同济大学数学系《工程数学—线性代数》(第6版)笔记和考研真题及课后习题详解(第3章 矩阵的初等变换与
同济大学数学系《工程数学—线性代数》(第6版)笔记和课后习题考研真题详解

同济大学数学系《工程数学—线性代数》(第6版)笔记和课后习题(含考研真题)详解
攻重浩精研学习网提供资料
第1章行列式
1.1复习笔记
一、n阶行列式
行列式的性质:
(1)行列式与它的转置行列式相等。
(2)对换行列式的两行(列),行列式变号。
(3)如果行列式有两行(列)元素成比例,则此行列式等于零。
(4)行列式的某一行(列)中所有的元素都乘同一数k,等于用数k乘此行列式。
(5)若行列式的某一行(列)的元素都是两数之和,则可以将该行列式拆分成两个行列式之和。
(6)把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变。
二、行列式按行(列)展开
1余子式与代数余子式
n阶行列式中,把a ij所在的第i行和第j列去掉后,余下n-1阶行列式称为a ij的余子式,记作M ij,记
A ij=(-1)i+j M ij,A ij称为(i,j)元a ij的代数余子式。
2定理
行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和,即
D=a i1A i1+a i2A i2+…+a in A in(i=1,2,…,n)
或D=a1j A1j+a2j A2j+…+a nj A nj(j=1,2,…,n)。
3范德蒙德行列式
4代数余子式的推论
行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零,即
a i1A j1+a i2A j2+…+a in A jn=0,i≠j或a1i A1j+a2i A2j+…+a ni A nj=0,i≠j
5代数余子式的重要性质
或。
同济大学数学系《工程数学—线性代数》第6版课后习题(向量组的线性相关性)【圣才出品】

于是
,从而有
6.设 a1,a2 线性无关,a1+b,a2+b 线性相关,求向量 b 用 a1,a2 线性表示的表示 式.
解:方法一 因 a1+b,a2+b 线性相关,所以存在不全为零的常数 k1,k2,使
因 a1,a2 线性无关,可知 k1+k2≠0.不然,由式(4-1)得
(4-1)
这与 k1,k2 不全为零矛盾.于是,由式(4-2-1)得
圣才电子书 十万种考研考证电子书、题库视频学习平台
同济大学数学系《工程数学—线性代数》第 6 版课后习题 第 4 章 向量组的线性相关性
1.已知向量组
证明 B 组能由 A 组线性表示,但 A 组不能由 B 组线性表示.
证:因 B 组能由 A 组线性表示 R(A,B)=R(A)
才能成立,则 a1,…,am 线性无关,b1,…,bm 亦线性无关. (4)若 a1,…,am 线性相关,b1,…,bm 亦线性相关,则有不全为零的数λ1,…,λ
m,使
4 / 27
圣才电子书
同时成立.
十万种考研考证电子书、题库视频学习平台
答:(1)命题是错误的,如:取向量
3.判定下列向量组是线性相关还是线性无关:
. 解:记(1)、(2)中向量所构成的矩阵为 A.
4.问 a 取什么值时下列向量组线性相关?
解:记
,则
2 / 27
圣才电子书 十万种考研考证电子书、题库视频学习平台
于是当 a=-1 或 a=2 时 detA=0,即 R(A)<3,此时向量组 a1,a2,a3 线性相关.
