实变函数周民强版答桉

合集下载

二,实变函数与泛函分析课后习题答案book版1

二,实变函数与泛函分析课后习题答案book版1

(−∞, ∞), z为E中的不可测集.
对于任意x

z,
f (x)
=
√ 3; x
z, f (x) = √2,则对任意
有理数r, E[ f
=
r]
=
∅是可测的.而E[ f
>
√ 2]
=
z为不可测的.因此 f 是不可测的.
习题 1.1.2 设{ fn}为E上的可测函数列,证明它的收敛点集和发散点集都是可测 的.
>
0,由鲁津定理,存在闭集F

Eδ,使得
(i)m(Fδ

F)
<
ϵ
=
mE , 即mF
4
>
mE ;
2
(1.7)
(ii) f (x)在F连续,于是∃M > 0, s.t. | f (x)| ≤ M(x ∈ F).
(1.8)
由于 f (x)在F上一致收敛到 f (x),故 fn在F上也一致收敛于 f (F ⊆ Eδ),所以存在自 然数N,当n > N时,有
证明: 利用前一题的结论将 fn(x)取成同一个函数,采用相同的方法即可. 不妨设E为有界集合,即mE < ∞,且 f (x)为实值.因为
∪∞
∪∞
E = {x ∈ E : sup | f (x)| ≤ k} = Ek[sup | f (x)| ≤ k],
k=1
k=1
(1.23)
由于关于变量k
Ek[sup | f (x)| ≤ k] ⊂ Ek+1[sup | f (x)| ≤ k + 1]
n
m(E − E0) = m(E − E2) + m(E2 − E0) < ϵ.

实变函数课后习题答案_北大版_周民强

实变函数课后习题答案_北大版_周民强
1 [a, b]. 若令 En = {x ∈ [a, b] : fn (x) ≥ 2 }, 试求集合 lim En .
证: lim En = [a, b]\E.
n→∞ n→∞
n→∞
∀ x ∈ [a, b] \ E, ∵ lim fn (x) = 1, ∴ ∃N, ∀ n ≥ N, fn (x) ≥
n→∞ 1 , i.e. 2 n→∞ n→∞

{x ∈ [0, 1] : |f (x)| >
n=1
1 } n
=

+ − 1 < |f (x1 ) + f (x2 ) + · · · + f (xp )| ≤ M, p < nM , 所以 E1 则 p· n /n 只含有限个数, 同理 E1/n 也只含有限个数, 由此可得 E 可数.
n=1
+ (E1 /n
S (C, r3 )), S (P, r) 表示以 P 为圆心 r 为半径的球面 }, E 可数.
10. 设 E 是平面 R2 中的可数集, 试证明存在互不相交的集合 A 与 B , 使得 E = A ∩ B, 且任一平行于 x 轴的直线交 A 至多是有限个点, 任一平行于 y 轴的直线交 B 至多是有限 个点. 2
证: ∵ E 可数, ∴ E 中点的横坐标, 纵坐标集合也可数, 分别记为 X = {x1 , x2 , · · · , xn , · · · }, Y = {y1 , y2 , · · · , yn , · · · }, 如此就可记 E = {(xi , yj ) ∈ E : i, j ∈ N}, 作从 E 到 N2 的映 射 f : f ((xi , yj )) = (i, j ); 记 A1 = {(i, j ) : i ≤ j }, B1 = {(i, j ) : i > j }, 令 A = f −1 (A1 ), B = f −1 (B1 ) 即可. 11. 设 {fα (x)}α∈I 是定义在 [a, b] 上的实值函数族. 若存在 M > 0, 使得 |fα (x)| ≤ M, x ∈ [a, b], α ∈ I, 试证明对 [a, b] 中任一可数集 E , 总有函数列 {fαn (x)}, 存在极 限 lim {fαn (x)}, x ∈ E.

实变函数课后习题答案

实变函数课后习题答案

第一章习题1.证明:(1) (A -B )-C =A -(B ∪C ); (2)(A ∪B )-C =(A -C )∪(B -C ). 证明:(1) 左=(A ∩B c )∩C c =A ∩(B c ∩C c )= A ∩(B ∪C )c =右; (2)左=(A ∪B )∩C c =(A ∩C c )∪(B ∩C c )=右. 2.证明: (1)();(2)().IIIIA B A B A B A B αααααααα∈∈∈∈-=--=-(1)ccI IA B A B αααα∈∈⎛⎫=== ⎪⎝⎭证明:左()右;(2)()c cI I A B A B αααα∈∈⎛⎫=== ⎪⎝⎭左右.111111.{},,1.{}1.n n n n n nnA B A B A A n B B A n νννννν-===⎛⎫==- ⎪⎝⎭>=≤≤∞ 3 设是一列集合,作证明:是一列互不相交的集合,而且,证明:用数学归纳法。

当n=2时,B 1=A 1,B 2=A 2-A 1, 显然121212B B B B B B n k =∅== 且,假设当时命题成立,1211,,,kkk B B B B A νννν===两两互不相交,而且,111111111kk k kkkk k n k B A A B A BA B νννννννν++=++====+=-==-⇒下证,当时命题成立,因为而,所以11211+1111111111111,,,;k k k k k k k k k kk k k k k B B B B B B B B B B A A A A A A A νννννννννννννννν++=++===+++====⎛⎫=∅ ⎪⎝⎭⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫=-==⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,于是,两两互不相交;由数学归纳法命题得证。

{}21214.0,,(0,),1,2,,n n n A A n n A n-⎛⎫=== ⎪⎝⎭设求出集列的上限集和下限集。

第三版实变函数论课后答案

第三版实变函数论课后答案

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载第三版实变函数论课后答案地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容证明:的充要条件是. 证明:若,则,故成立.反之,若,则,又,若,则,若,则.总有.故,从而有。

证毕证明.证明:,从而,故,从而,所以.另一方面,,必有,故,从而,所以.综合上两个包含式得. 证毕证明定理4中的(3)(4),定理6(De Morgan 公式)中的第二式和定理9. 证明:定理4中的(3):若(),则.证:若,则对任意的,有,所以()成立知,故,这说明.定理4中的(4):.反过来,若则或者.不妨设,则有使.故.综上所述有.定理6中第二式.证:,则,故存在,所以从而有.反过来,若,则使,故,,从而. 证毕定理9:若集合序列单调上升,即(相应地)对一切都成立,则(相应地). 证明:若对成立,则.故从定理8知另一方面,令,从对成立知.故定理8表明故.4. 证明的充要条件是.必要性若,而则存在. 所以即所以这与矛盾,所以.设,求.又如果,,问是什么.解:若,则.若,则从,易知..令..证明: 因为的任何子集. 所以有,而,故,又.任取的一子集,,且.显,故只用证的确是一个域. (1) ,且的子集,若,则(是的子集,故)又的子集,.显然是的子集,所以.又若为的子集或.则.这里是的子集.或.所以.若中除的子集外,还有,则.若中有,不影响.故是域,且.证毕.6.对于的子集,定义的示性函数为证明:(1)(2)证明:,若则。

且只有有限个,使得所以使得时从而有故若,则且有无限个故所以 .故(1)成立.(2)的证明:,若则.且有无穷个使得,所以注意到所以 .若,则且只有有限个使得所以使得时,所以 .所以(2)也成立.也可以这样证(2):注意 ..7.设f(x)是定义于E上的实函数,a为一常数,证明(1)(2).证明:(1)我们有,故存在使(因为)所以.从而有;反过来:若,则所以(1)成立.下证(2)我们有从而有反过来,若8.若实函数序列在上收敛于,则对于任意常数都有证明:先证第一个等式由定理8知我们有对成立。

