析式;(2)若点P 是AB 上的一个动点,过点P 作PE ∥AC 交BC 于点E ,连接CP ,求△PCE 面积最大时P 点的坐标;(3)在(2)的条件下,若点D 为OA 的中点,点M 是线段AC 上一点,当△OMD 为等腰 三角形时,连接MP 、ME ,把△MPE 沿着PE 翻折,点M 的对应点为点N ,直接写出点N 的坐标.数学参考答案一、选择题1.C2.B3.D4.B5.B6.C7.A8.C9.A 10.C 二、填空题1 1.1; 1 2.22: 1 3.31; 14.214-π; 15.43或23三、解答题16.解:原式=()()()()()3313322332542332+=-+-∙--=---÷--m m m m m m m m m m m m m …………4分∵x 2+2x-3=0, ∴x 1=-3,x 2 =1∵‘m 是方程x 2 +2x-3=0的根, ∴m=-3或m=1 …………6分 ∵m+3≠0, ∴.m ≠-3, ∴m=1………………7分 当m=l 时,原式:()()12131131331=+⨯⨯=+m m …………8分17.解:(1) a=60;b=0.15;…………2分 (2)如图:…………4分:( 3) 80≤x<90;…………6分(4) 20080×3000 =1200人…………7分答:该校参加这次比赛的3000名学生中成绩‚优‛等约有1200人.…………8分 18.解:(1)证明:∵EF ∥AB ,∴∠E=∠CAB ,∠EFA=∠FAB . ∵∠E=∠EFA .∠FAB=∠CAB . 在△ABC 和△ABF 中, AF=AC ∠FAB=∠CAB AB=AB∵△ABG ≌△ABF ;∴∠AFB=∠ACB=90° ∴BF ⊥AF .…………5分(2)当∠CAB=60°时,四边形ADFE 为菱形,…………6分证明:∵∠ CAB=60°. ∴∠FAB=∠CAB=∠ CAB=60°. ∴EF=AD=AE .∴四边形ADFE 是菱形,…………8分1 9.解:如图作CM ∥AB 交AD 于M ,MN ⊥AB 于N . …………1分 由题意得:QRPQ CD CM =即213=CM ,CM=23…………3分 在Rt △AMN 中,∵∠ANM=90°,MN=BC=4, ∠AMN=72°,∴tan72°=NMAM.∴AN=12.3.…………6分 ∵MN ∥ BC ,AB ∥CM .∴四边形MNBC 是平行四边形,∴ BN=CM=23.…………8分∴AB=AN+BN=13.8米…………9分20.解:(1)设y =kx+b .将x=10,y=40 和x=18,y=24代入得:⎩⎨⎧=+=+,24184010b k b k 解之得:⎩⎨⎧=-=602b k ∴y= -2 x+60.…………5分(2)由题意得:(x-10)( -2 x+60) =150,整理得:x 2 -40x+375 =0, 解之得:x 1 =15,x 2=25 ∵10≤x ≤1 8, ∴x 2=25舍去答:销售价应定为1 5元. …………-9分 21.解:(1)x ≠-1:………… 2分 (2)3: …………4分 (3)………………8分(4)(略). …………1 0分22.解:(1)25, 25;213,27…………2分(2)猜想:a 2,b 2,c 2三者之间的关系是:a 2+b 2 =5c 2 …………3分证明:连接EF, ∵AF ,BE 是△ABC 的中线,∴EF 是△ ABC 的中位线,∴EF ∥AB.且 EF=21AB=21c. ∴21==PA PF PB PE 设 PF=m ,PE=n 则AP=2m ,PB=2n ,在Rt △APB 中,(2m)2+(2n )2=c 2①在Rt △APE 中,(2m)2+n 2=(2b )2 ② 在Rt △BPF 中,m 2+(2n )2=(2a )2 ③ 由①得:m 2+n 2=42c ,由⑦+③得:5( m 2+n 2)=422b a +, ∴a 2+b 2 =5 c 2…………7分(3)设AF ,BE 交于点P ,取AB 的中点H ,连接FH ,AC∵E ,G 分别是AD ,CD 的中点,F 是BC 的中点,∴EG ∥AC ∥FH又∵BE ⊥EG .∴FH ⊥ BE∵四边形ABCD 是平行四边形∴AD ∥BC ,AD ∥BC ,∴AE=BF , AE ∥BF ∴AP=FP ,∴△ABF 是‚中垂三角形‛,∴AB 2+AF 2=5BF 2即32 +AF 2=5×(5)2,∴AF=4. ………… 1 1分23.解:(1)根据题意得⎩⎨⎧=+++-=024c b c ,解得:⎩⎨⎧-==41c b所以该抛物线的解析式为:y=-+x x 2214;…………3分 (2)令y=0,即-+x x 2214=0,解得x 1=-4,x 2=2, ∴A(-4,0),S △ABC =21AB ·OC=12, 设P 点坐标为(x ,0),则PB=2-x .∵PE ∥AC, .∴∠BPE=∠BAC, ∠BEP=∠BCA.∴△PBE ∽△BAC ,∴2⎪⎭⎫ ⎝⎛=∆∆AB PB S S ABC PBE ,即26212⎪⎭⎫ ⎝⎛-=∆x S PBE , 化简得:()2231x S PBE -=∆…………6分()()()3131383231231422121222++-=+--=--⨯-⨯=-⋅=-=∆∆∆∆x x x x x S OC PB S S S PBE PBE PCB PCE∴当P 点的坐标为(-1,0)时, S △PCE 的最大,且最大值为3…………8分(3)如图3,当y=0时,21x 2+x-4=0, 解得:x 1=-4,x 2=2,则A 点坐标为(-4,0),∵点D 为OA 中点,∴D(-2,0), 设直线AC 的解析式为y=mx+n ,把A(- 4,0)、 C(0,-4),分别代入得⎩⎨⎧-==+-404n n m ,解得⎩⎨⎧-=-=41n m∴直线AC 的解析式为y=-x-4 如图4,过D 点作DM 1⊥OA 交线段AC 于M 1.∵点D 为OA 中点,∴DM 1 =21OC=2, ∴DM 1=DO ,△DM 1O 为等腰三角形,此时M1的坐标为(-2,-2);作DO 的中垂线交线段AC 于M 2, 则DM 2=OM 2,△DM 2O 为等腰三角形,当x=-1时,y=-x-4=1- 4=-3,∴点M 2的坐标为(-1,-3),即M 点的坐标为(-2,-2)或(-1,-3).已知此时P 点坐标为(-1,0)E 点坐标为(1.-2),故M点关于PE的对称点N的坐标为(1,1)或(2,0).…………1 1分。

相关文档
最新文档