A 组不能由 B 组线性表示 R(B,A)>R(B)
于是,B 组能由 A 组线性表示并且 A 组不能由 B 组线性表示
工程数学线性代数(同济大学第六版)课后习题答案(全)

第一章 行列式1? 利用对角线法则计算下列三阶行列式?(1)381141102---?解 381141102---解 解 (4)y x y x x y x y yx y x +++?解 yx y x x y x y yx y x +++?x (x ?y )y ?yx (x ?y )?(x ?y )yx ?y 3?(x ?y )3?x 3 ?3xy (x ?y )?y 3?3x 2 y ?x 3?y 3?x 3 ??2(x 3?y 3)?2?按自然数从小到大为标准次序?求下列各排列的逆序数?(1)1 2 3 4?解逆序数为0(2)4 1 3 2?解逆序数为4? 41? 43? 42? 32?(3)3 4 2 1?解逆序数为5? 3 2? 3 1? 4 2? 4 1, 2 1?解解解4 2(1个)6 2? 6 4(2个)??????(2n)2? (2n)4? (2n)6????? (2n)(2n?2) (n?1个) 3?写出四阶行列式中含有因子a11a23的项?解含因子a11a23的项的一般形式为(?1)t a11a23a3r a4s?其中rs 是2和4构成的排列? 这种排列共有两个? 即24和42? 所以含因子a 11a 23的项分别是(?1)t a 11a 23a 32a 44?(?1)1a 11a 23a 32a 44??a 11a 23a 32a 44? (?1)t a 11a 23a 34a 42?(?1)2a 11a 23a 34a 42?a 11a 23a 34a 42? 4? 计算下列各行列式?(1)71100251020214214? 解解 解 ef cf bf de cd bd ae ac ab ---e c b e c b ec b adf ---=abcdef adfbce 4111111111=---=?(4)dc b a 100110011001---?解 d c b a 100110011001---dc b aab ar r 10011001101021---++=====cdad ab +-+--=+111)1)(1(23?abcd ?ab ?cd ?ad ?1? 5? 证明:(1)1112222b b a a b ab a +?(a ?b )3;5232125232125232125232122222++++++++++++=d d d d c c c c b b b b a a a a (c 4?c 3? c 3?c 2得) 022122212221222122222=++++=d d c c b b a a ?(4)444422221111d c b a d c b a d c b a ?(a ?b )(a ?c )(a ?d )(b ?c )(b ?d )(c ?d )(a ?b ?c ?d ); 证明=(a ?b )(a ?c )(a ?d )(b ?c )(b ?d )(c ?d )(a ?b ?c ?d )?当 则D n 6?翻转? D 1证明D 1 证明 因为D ?det(a ij )? 所以 D D n n n n 2)1()1()2( 21)1()1(--+-+⋅⋅⋅++-=-=?同理可证 nnn n n n a a a a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=- )1(11112)1(2D D n n T n n 2)1(2)1()1()1(---=-=? D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(?7? 计算下列各行列式(D k 为k 阶行列式)?(1)aaD n 11⋅⋅⋅=, 其中对角线上元素都是a ? 未写出的元素都是0?解D n=( 解 (3)111 1 )( )1()( )1(1111⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅⋅-⋅⋅⋅--⋅⋅⋅-=---+n a a a n a a a n a a a D n n n n n n n ; 解 根据第6题结果? 有 此行列式为范德蒙德行列式? ∏≥>≥+-=11)(j i n j i ?(4)n nnnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112;解于是而所以 (5) D ?det(a ij )? 其中a ij ?|i ?j |; 解 a ij ?|i ?j |??(?1)n ?1(n ?1)2n ?2?(6)nn a a a D +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=1 11 1 1111121, 其中a 1a 2 ? ? ? a n?0?解)11)((121∑=+=ni in a a a a ? 8? 用克莱姆法则解下列方程组?(1)⎪⎩⎪⎨⎧=+++-=----=+-+=+++01123253224254321432143214321x x x x x x x x x x x x x x x x ?解 因为所以 解 150751001651000651000650000611==D ? 114551010651000650000601000152-==D ?70351100650000601000051001653==D ? 39551000601000051000651010654-==D ? 