实变函数论课后答案第五章1

实变函数论课后答案第五章1

实变函数论课后答案第五章1第无章第一节习题1.试就[0,1]上的D i r i c h l e 函数()D x 和Riemann 函数()R x 计算[0,1]()D x dx ⎰和[0,1]()R x dx ⎰解:回忆11()0\x Q D x x R Q∈⎧=⎨∈⎩即()()Q D x x χ= (Q 为1R 上全体有理数之集合)回忆: ()E x χ可测E ⇔为可测集和P129定理2:若E 是n R 中测度有限的可测集, ()f x 是E 上的非负有界函数,则_()()()EEf x dx f x dx f x =⇔⎰⎰为E 上的可测函数显然, Q 可数,则*0m Q =,()Q Q x χ可测,可测,有界,从而Lebesgue 可积由P134Th4(2)知[0,1][0,1][0,1][0,1][0,1]()()()10ccQ Q Q QQQ Q x dx x dx x dx dx dx χχχ⋂⋂⋂⋂=+=+⎰⎰⎰⎰⎰1([0,1])0([0,1])10010c m Q m Q =⋅⋂+⋅⋂=⋅+⋅= 回忆Riemann 函数()R x :1:[0,1]R R11,()0[0,1]n nx m n m R x x x Q⎧=⎪⎪==⎨⎪∈-⎪⎩和无大于的公因子1在数学分析中我们知道, ()R x 在有理点处不连续,而在所有无理点处连续,且在[0,1]上Riemann 可积, ()0.R x a e =于[0,1]上,故()R x 可测(P104定理3),且[0,1]()R x dx ⎰[0,1]()()QQR x dx R x dx -=+⎰⎰而0()10QQR x dx dx mQ ≤≤==⎰⎰(Q 可数,故*0m Q =)故[0,1][0,1][0,1]()()00QQR x dx R x dx dx --===⎰⎰⎰2.证明定理1(iii)中的第一式证明:要证的是:若mE <+∞,(),()f x g x 都是E 上的非负有界函数,则 ()()()EEEf x dx f x dxg x dx --≥+⎰⎰⎰下面证明之: 0ε∀>,有下积分的定义,有E 的两个划分1D 和2D 使 1()()2D Es f f x dx ε->-⎰,2()()2D Es g g x dx ε->-⎰此处1()D s f ,2()D s g 分别是f 关于1D 和g 关于2D 的小和数,合并12,D D 而成E 的一个更细密的划分D ,则当()D s f g +为()()f x g x +关于D 的小和数时12(()())()DD D D D f x g x dx sf g s f s g s f s g -+≥+≥+≥+⎰()()()()22EEEEf x dxg x dx f x dx g x dx εεε----≥-+-=+-⎰⎰⎰⎰(用到下确界的性质和P125引理1)由ε的任意性,令0ε→,而得(()())()()EEf xg x dx f x dx g x dx ---+≥+⎰⎰⎰3.补作定理5中()Ef x dx =+∞⎰的情形的详细证明证明:令{}|||||m E E x x m =≤,当()Ef x dx =+∞⎰时,()lim ()mm EE f x dx f x dx →∞+∞==⎰⎰0M ∀>,存在00()m m M N =∈,当0m m ≥时,2()lim [()]mmk k E E M f x dx f x dx →∞<=⎰⎰则存在k 使[()][lim ()]lim[()]mmmk n k n k n n E E E M f x dx f x dx f x dx →∞→∞<==⎰⎰⎰lim [()]lim()lim ()mmn k n n n n n E E Ef x dx f x dx f x dx →∞→∞→∞=≤≤⎰⎰⎰(利用[()]mn k E f x dx ⎰有限时的结论,Th5中已详证)由M 的任意性知lim ()()n n EEf x dx f x dx →∞=+∞=⎰⎰ 证毕.4.证明:若()f x 是E 上的非负函数, ()0Ef x dx =⎰,则()0.f x a e =证明:令[|()1],1,2,n E x n f x n n =<≤+=,1[|()1]m F x f x m=<≤ 则11[|()0]()()n n n n E x f x E F +∞+∞==>=⋃f 可测,故,,[|()0]n m E F E x f x >(1,2,;1,2,n m ==)都是可测集,由P135Th4(2)和()0Ef x dx =⎰,()f x 非负知[;()0]0()()()0nnnEE x f x E E f x dx f x dx f x dx n dx nmE>=≥≥≥=≥⎰⎰⎰⎰故0,(1,2,)n mE n ==;同理0,(1,2,)m mF m == 故11[|()0]0n m n m mE x f x mE mF +∞+∞==>≤+=∑∑故从()f x 非负,[|()0][|()0]E x f x E E x f x ==->,知()0.f x a e=于E .证毕.5.证明:当mE <+∞时,E 上的非负函数的积分()Ef x dx <+∞⎰的充要条件是02[|()2]k k k mE x f x +∞=≥<+∞∑证明:令[|()2],0,1kk E Ex f x k =≥=,1[|2()2]n n n E E x f x +=≤<,0,1,2,k =[|()1],n i j n E x f x E E E +∞=≥=⋂=∅当i j ≠,f 非负,故从mE <+∞知[|()1]0()E x f x f x dx <≤<+∞⎰,而[|0()1][|()1]()()()EE x f x E x f x f x dx f x dx f x dx ≤<≥=<⎰⎰⎰[|()1]()()EE x f x f x dx f x dx ≥<+∞⇔<+∞⎰⎰注意由单调收敛定理和()0f x ≥可测知00lim[|()1]lim()()()()()lim ()()n n niin i i nin n i n E E E x f x EE E E f x dx f x dx f x dx x f x dx x f x dxχχ+∞→∞==→∞==→∞≥====⎰⎰⎰⎰⎰00lim ()()lim()lim ()()LeviThn niiii ii n n n n E i i EE E E x f x dx f x dx f x dx f x dxχ==+∞→∞→∞→∞======∑∑⎰⎰⎰⎰110022222222[|()2]ii n nnn n n n n i n n n n E dx mE mE mF E x f x +∞+∞+∞+∞+∞++=====≤==≤=≥∑∑∑∑∑⎰所以,若02[|()2]k k k mE x f x +∞=≥<+∞∑,则有[;()1]()E x f x f x dx ≥<+∞⎰则()Ef x dx <+∞⎰,故充分性成立.为证必要性,注意,k i k i i k i kF E mF mE +∞+∞====∑,令1{0n k k n k nϕ≥=<若若,则0002[|()2]2222nnnn nn nn nkkkkkn n n k nn k n n k mE x f x mF mE mE mEϕϕ+∞+∞+∞+∞+∞+∞+∞+∞========≥====∑∑∑∑∑∑∑∑100000002122221k knnnnkk k k kk n k n k n k mE mE mE mE ϕ++∞+∞+∞+∞+∞+∞=======-====-∑∑∑∑∑∑∑11(21)222()k k kk k k k k k k k k k mE mE mE mE m E +∞+∞+∞+∞+∞++======-=-=-∑∑∑∑0022[[;()1]]2()kk k k k E mE m E x f x f x dx +∞+∞===-≥≤∑∑⎰[|()1]2()2()2()kk E x f x EE f x dx f x dx f x dx +∞=≥==≤<+∞⎰⎰⎰(,[|()1]mE mE x f x <+∞≥<+∞)证毕.注意以上用到正项二重级数的二重求和的可交换性,这可看成是Fubini 定理的应用,也可看成是Lebsgue 基本定理的应用,或Levi 定理的应用.0000nmnm m n n m aa +∞+∞+∞+∞=====∑∑∑∑0000lim lim ()lim ()kkknmnm nm nmk k k m n m n n n aa a d m ad m μμ+∞+∞+∞+∞+∞→∞→∞→∞=========∑∑∑∑∑∑⎰⎰00000lim ()()knm nm nm k n n n m a d m a d m a μμ+∞+∞+∞+∞+∞→∞=======∑∑∑∑⎰⎰ μ是1R 上的一个测度(离散的),[[]]1,()#[]m N m A A N μμ∀∈==⋂,N 为自然数集,nm a 看成 (){nx n a x Na x x N∈=∉当当 ,也可这样设1111,nm nm n m m n a a a b +∞+∞+∞+∞======∑∑∑∑,则,k p N ∀∈111111pppkknmnm nm n m m n m n aa ab +∞=======≤≤∑∑∑∑∑∑,令p →∞,11knm n m a b +∞==≤∑∑,令00,nm n m k a a b +∞+∞==→∞=≤∑∑,同理,b a ≤,则a b =,0000nm nm n m m n a a +∞+∞+∞+∞=====∑∑∑∑,[1,),1(){0i n a i i i nx x n ϕ-≤≤=≥为简单函数,()lim ()n n f x x ϕ→∞=,则()f x 可测6.如果(),()f x g x 都是E 上的非负可测函数,并且对于任意常数a 都有 [|()][|()]mE x f x a mE x g x a ≥=≥ 则()()EEf x dxg x dx =⎰⎰证明:若存在0b >使[|()]E x f x b ≥=+∞,则()()EEf x dxg x dx ==+∞⎰⎰结论成立.故b a ∀>,1,a b R ∈,[|()]E x f x b ≥<+∞,则[|()][|()][|()]E x f x a E x f x b E x a f x b ≥-≥=≤<[|()][|()][|()]mE x a f x b mE x f x a mE x f x b ≤<=≥-≥[;()][;()][;()]mE x g x a mE x g x b mE x a g x b =≥-≥=≤<m N ∀∈,及0,1,2,,21m k =-,令,1[|()]22m k m mk k E E x f x +=≤<及 ,2[|()]m m m E E x f x m =≥则2,0m m m k k E E ==,,m k E 互不相交同样,,21[|()],[|()]22m m km m m m k k E E x g x E E x g x m +=≤<=≥,2,0mm m k k E E ==,,m k E 互不相交令~,,2200()(),()()22mmm k m km m m E m m m E k k k kx x x x ψχψχ====∑∑,则()m x ψ,()m x ψ都是非负简单函数,且(),()m m x x ψψ均为单调不减关于m ,()()m x f x ψ→,()()m x g x ψ→注意到,,11()[|()][|()]()2222m k m k m m m m k k k k m E mE x f x mE x g x m E ++=≤<=≤<= 故22,,00()()()()22mmm m m m k m k m m m k k E Ek kx dx m E m E x dx ψψ=====∑∑⎰⎰故由Levi 定理知()lim ()lim ()()m m n n EEEEf x dx x dx x dxg x dx ψψ→∞→∞===⎰⎰⎰⎰7.设mE <+∞,()f x 是E 上的有界非负可测函数,0()f x M ≤<,()()()010,1,2,nn n n k g g g M n =<<<==使{}()(1)max |1,2,,0()n n i i n n y y i k l n --==→→∞,()()()()1[|()],,1,2,,;1,2,3,n n n n n i i i i i n E E x y f x y E i k n ξ-=≤<∈==证明:()1()lim ()nk n n i i n i Ef x dx f mE ξ→∞==∑⎰证明:显然,由f 可测于E 知,()n i E 是可测集(1,n i k n N ∀≤≤∈)且()1nk n i i E E ==,又在()n i E 上()()1()n n i i y f x y -≤<表明()()()()1inf ()sup ()n n i i n n i i x E x E y f x f x y -∈∈≤≤≤ 记()()1sup ()nnn ik n D ix E i S f x mE ∈==∑ (大和数),()()1inf ()nn ni k n D i x E i s f x mE ∈==∑ (小和数)则从()f x 有界可测知()f x 在E 上可积(P129Th2),故()()()n n D D E EEs f x dx f x dx f x dx S ---∞<≤==≤<+∞⎰⎰⎰,又从()n n i i E ξ∈知()()()11()sup ()nnn n n ik k nn n D iii D x E i i s f mEf x mE S ξ∈==-∞<≤≤=<+∞∑∑()1()()nn n n nk n n D D i i D D i Es S f x dx f mE S s ξ=-≤-≤-∑⎰,则()(1111|()()|nnnn n k k kn n n nnn niiD D i i i n in i i i Ef x dx f mES s y ymE l mE l mE ξ→∞-===-≤-≤-≤=→∑∑∑⎰(从0n l →知)故()1()lim ()nk n n i i n i Ef x dx f mE ξ→∞==∑⎰8.设mE <+∞,()f x 是E 上的非负可测函数,()Ef x dx <+∞⎰,[;()]n e E x f x n =≥,证明:lim 0n n n me →∞⋅=证明:由本节习题5知()Ef x dx <+∞⎰,mE <+∞则02[|()2]k k k mE x f x +∞=≥<+∞∑ ,故lim 2[|()2]0k k n mE x f x →∞≥= (1)反证设l i m n n n m e→∞⋅>,则00,,k k N n ε∃>∀∈∃使0kk n n me ε⋅≥,,k k N i N ∀∈∃∈使122k k i i k n +≤<,所以2i k k n e e ⊂,显然从k n →∞知2k i →+∞10222220()kki i kkki i k n n me me me k ε+≤⋅≤=⋅→→∞得矛盾所以lim 0n n n me →∞⋅= 9.设()f x 是E 上的非负可测函数,()Ef x dx <+∞⎰,对任意的0r >,令[|||||]()()E x x r F r f x dx <=⎰证明:()F r 是(0,)+∞上的连续函数证明:[|||||](0,)E x x r E B r <=⋂显然为可测集;又()f x 在E 上非负可测,故0r ∀>,f 在[|||||]rE E x x r <上也可测,且0()()rE Ef x dx f x dx ≤≤<+∞⎰⎰,故()F r 是(0,)+∞上有定义的函数1)先设0()f x M ≤≤<+∞于E 上,此时00,0r r ∀>∀>有0000[|||||]0()()()E x r x r r F r r F r f x d ≤<+≤+-=⎰0000[;||||][(0,)\(0,)]MmE x r x r r Mm B r r B r ≤≤<+≤+0000(((0,))\(0,))(()()]0n n n n M m B r r mB r M w r r w r =+=+-→ (当0r →)这里(0,)nn mB r w r =最好是用(0,)(0,)()1n n B r mB r R dx w r ==⎰来看.(下一节!)也可这样看00((0,))(0,)0m B r r mB r +-→,0R r ∀>>{}12(0,)(,,,);n R n i B R I x x x x R R x R ⊂==∈-<<,而12(,,,);(0,)n r n i nr r Ix x x x R x B r n n ⎧⎫==∈-<<⊂⎨⎬⎩⎭,故 (0,)\(0,)\R r nB R B r I I⊂((0,)\(0,))(\)()()(2)(2)22()n n n n n nR r R r nnr r m B R B r m I I m I m I R R nn ≤=-=-=-得不出结果!