2121105100065100651100655==D ? 所以9? 解 令于是? 10 解 ?(1??)3?2(1??)2???3? 令D ?0? 得??0? ??2或??3?于是? 当??0? ??2或??3时? 该齐次线性方程组有非零解?第二章 矩阵及其运算1? 已知线性变换?⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x ? 求从变量x 1? x 2? x 3到变量y 1? y 2? y 3的线性变换? 解 由已知?⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x ?故 2? 求从z 1 3? 设⎪⎪⎭⎫ ⎝⎛--=111111111A ? ⎪⎪⎭⎫⎝⎛--=150421321B ? 求3AB ?2A 及A T B ?解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503?⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T ? 4? 计算下列乘积?(1)⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134? 解 ⎪⎫ ⎛⎪⎫ ⎛-27321134⎪⎫ ⎛⨯+⨯-+⨯⨯+⨯+⨯=132)2(71112374⎪⎫ ⎛=635? ⎭⎝-204 (5)⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ? 解?(a 11x 1?a 12x 2?a 13x 3 a 12x 1?a 22x 2?a 23x 3 a 13x 1?a 23x 2?a 33x 3)⎪⎪⎭⎫ ⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=?5? 设⎪⎭⎫ ⎝⎛=3121A ? ⎪⎭⎫ ⎝⎛=2101B ? 问? (1)AB ?BA 吗?解 AB ?BA ?因为⎪⎭⎫ ⎝⎛=6443AB ? ⎪⎭⎫ ⎝⎛=8321BA ? 所以AB ?BA ? 222但 所以(A 而 故(A ?B )(A ?B )?A 2?B 2? 6? 举反列说明下列命题是错误的?(1)若A 2?0? 则A ?0?解 取⎪⎭⎫ ⎝⎛=0010A ? 则A 2?0? 但A ?0? (2)若A 2?A ? 则A ?0或A ?E ?解 取⎪⎭⎫ ⎝⎛=0011A ? 则A 2?A ? 但A ?0且A ?E ? (3)若AX ?AY ? 且A ?0? 则X ?Y ?解 取 ⎪⎭⎫ ⎝⎛=0001A ? ⎪⎭⎫ ⎝⎛-=1111X ? ⎪⎭⎫ ⎝⎛=1011Y ? 则AX ?AY ? 且A ?0? 但X ?Y ?7? 8? ⎪⎪⎭⎫ ⎝⎛=⋅=43423434004064λλλλλλA A A ? ⎪⎪⎭⎫ ⎝⎛=⋅=545345450050105λλλλλλA A A ? ? ? ? ? ? ??⎝⎛=k A k k k k k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫ ? 用数学归纳法证明?当k ?2时? 显然成立?假设k 时成立,则k ?1时,⎫⎛++--+111)1()1(k k k k k k λλλ 9?? 从而B AB ?BA (AB )T ?(BA )T ?A T B T ?AB ?即AB 是对称矩阵?必要性? 因为A T ?A ? B T ?B ? 且(AB )T ?AB ? 所以AB ?(AB )T ?B T A T ?BA ?11? 求下列矩阵的逆矩阵?(1)⎪⎭⎫ ⎝⎛5221?解 ⎪⎭⎫ ⎝⎛=5221A ? |A |?1? 故A ?1存在? 因为 ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A ? 故 *||11A A A =-⎪⎭⎫ ⎝⎛--=1225? (2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ?所以 所以 (4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2? ? ?a n ?0) ?解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021? 由对角矩阵的性质知⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 ? 12? 解下列矩阵方程?(1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ?(4)⎪⎪⎭⎝--=⎪⎪⎭ ⎝⎪⎪⎭ ⎝021102010100100001X ? 解 11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=201431012? 13? 利用逆矩阵解下列线性方程组?(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ? 解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x ? 故 ⎪⎫ ⎛⎪⎫ ⎛⎪⎫ ⎛⎪⎫ ⎛-1132111x 故 故有 证明 因为A k ?O ? 所以E ?A k ?E ? 又因为E ?A k ?(E ?A )(E ?A ?A 2?? ? ??A k ?1)?所以 (E ?A )(E ?A ?A 2?? ? ??A k ?1)?E ?