则000()()0F r r F r ≤+-→ 当0r <时0000|()()|()()(()()]0n n n n F r r F r F r F r r M w r w r r +-=-+≤-+→则()F r 是连续的对一般可测函数()f x ,令(),()(),()m f x f x Mf x m f x M≤⎧=⎨>⎩ min((),)f x m =,则0N f ≤可测于E ,且()()N f x f x →于E ,N f 单调不减,故由Levi 定理知lim ()m m EEf dx f x dx →∞=<+∞⎰⎰0,()N εε∀>∃,使0()()[()()]6N N EEEf x dx f x dx f x f x dx ε≤-=-<⎰⎰⎰对上述固定的()N N ε=,[|||||]()()N N E x x r F r f x dx <=⎰是连续于(0,)+∞上的则00(,,())(0,),r N r εεδδ∈+∞∃=0(,)0r εδ=>,当0||r r δ-<时0|()()|3N N F r F r ε-<则当0||r r δ-<时1230000|()()||()()||()()||()()|N N N N N N NF r F r F r F r F r F r F r F r I I I -≤-+-+-=++ 1[|||||][|||||][|||||]|()()||()()||(()())|NN N N E x x r E x x r E x x r I F r F r f x dx f x dx f x f x dx <<<-=-=-⎰⎰⎰[|||||]|(()())||(()())|3N N E x x r Ef x f x dx f x f x dx ε<≤-≤-<⎰⎰20|()()|3N N N I F r F r ε-<,0300[|||||]|()()||(()())|(()())3N N N N E x x r EI F r F r f x f x dx f x f x dx ε<-=-≤-<⎰⎰则0|()()|F r F r ε-≤从而()F x 在(0,)+∞上连续得证.10.证明:若非负可测函数()f x 在E 上的积分()Ef x dx <+∞⎰,则对任意c ,0()Ec f x dx ≤≤<+∞⎰都有E 的可测集1E ,使1()E f x dx c =⎰证明:由第9题知,在本题条件下[|||||]()()E x x r F r f x dx <=⎰是(0,)+∞上的连续函数若0c =,则任取一单点0x E ∈,{}10E x =,则{}{}000()()0x f x dx f x m x ==⎰,即1()0E f x dx =⎰若()Ec f x dx =⎰,则取1E E =,则1()E f x dx c =⎰若0()Ec f x dx <<⎰注意到0r ∀>,{}(0,),||||B r x r r ∂== ((0,)B r 的边界) 满足11(0,)((0,)\(0,))m B r B r B r m+∞=∂=+11((0,))(((0,)\(0,)))m m B r m B r B r m+∞=∂=+11lim ((0,)\(0,))lim (())0n n n n n m B r B r w r r m m→∞→∞=+=+-= 若[|||||]m E E x x m =≤,0[|||||]mE E x x m =<,则0(\)((0,))0m m m E E m B m ≤∂= 而()f x 非负可测,故011lim ()lim ()lim()()m m m m m EE EF m f x dx f x dx f x dx →∞→∞→∞===⎰⎰⎰则m 充分大时,()F m c > 另一方面,0lim ()0r F r +→=(当0f M <<有界时,010()()()((0,))0m r E F r f x dx Mm E Mm B r ≤=≤≤→⎰)一般,0ε∀>,()N ε∃,使||3N E Ef dx f dx εε-<⎰⎰,min(,)N f f N =,又()()0N F r ε→,当0r +→时,((),)N δδεε∃=当0r δ<<时,()|()|3N F r εε<当0r δ<<时()()()()20()|()()||()||||()|333N N N N EF r F r F r F r f f dx F r εεεεεεε≤≤-+≤-+<+=⎰ 故0lim ()0r F r +→=由连续函数的中介值定理知,存在00r >使000[|||||]()()E x x r c F r f x dx <==⎰,令10[|||||]E E x x r =<,则1E E ⊂,1E f dx c =⎰,证毕.11.设mE <+∞,12,,,m E E E 是E 的m 个可测子集,正整数k m ≤,证明:若E 中每一点至少属于k 个i E ,则有i ,使i kmE mE m≥ 证明:反证,设(1,2,,)i i m ∀=有i kmE mE m<,则由于x E ∀∈,x 至少属于k 个i E ,故1()imE i x k χ=≥∑ (x E ∀∈),而i E E ⊂,故11()()im mi E i i E Em E E x dx k dx kmE χ==⋂=≥=∑∑⎰⎰111()m m mi i i i i kkmE m E E mE mE kmE m===≤⋂=<=∑∑∑得矛盾 所以i ∃使i kmE mE m≥.(徐森林书P242)12. 设mE <+∞,()0f x >且在E 上可测,证明:对任意0δ>,都有0d >,使只要1E E ⊂,1mE δ≥,便有1E f dx d ≥⎰证明:反证,设000,,,k k k E E mE δδ∃>∀∃⊂≥,但1kE f dx k<⎰令11[|()]1n F E x f x n n=≤<+ 1,2,n =;[|()1]F E x f x =≥则n F ,F 都是可测集,且从()0f x >知1[|()0]n n E E x f x F F +∞==>=⋃1n n mE mF mF +∞=+∞>=+∑ (n F ,F 互不相交)所以0n ∃使00011()2n n n n n n mE mF mF mF δ+∞==+-+=<∑∑1()2n n n mE m F F δ=-⋃<,01(\)2n n n m E F F δ=⋃<0111(())((\))(())2n n n k k n k n k n n n n mE m E F F m E E F F m E F F δδ===≤=⋂⋃+⋂⋃<⋂⋃+故01(())2n k n n m E F F δ=⋂⋃≥在01n k n n E F F =⋂⋃上,01()1f x n ≥+ 所以111000()()1111()()(())1112n n kk n k n n n n k n n EE F F E F F f x dx f x dx dx m E F F k n n n δ===⋂⋃⋂⋃>≥≥=⋂⋃≥+++⎰⎰⎰k →+∞,得0010012n δ≥>+得矛盾,故结论不成立0mE =时,1E E ∀⊂,1()0E f x dx =⎰,结论不会成立13.设mE <+∞,()f x 是E 上的有界非负可测函数,证明有[0,]mE 上的非负单调不增函数()g y 使对任意常数a 都有[|()][|0,()]mE x f x a mE y y mE g y a ≥=≤≤≥,进而证明[0,]()()EmE f x dx g y dy =⎰⎰证明:1s R ∀∈,令()[|()|]f s mx f x s μ=>且{}*()inf 0|()f f t s s t μ=>≤,显然*()f t 是[0,)+∞上的非负单调不增函数,因为12t t ∀>,{}{}20|()0|()f fs s t s s t μμ>≤⊂>≤,从而**21()()f t f t ≥ 注意{}|()()f f s s ημημ⊂≤,从而*(())ff s s μ≤ (1)又由Levi 定理知()f s μ是右连续的121,,n n n n s s s s s s s s +∀→>≥≥≥≥≥,则{}{}1||()|||()|n n x f x s x f x s +>⊂>11[||()|][||()|]lim ()lim [||()|]lim ()lim ()n n f n n x f x s x f x s n n n n R R s m x f x s y dy y dy μχχ>>→∞→∞→∞→∞=>==⎰⎰1[||()|]()[||()|]()x f x s f R y dy m x f x s s χμ>==>=⎰,0,()n f n t s s tμ∀∃>≤,*()n s f t →,故从()f s μ右连续知*(())lim ()f f n n f t s t μμ→∞=≤ 即*(())f f t tμ≤(2)令**()[|()]f s m t f t s μ=>,则从*f 非增,知{}**()sup 0|()f s t f t s μ=>>(3)事实上*0()f t s μ∀≤<,则***,(),(),()f t t t s f t s f t s μ'''∃<<>>,则{}***[0,][0,()]0;()[0,()]f f t s t f t s s μμ⊂⊂>>⊂,故{}**0|()[0,()]f t f t s s μ>>=故{}**sup 0|()()f t f t s s μ>>=从(1)*(())f f s s μ≤知*()()f f s s μμ≥,从(3)若*()f t s μ>,则:*()f t s≤由(2)*()(())f f s f t t μμ≤≤ (注意f μ单调不增!) 由*()f t s μ>之任意性知*()()f f s s μμ≤,所以*()()f f s s μμ=即*[|()][|()][|()]mE x f x s m x f x s m t f t s >=>=>1a R ∀∈ 111[|()][[|()]]lim [[|()]]n n mE x f x a m E x f x a m E x f x a n n +∞→∞=≥=>-=>- ***111lim [;()][[;()]][,()]n n m t f t a m t f t a m t f t a n n +∞→∞==>-=>-=≥ 注意:t mE >时*()0f t ≡,故当0a >时*[|()][0,]t f t a mE ≥⊂*[|()][|0,()]m x f x a m t t mE f t a ≥=≤≤≥当0a ≤时,[|()]m x f x a mE ≥=*[|0,()][|0]m x t mE f t a m t t mE mE ≤≤≥=≤≤=.所以有*[|()][|0,()]m x f x a m t t mE f t a ≥=≤≤≥. 令*()()g t f t =即证明了本题的第一部分.记[0,],mE I mI mE ==则且[|()][|()]mE x f x a mI y g y a ≥=≥[|()][|()][|()][|()]m x f x a mE m x f x a mI mI y g y a mI y g y a <=-≥=-≥=<故b a ∀<,有[|()][|()][|()][|()]mE x f x a mE x f x b mE x b f x a mI y b g y a <-<=≤<=≤<14.设(),1,2,3,n f x n = 都是E 的非负可测函数,1()()n n f x f x +≥ ,(,1,2,3,x E n ∈= ),()l i m ()nn fx f x →∞= 并且有0n 使0()n Ef x dx <+∞⎰,举例说明,当()n Ef x dx ⎰恒为+∞时,上述结论不成立.证明:()lim ()n n EEf x dx f x dx →∞=⎰⎰证明:令00()()(),()n n n s x f x f x n n =-≥ ,则()n s x 非负可测,且1()()n n s x s x +≥,0lim ()()()n n n s x f x f x →∞=-,对()n s x 用Levi 定理得lim ()lim ()n n n n E Es x dx s x dx →∞→∞=⎰⎰ ,即00()lim ()(()())()()n n n n n EEEEEfx dx f x dx f x f x dx f x dx f x dx →∞-=-=-⎰⎰⎰⎰⎰,00(),lim ()()n n n EEEf x dx f x dx f x dx →∞≤<+∞=⎰⎰⎰成立.反例:令n E R ⊂可测,mE =+∞,1()n f x n=于E 上,则11()()()n n f x f x f x +≥≥≥≥于E 上,lim ()0()n n f x f x →∞==于E 上,且1()n Ef x dx mE n==+∞⎰,()0lim ()n n EEf x dx f x dx →∞=≠=+∞⎰⎰15.设()f x 是可测集E 上的非负可测函数,如果对任意m N ∀∈,都有[()]()mEEf x dx f x dx =<+∞⎰⎰ 则()f x 几乎处处等于一可测集合的示性函数.证明:令0[|()0]E E x f x ==,1[|()1]E E x f x ==,[|()1]E E x f x ∞=>,[|0()1]E E x f x =<<,则 01E E E E E ∞=⋃⋃⋃由于()f x 非负可测,故[()]m f x (m N ∀∈)也非负可测,故由Fatou 引理知lim[()]lim[()]lim [()]()mmmm m m E E EEmE f x dx f x dx f x dx f x dx ∞∞→∞→∞→∞∞⋅=≤≤=<+∞⎰⎰⎰⎰故0mE ∞=,从而有11[()][()]()()m m E E EEf x dx f x dx f x dx f x dx +=+⎰⎰⎰⎰而在1E 上()1f x =,故 11()[()]()()m E E EEf x dx f x dx f x dx f x dx +=+⎰⎰⎰⎰由0f ≥,且()Ef x dx <+∞⎰知1()E f x dx <+∞⎰,故[()]()m E Ef x dx f x dx =⎰⎰,即(()[()])0m Ef x f x dx -=⎰,而()[()]0mf x f x ->于E 上(m ∀),由此可知0mE =(本节第4题)(Lemma :若0g >可测于可测集E 上,()0Eg x dx =⎰,则0mE =证明:令11[|()],[|()1]1k F E x g x F E x g x k k ∞=≤<=≥+,则 1k k E F F +∞∞=⎛⎫=⋃ ⎪⎝⎭,k N ∀∈1()()0,01k k k F E mF g x dx g x dx mF k ≤≤==+⎰⎰ 0()()0,0F EmF g x dx g x dx mF∞∞∞≤≤≤==⎰⎰则10k k mE mF mF +∞∞==+=∑)由此可知,111()0.cE f x a e E ⎧=⎨⎩,于上 ,于上 所以对几乎处处x E ∈有1111()()0E x E f x x x E χ∈⎧==⎨∉⎩, ,16.证明:如果()f x 是E 上的可测函数,则对于任意常数0a >都有 1[||()|]|()|EmE x f x a f x dx a ≥≤⎰ [|()]exp ()a EmE x f x a e f x dx -≥≤⎰ 证明: [||()|]|()||()|[||()|]EE x f x a f x dx f x dx amE x f x a ≥≥≥≥⎰⎰则 1[||()|]|()|EmE x f x a f x dx a ≥≤⎰ 又若x E ∈,则()()f x a f x a e e ≥⇔≥,故[|()][|exp ()]a E x f x a E x f x e ≥=≥,从而由前一部分结果知[|()][|exp ()][||exp ()|]a a mE x f x a mE x f x e mE x f x e ≥=≥=≥ |exp ()|exp ()a a EEe f x dx e f x dx --≤=⎰⎰17.证明;如果()f x 是1R 上的非负可测函数,则对任意实数,,,,,0a b c t a b c <>,都有[,][,]1()()a b ca t cb t f cx t dx f x dx c +++=⎰⎰ 证明:1)若()()E f x x χ=,(E 为1R 上任一可测集),则结论成立,这里1()0E x Ex x Eχ∈⎧=⎨∉⎩, ,此时[,][,]111()([,])ca t cb t ca t cb t f x dx dx m E ca t cb t c c c ++++==⋂++⎰⎰ 而[,][,][,][|]()()([,][|])E a b a b a b x cx t E f cx t dx cx t dx dx m a b x cx t E χ⋂+∈+=+==⋂+∈⎰⎰⎰([,][])E tm a b c-=⋂[][]1,,c E t E t m a b m c a b c c c c ⎡⎤⎡⎤⎛-⎫⎛-⎫⎛⎫⎛⎫==⎢⎥⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦[][][][]11,,m ca cb E t m ca cb E t t cc⎡⎤⎡⎤=-=-+⎣⎦⎣⎦[]()[],11,ca t cb t m ca t cb t E f x dx c c ++⎡⎤=++=⎣⎦⎰2)由内积的线性性质,当()f x 为简单函数时,结论也成立。

实变函数论课后答案第四章4

实变函数论课后答案第四章4

实变函数论课后答案第四章4第四章第四节习题 1.设()()n f x f x ⇒于E ,()()n g x g x ⇒于E ,证明:()()()()n n f x g x f x g x +⇒+于E证明:0ε∀>,[||()()(()())|][||()()|][||()()|]22n n n n E x f x g x f x g x E x f x f x E x g x g x εεε+-+≥⊂-≥⋃-≥ A B εε⋃@(否则,若[||()()(()())|]n n x E x f x g x f x g x ε∈+-+≥,而x A B εε∉⋃,()c c c x A B A B εεεε∈⋃=⋂|()()||()()|22n n f x f x g x g x εε⇒-<-<|()()(()())||()()||()()|22n n n n f x g x f x g x f x f x g x g x εεεε⇒≤+-+≤-+-<+=矛盾),则[||()()(()())|][||()()|][||()()|]022n n n n mE x f x g x f x g x mE x f x f x mE x g x g x εεε+-+≥≤-≥+-≥→(()(),()()n n f x f x g x g x ⇒⇒) 从而()()()()n n f x g x f x g x +⇒+ 2.设|()|n f x K ≤.a e 于E ,1n ≥,且()()n f x f x ⇒于E ,证明|()|f x K ≤.a e 于E证明:由本节定理2(Riesz 定理)从()()n f x f x ⇒知∃{}()n f x 的子列{}()kn fx 使()lim ()k n k f x f x →∞=.a e 于E设A E ⊂,(\)0m E A =,()()kn f x f x →于A ,从条件|()|kn f x K ≤.a e 于E ,设k n B E ⊂,(\)0k n m E B =,|()|k n f x K ≤.a e 于k n B 上令1()kn k B B A +∞==⋂I ,则B K ⊂,且11(\)()(()(())k k ccccc n n k k m E B m E B m E B A m E A B E +∞+∞===⋂=⋂⋃=⋂⋃⋂U U111()()(\)(\)00k k ccn n k k k m E A m E B m E A m E B +∞+∞+∞===≤⋂+⋂=+=+∑∑∑故(\)0m E B =,,k n x B k B B A ∀∈∀⊂⋂,则|()|k n f x K ≤令k →∞,|()|f x K ≤故x B ∀∈有|()|f x K ≤,从而命题得证 3.举例说明mE =+∞时定理不成立解:取(0,)E =+∞,作函数列1(0,](){0(,)n x n f x x n ∈=∈+∞ 1,2,n =L显然()1n f x →于E 上,但当01ε<<时[;|1|](,)n E x f n ε->=+∞,[;|1|](,)n mE x f m n ε->=+∞=+∞不0→故mE =+∞时定理不成立,即n f f →.a e 于E 不能推出()()n f x f x ⇒于E周民强《实变函数》P108若:n n T R R →是非奇异线性变换,n E R ⊂,则**(())|det |()m T E T m E =⋅ ()|det |T 表示矩阵T 的行列式的绝对值.证明:记{}012(,,,);01,1n i I x i n ξξξξ==≤<≤≤L{}12(,,,);02,1k n i I x i n ξξξξ-==≤<≤≤L显然0I 是2nk 个I 的平移集{}j I x +(1,2,2nk j =L )的并集,0()T I 是2nk个{}()j T I x +(1,2,2nk j =L )的并集,且有{}{}***()()()j j m T I x m TI T x m TI +=+=,{}()()j mT I x m TI += 1,2,2nk j =L现在假定()式对于0I 成立00(())|det |()|det |m T I T m I T =⋅= () 则 0|det |(())2(())nk T m T I m T I ==因为()2nk m I -=,所以得到()2|det ||det |()nk m TI T T m I -=⋅=⋅这说明()式对于I 以及I 的平移集成立,从而可知()式对可数个互不相交的二进方体的并集是成立的(对任意方体0a ∀>,°{}12(,,,);0a n iI x a ξξξξ==≤<L °000(())()|det()|()|det ||det ||det |()n a m T I m T aI T aE m I T aE a T m I =⋅=⋅== °0|det |()|det |()aT m aE I T m I =⋅=) 对一般开集G ,1i i G I +∞==U ,i I 为二进方体,i I 互补相交则111()()()|det |()|det |i i i i i i m TG m TI m TI T m I T mG +∞+∞+∞=======∑∑UT 1-1 1i i TG TI +∞==U ,T 连续,1T -连续 G 开,则()T G 开,从而可测于是应用等测包的推理方法立即可知,对一般点集()式成立 设G 为有界G δ集1i i G G +∞==I ,i G 开,1nn i i S G ==I ,则n S 开,1n n G S +∞==I 且不妨设11S G =有界,否则令1S G U =⊂ U 有界,令°1G G U =⋂即可. 1T -连续,则i TG 开,n TS 开,TG 可测(1n n TG TS +∞==I ),12TS TS ⊃⊃L ,12n S S S ⊃⊃⊃⊃L L故1()()lim()lim |det |()n n n n n n m TG m TS m TS T m S +∞→+∞→+∞====⋅I 1|det |lim ()|det |()|det |n n n n T m S T m S T mG +∞→+∞====I (n S 开)若G 为无界G δ集,令{};||m E x x m =<,则1m m G G E +∞==⋂U ,m G E ⋂为有界G δ集1()(())lim (())m m n m m TG m T G E m T G E +∞→+∞==⋂=⋂U1lim |det |()|det |lim ()|det |()|det |m m m n n m T m G E T m G E T m G E T mG+∞→+∞→+∞==⋅⋂=⋂=⋂=U n E R ∀⊂,T 线性,则n E R ∀⊂若0mE =,则(())0m T E =(后面证)n E R ∀⊂,则由注释书P69定理3,存在G δ集G E ⊃,*mG m E =,若E 有界,*m E <+∞则*(\)0m G E =,故**0((\))(\))m T G E m TG TE == (T 1-1)****()(\))()0()()m TG m TG TE m TE m TE m TG ≤+=+≤则*()()m TE m TG =,故**()()|det ||det |m TE m TG T mG T m E ===若E 无界,{};||m E x x m =<则1m m E E E +∞==⋂U ,m E E ⋂Z****1()(())lim (())lim |det |()m m m n n m m TE m T E E m T E E T m E E +∞→+∞→+∞==⋂=⋂=⋂U**11|det |lim ()|det |()|det |(())m m m n m m T m E E T m G E T m E E +∞+∞→+∞===⋂=⋂=⋂U U*|det |()T m E =:n n T R R ∀→线性,若*()0m E =,则*()0m TE =证明:(0,,1,0,,0)n i e R =∈L L 为n R 的基,()i i T e x =, n x R ∀∈,12(,,,)n x ξξξ=L ,1122n n Tx x x x ξξξ=+++L ,令1221(||)i i M x +∞==∑,则112222112211|()|||||||||||||(||)(||)||nnn n i i i i T x x x x x M x ξξξξ==≤+++≤=∑∑L则|()()|||,,n T x T y M x y x y R -≤-∀∈(即T 是Lipschitz 连续的)∀一边平行于坐标平面的开超矩体{}121122(,,,),(,)(,)(,)n i i i n n I x a b a b a b a b ξξξξ==<<=⨯⨯⨯L L 于12n I I I ⨯⨯⨯L221()(||)n ni i i diamI b a +∞==-∑12n TI TI TI TI =⨯⨯⨯L ,(,)i i i I a b =开,1T -连续,则i TI 是1R 中开集从而可测,从而12TI TI ⨯是2R 中可测集,由归纳法知12n TI TI TI ⨯⨯⨯L 是可测集若()式成立*0()|det |()o m TI T m I =,则∀矩体{},i i i I x a b ξ=<<%,1ni i I I ==%U ,iI 为正方体,则对开集G 也有()|det |()m TG T m G =,特别对开区间{},i i i I x a b ξ=<<这一开集有*()|det |()m TI T m I =则可知n E R ∀∈,若*()0m E =,则*()0m TE =事实上,0ε∀>,{}1i i I +∞=∃开区间,1i i E I ∞=⊂U ,1||i i I ε∞=<∑****111()(())()()i i i i i i m TE m T I m TI m TI ∞∞∞===≤=≤∑U U111|det |()|det |()|det ||||det |i i i i i i T m I T m I T I T ε∞∞∞======<∑∑∑令0ε→知*()0m TE =若()成立,则T 将可测集映为可测集,还要看()证明过程是否用到T 将可测集映为可测集或*()0m E =推出*()0m TE =这一性质!下面证()成立.任一线性变换至多可分解为有限个初等变换的乘积(i )坐标12,,,n ξξξL 之间的交换 (ii )11,i i ξβξξβξ→→ (2,,)i n =L (iii) 112,i i ξξξξξ→+→ (2,,)i n =L 在(i )的情形显然00|det |1,T TI I ==()成立在(ii )的情形下,T 矩阵可由恒等矩阵在第一行乘以β而得到{}1211()(,,,),01,2,3,,,0(0),0(0)o n i T I x i n ξξξξξβββξβ==≤<=≤<><≤<L L 当当 从而可知0(())||m T I β= ()式成立在(iii )的情形,此时det 1T = (1100010000100001T ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦L L L M M M OM L) 而且{}01212()(,,,),01(1),01n i T I x i ξξξξξξ==≤<≠≤-<L X @ ({}{}00122();,(,,,),01,1n i T I y x I y Tx i n ξξξξξ=∃∈==+≤<≤≤L01221221(),(,,,),01,01n i y T I y ξξξξξξξξξ∀∈=+≤<≤+-=<L则{}01212()(,,,),01(1),01n i T I x i ξξξξξξ⊂=≤<≠≤-<L 反过来,12(,,,)n y X ξξξ∀=∈L ,01(1)i i ξ≤<≠则1201ξξ≤-<令122(,,,)n x ξξξξ=-L 则0x I ∈,12(,,,)n Tx y ξξξ==L 则0()y T I ∈,0()X T I ⊂ )记{}1201(,,,)(),1n A x T I ξξξξ==∈<L {}012()(,,,),01(1)n i T I x i ξξξξ==≤<≠L10(1,0,,0),()\e B T I A ==L ,则{}12021(,,,),n A x I Y ξξξξξ==∈≤L @ {}112012\(,,,),n B e x I C ξξξξξ==∈<L @(12(,,,)n x Y ξξξ∀=∈L ,则01,1i i n ξ≤<≤≤,21ξξ≤,则12001,()x T I ξξ≤-<∈,且11ξ<,则x A ∈反过来,y A ∀∈,则存在120(,,,)n x I ξξξ=∈L ,01i ξ≤<,使122(,,,)n y Tx ξξξξ==+L ,12001,y I ξξ≤+<∈,且212,y YOK ξξξ≤+∈!1y B e ∀∈-,存在00()\z T I A ∈,使1\y z e =, 0x I ∃∈,122(,,,)01n i z Tx ξξξξξ==+≤<L121z A ξξ∉+≥,,1122\(1,,,)n z e ξξξξ=+-L ,12210011,\z e I ξξξ≤+-≤<∈1221111,\y z e C ξξξξ+-≤⇔<=∈反过来,y C ∀∈,12012(,,,),,01,1n i y I i n ξξξξξξ=∈<≤<≤≤L112(1,,,)n z y e ξξξ=+=+L ,则 1212011(,01)i ξξξξξ≤-+<<≤<则0()z T I ∈,又10111,()\,\,z A z T I A B z e y z B ξ+≥∉∈==∈,则11\,\,y B e C B e C B ∈∈=得证)由此得到0011(),{(),()T I A B A B I A B e A B e =⋃⋂=∅=⋃-⋂-=∅010(())(\)1|det |m T I mA mB mA m B e mI T =+=+===故()式成立 这里用到A,B可测,0(),(,)(,)(,)A T I H H =⋂=-∞+∞⨯-∞+∞⨯⨯-∞+∞L ,0()T I 可测,H 开,则A可测,0()\T I A B =可测故还是需要:若:n n T R R →为非奇异线性变换,则Borel ∀集n E R ⊂,()T E 是可测集,从而∀方块I ,()T I 可测,0()T I 可测有了,这就有(),从()知T 将零测集E 变为零测集,从而有T 将可测集变为可测集1:n f R R →可测11()BorelB R f B -⇔∀⊂为可测集(江则坚P109习题10)现设:n n f R R →连续,则∀开集n O R ⊂,1()f O -是开集, 记{}1|()n n B R f B R -=⊂是中的可测子集1B ,可证1B 是一个σ-代数,且包含全部开集,从而包含全部Borel 集证1)1()f -∅∈∅=∅,1B 可测2)若A ∈1B ,则1111()()()()c n n f A f R A f R f A ----=-=-显然也可测,c A ∈1B3)若,(1,2,3,)i A i ∈=L 1B ,则i ∀,1()i f A -可测,1111()()i i i i f A f A +∞+∞--===U U 可测1B 是σ-代数 f 连续,则1()openOf O -∀∈1B ,1B 包含全部开集,从而包含全部Borel 集:n n T R R →为非奇异线性,1T -显然连续I ∀方体半开半闭(显然为Borel 集),11()T I TI --=可测 1[,)n i i i I a b ==∏为Borel ,111[,)ni i i m I a b m+∞===-∏I事实上,0ε∀>从()()mkm m n f x g x →(当k →+∞)知00(,)N N m ε∃=,使当0k N ≥时|()()|m km m n f x g x ε→<而当0max(,(,))k m N m ε≥时,k m k k n n ≥,故|()()|k km m n f x g x ε→<(k k n 是{}1m k k n +∞=的子列中的一个元,故,m kk m k k l n n +=,0l ≥则0(,)k N m ε≥时,0m k k l N +≥ 则,|()()||()()|k mkk l m km m m m n nf xg x f x g x ε+→=→<)()k m f x 收敛于1()m g x R ∈,即k f 在E 上收敛.若条件改为:F 是一族一致有界的[,]a b 上的函数族,则结论成立 令{}123,,,[,]E x x x a b =⊂L 则0,|()|,[,]M f x M x a b ∃>≤∀∈, {}11()|x f x f =∈F F ,则1x F 是1R 中的有界集,由聚点原理∃一列n f ∈F 和1()g x R ∈,11()()kn f g x n →→∞同样令{}11(2)2()|1,2,kx n f x k ==L F (n f 为上述取定的一列n f ∈F )故12|()|kn f x M ≤,由聚点原理,存在1kn f 的子列2kn f 和1()g x R ∈(21k k n n k ≥≥)使22()kn f g x →,由此用归纳法可作出m N ∀∈,{}1mkn k f +∞=⊂F (m kn f 为1m kn f -的子列)使1()m km n f g x R →∈令k kk n f f =,则n f ∈F 且m ∀有()k km n f g x →故由Berstein 定理即知(0,1)B C c ≤≤=,C c =方法②建立十进位小数的展式中缺7的所有无尽十进位小数之集A 和(0,1)上一切无尽九进位小数之集B 之间的一一对应.集A 中每个十进位小数对应B 中这样的小数,该小数是前一个小数中凡是数字9都有数字7代替后而得到的,这个对应是一一的(九进小数中不含9,而A 中不含7,将9a 7,而其他不动)显然(0,1),B c A c === 周民强书P35思考题:6.设F 是定义在[,]a b 上的实值函数族,[,]E a b ⊂是可数集,则存在n f ∈F (1,2,n =L )使得{}()n f x 在E 上收敛.我怀疑本题有错:若不假设F 是[,]a b 上一致有界的,会有反例: 令[,]a b =[0,1],设{}|1,2,m f m ==L F 这里(),[,]m f x m x a b =∀∈,则显然任取无穷个(1,2,)()kkk n n f k f x n ∈==→+∞L F 于[,]x a b ∀∈,故()n f x 不会收敛!0a =时,{}111|lim ()0[|()]n jn k n i n j iE x f x E x f x k +∞+∞+∞+∞→∞====>=>UIUU 故还有:[|lim ()][|lim(())][|lim(())]n n n nn n E x f x a E x f x a E x f x a →∞→∞→∞<=--<=->- 111111[|()][|()]j j k n i n j ik n i n j i E x f x a E x f x a k k +∞+∞+∞+∞+∞+∞+∞+∞=========->-+=<-UI UU UI UU鄂强91:介于0与1之间,而十进展开式中数字7的一切实数所成立之集具有什么势证明:①从江则坚CH1§题知2N c =,且从证明中知2N A ∀⊂与之1-1对应的是(1)(2)0.(0,1)A A χχ∈L ,故(0,1)中小数点全是0,1两位数字构成的数组成的集合,(0,1)B 满足(0,1)2N B c ==,而十进展开式中缺数字7的一切实数之集C 满足(0,1)B C ⊂⊂附加题:徐森林书设()(1,2,)i f x i =L 为定义在n R 上的实函数列,适用点集 1{|()},1,2,i x f x i j j ≥=L 表示点集[|lim ()0]n n x f x →∞> 证明:江则坚书第一章第一节习题8:若()()n f x f x →于E ,则1a R ∀∈有11[|()]liminf [|()]n k E x f x a E x f x a k +∞=≤=≤+I 111111[|()]liminf [|()][|()]c n i k k k n i n E x f x a E x f x a E x f x a k k +∞+∞+∞+∞+∞=====⎛⎫>=≤+=>+ ⎪⎝⎭U I UI U 即111[|lim ()][|()]n i n k n i n E x f x a E x f x a k+∞+∞+∞→∞===>=>+UI U 另一方面,{}()n f x ∀易知{}|sup ()[|()]m m m n m n E x f x a E x f x a +∞≥=>=>U 故{}1|lim ()[|inf sup ()]n m n n m n E x f x a E x f x a →∞≥≥>=> 111111[|limsup ()][|sup ()][|()]m m m n m n m i k n i n k n i n m i E x f x a E x f x a E x f x a k k +∞+∞+∞+∞+∞+∞+∞→∞≥≥========>=>+=>+UI U UI UU思考:若A 不可测, B 也不可测,且(,)0A B ρ>,则A B ⋃不可测((,)0A B ρ=显然不对, 1,,(,)0,R Q B R Q R Q R R ρ===⋃=可测 至少当,A B 有一个有界时,结论是对的 若存在开集G 使G A ⊂,G B ⋂=∅,不妨设A 有界, mG <+∞,则若A B ⋃可测,则****(())(())()c mG m G A B m G A B m A m G A =⋂⋃+⋂⋃=+- )。

实变函数论课后答案解析第四章4

实变函数论课后答案解析第四章4
可测 为可测集(江则坚P109习题10)
现设 连续,则 开集 , 是开集,
记 ,可证 是一个 代数,且包含全部开集,从而包含全部 集
证1) 可测
2)若 ,则 显然也可测,
3)若 ,则 , 可测, 可测 是 代数
连续,则 , 包含全部开集,从而包含全部 集
为非奇异线性, 显然连续
方体半开半闭(显然为 集), 可测
(i)坐标 之间的交换
(ii)
(iii)
在(i)的情形显然 (2.9)成立
在(ii)的情形下, 矩阵可由恒等矩阵在第一行乘以 而得到
从而可知 (2.9)式成立
在(iii)的情形,此时 ( )
而且


反过来, , 则
令 则 ,
则 , )

,则
( ,则 , ,则
,且 ,则反过来, ,则存在 , Fra bibliotek使, ,且
实变函数论课后答案第四章4
第四章第四节习题
1.设 于 , 于 ,证明: 于
证明: ,
(否则,若 ,而 ,
矛盾),则
( )
从而
2.设 于 , ,且 于 ,证明 于
证明:由本节定理2( 定理)从 知 的子列 使

设 , , 于 ,从条件 于 ,设
, , 于 上
令 ,则 ,且

,则
令 ,
故 有 ,从而命题得证
显然
周民强书P35思考题:
6.设 是定义在 上的实值函数族, 是可数集,则存在 ( )使得 在 上收敛.
我怀疑本题有错:若不假设 是 上一致有界的,会有反例:
令 = ,设 这里 ,则显然任取无穷个 于 ,故 不会收敛!
时,

实变函数论课后答案第五章4

实变函数论课后答案第五章4

实变函数论课后答案第五章4第五章第四节习题1.证明:若()(),f x g x 都是[],a b 上的有界变差函数,则()()()(),f x g x f x g x +也都是[],a b 上的有界变差函数。

证明 对于[],a b 上的任一分划01:n a x x x b =<<<=()()()11nf i i i V f x f x -=∆=-∑()()()11n g i i i V g x g x -=∆=-∑()()()()()111nf g i i i i i V f x f x g x g x +--=∆=-+-∑()()()()()()1111n ni i i i f g i i f x f x g x g x V V --==≤-+-=∆+∆∑∑所以()()()()()()sup sup sup b b b a f g f g a a V f g V V V V f V g ++=∆≤∆+∆=+,f g 为[],a b 上的有界变差函数,则()b a V f <+∞,()b a V g <+∞,故()b a V f g +<+∞从而知f g +是[],a b 上的有界变差函数。

又,f g 为[],a b 上的有界变差函数,则[],x a b ∀∈()()()b a f x f b V f -≤<+∞,()()()b a g x g b V g -≤<+∞故,f g 在[],a b 上有界,所以M ∃<+∞,f M ≤,g M ≤于[],a b 上。

[],a b ∀的一个分划01:n a x x x b =<<<=()()()()()111nfg i i i i i V f x g x f x g x --=∆=-∑()()()()()()()()11111i i i i i i i i i f x g x f x g x f x g x f x g x +∞----==-+-∑()()()()()()11111ni i i i i i i i f x g x g x g x f x f x +∞---==≤-+-∑∑()()()()1111i i i i i i M g x g x M f x f x +∞+∞--==≤-+-∑∑()()()()()()b b g f a a M V V M V f V g =∆+∆≤+所以()()()()b b b a a a V fg M V f V g ≤+<+∞ 所以fg 是[],a b 上的有界变差函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档