由定理2推论知(E ?A )可逆? 且(E ?A )?1?E ?A ?A 2?? ? ??A k ?1?证明 一方面? 有E ?(E ?A )?1(E ?A )?另一方面? 由A k ?O ? 有E ?(E ?A )?(A ?A 2)?A 2?? ? ??A k ?1?(A k ?1?A k )?(E ?A ?A 2?? ? ??A k ?1)(E ?A )?故 (E ?A )?1(E ?A )?(E ?A ?A 2?? ? ??A k ?1)(E ?A )?两端同时右乘(E ?A )?1? 就有(E ?A )?1(E ?A )?E ?A ?A 2?? ? ??A k ?1?15? 设方阵A 满足A 2?A ?2E ?O ? 证明A 及A ?2E 都可逆? 并求A ?1及(A ?2E )或 或 即 故 |A |?0?所以A 可逆? 而A ?2E ?A 2? |A ?2E |?|A 2|?|A |2?0? 故A ?2E 也可逆?由 A 2?A ?2E ?O ?A (A ?E )?2E?A ?1A (A ?E )?2A ?1E ?)(211E A A -=-? 又由 A 2?A ?2E ?O ?(A ?2E )A ?3(A ?2E )??4E? (A ?2E )(A ?3E )??4 E ?所以 (A ?2E )?1(A ?2E )(A ?3E )??4(A ?2 E )?1?)3(41)2(1A E E A -=+-? 16? 设A 为3阶矩阵? 21||=A ? 求|(2A )?1?5A *|? 解 因为*||11A A A =-? 所以 ?|?2A ?1|?(?2)3|A ?1|??8|A |?1??8?2??16??1?1从而 又A 所以A *?O ? 这与|A *|?0矛盾,故当|A |?0时? 有|A *|?0?(2)由于*||11A A A =-? 则AA *?|A |E ? 取行列式得到 |A ||A *|?|A |n ?若|A |?0? 则|A *|?|A |n ?1?若|A |?0? 由(1)知|A *|?0? 此时命题也成立?因此|A *|?|A |n ?1?19? 设⎪⎪⎭⎫ ⎝⎛-=321011330A ? AB ?A ?2B ? 求B ? 解 由AB ?A ?2E 可得(A ?2E )B ?A ? 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E A B ⎪⎪⎭⎫ ⎝⎛-=011321330? 20? 设⎪⎫ ⎛=020101A ? 且AB ?E ?A 2?B ? 求B ? 即 ??8(?2E ?2A )?1?4(E ?A )?1?4[diag(2? ?1? 2)]?1?2diag(1? ?2? 1)?22? 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫ ⎝⎛-=8030010100100001*A ?且ABA ?1?BA ?1?3E ? 求B ?解 由|A *|?|A |3?8? 得|A |?2?由ABA ?1?BA ?1?3E 得AB ?B ?3A ?B ?3(A ?E )?1A ?3[A (E ?A ?1)]?1A⎪⎪⎫ ⎛=⎪⎪⎫ ⎛-=-06060060000601010010000161? 而 故 求?(A ) ?diag(1?1?58)[diag(5?5?5)?diag(?6?6?30)?diag(1?1?25)]?diag(1?1?58)diag(12?0?0)?12diag(1?0?0)??(A )?P ?(?)P ?1⎪⎪⎭⎫ ⎝⎛=1111111114? 25? 设矩阵A 、B 及A ?B 都可逆? 证明A ?1?B ?1也可逆? 并求其逆阵? 证明 因为A ?1(A ?B )B ?1?B ?1?A ?1?A ?1?B ?1?而A ?1(A ?B )B ?1是三个可逆矩阵的乘积? 所以A ?1(A ?B )B ?1可逆? 即A ?1?B ?1可逆? (A ?1?B ?1)?1?[A ?1(A ?B )B ?1]?1?B (A ?B )?1A ?26? 计算⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛30003200121013013000120010100121? 解 设⎪⎭⎫ ⎝⎛=10211A ? ⎪⎭⎫ ⎝⎛=30122A ? ⎪⎭⎫ ⎝⎛-=12131B ? ⎪⎭⎫ ⎝⎛--=30322B ? 则而 所以 即 而 01111|||||||| ==D C B A ? 故 |||||||| D C B A D C B A ≠? 28? 设⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A ? 求|A 8|及A 4?解 令⎪⎭⎫ ⎝⎛-=34431A ? ⎪⎭⎫ ⎝⎛=22022A ? 则 ⎪⎭⎫ ⎝⎛=21A O O A A ? 故 8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A ? 1682818281810||||||||||===A A A A A ? ⎫⎛405 所以 解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A ? 则 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321? 由此得 ⎪⎩⎪⎨⎧=+=+==s n E BD CD O BD CD O AD E AD 423121?⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D ?所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A ? 30? 求下列矩阵的逆阵?(1)⎪⎪⎪⎭⎫ ⎝⎛2500380000120025? 解 设⎪⎭⎫ ⎝⎛=1225A ? ⎪⎭⎫ ⎝⎛=2538B ? 则于是 1? 把下列矩阵化为行最简形矩阵?(1)⎪⎪⎭⎫ ⎝⎛--340313021201? 解 ⎪⎪⎭⎫ ⎝⎛--340313021201(下一步? r 2?(?2)r 1? r 3?(?3)r 1? )~⎪⎪⎭⎫ ⎝⎛---020*********(下一步? r 2?(?1)? r 3?(?2)? ) ~⎪⎪⎭⎫ ⎝⎛--010*********(下一步? r 3?r 2? ) ~⎪⎪⎭⎫ ⎝⎛--300031001201(下一步? r 3?3? ) ~⎪⎪⎭⎫ ⎝⎛000031005010? (3)⎪⎪⎪⎭⎫ ⎝⎛---------12433023221453334311?解 ⎪⎪⎪⎭⎫ ⎝⎛---------12433023221453334311(下一步? r 2?3r 1? r 3?2r 1? r 4?3r 1? ) ~⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311(下一步? r 2?(?4)? r 3?(?3) ? r 4?(?5)? ) ⎪⎫ ⎛---2210034311 ⎭⎝41000 ~⎪⎪⎪⎭⎫ ⎝⎛----00000410001111020201(下一步? r 2?r 3? ) ~⎪⎪⎪⎭⎫ ⎝⎛--00000410003011020201?2? 设⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A ? 求A ? 解 ⎪⎪⎭⎫ ⎝⎛100001010是初等矩阵E (1? 2)? 其逆矩阵就是其本身? ⎪⎪⎭⎫ ⎝⎛100010101是初等矩阵E (1? 2(1))? 其逆矩阵是 3? 故逆矩阵为⎪⎪⎪⎪⎭⎫ ⎝⎛----21021211233267? (2)⎪⎪⎪⎭⎫ ⎝⎛-----1210232112201023?解 ⎪⎪⎪⎭⎫ ⎝⎛-----10000100001000011210232112201023 ~⎪⎪⎪⎭⎫ ⎝⎛----00100301100001001220594012102321 ⎪⎫ ⎛---01002321 4?⎪⎭ ⎝-113⎪⎭⎝-13 解 因为⎪⎪⎭⎫ ⎝⎛----=132231 113122214) ,(B A ⎪⎪⎭⎫ ⎝⎛--412315210 100010001 ~r ? 所以 ⎪⎪⎭⎫ ⎝⎛--==-4123152101B A X ?(2)设⎪⎪⎭⎫ ⎝⎛---=433312120A ? ⎪⎭⎫ ⎝⎛-=132321B ? 求X 使XA ?B ? 解 考虑A T X T ?B T ? 因为⎪⎪⎭⎫ ⎝⎛----=134313*********) ,(T T B A ⎪⎪⎭⎫ ⎝⎛---411007101042001 ~r ? 所以 ⎪⎫ ⎛--==-7142)(1TT T B A X ? 从而 5? 所以 6?r 阶子式?0的r 例如? ⎪⎪⎭⎫ ⎝⎛=010*********A ? R (A )?3? 0000是等于0的2阶子式? 010001000是等于0的3阶子式? 7? 从矩阵A 中划去一行得到矩阵B ? 问A ? B 的秩的关系怎样? 解 R (A )?R (B )?这是因为B 的非零子式必是A 的非零子式? 故A 的秩不会小于B 的秩? 8? 求作一个秩是4的方阵? 它的两个行向量是(1? 0? 1? 0? 0)? (1? ?1? 0? 0? 0)?解 用已知向量容易构成一个有4个非零行的5阶下三角矩阵?⎪⎪⎪⎪⎫ ⎛-01000001010001100001? 9? (2)⎪⎪⎭⎫ ⎝⎛-------815073*********? 解 ⎪⎪⎭⎫ ⎝⎛-------815073*********(下一步? r 1?r 2? r 2?2r 1? r 3?7r 1? ) ~⎪⎭⎫ ⎝⎛------15273321059117014431(下一步? r 3?3r 2? )~⎪⎭⎫ ⎝⎛----0000059117014431? 矩阵的秩是2? 71223-=-是一个最高阶非零子式? (3)⎪⎪⎪⎭⎫ ⎝⎛---02301085235703273812?10? 设A 、B 都是m ?n 矩阵? 证明A ~B 的充分必要条件是R (A )?R (B )? 证明 根据定理3? 必要性是成立的?充分性? 设R (A )?R (B )? 则A 与B 的标准形是相同的? 设A 与B 的标准形为D ? 则有A ~D ? D ~B ?由等价关系的传递性? 有A ~B ?11? 设⎪⎪⎭⎫ ⎝⎛----=32321321k k k A ? 问k 为何值? 可使 (1)R (A )?1? (2)R (A )?2? (3)R (A )?3?解 ⎪⎪⎭⎫ ⎝⎛----=32321321k k k A ⎪⎪⎭⎫ ⎝⎛+-----)2)(1(0011011 ~k k k k k r ?于是 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛1343344321k x x x x (k 为任意常数)? (2)⎪⎩⎪⎨⎧=-++=--+=-++05105036302432143214321x x x x x x x x x x x x ? 解 对系数矩阵A 进行初等行变换? 有A ?⎪⎪⎭⎫ ⎝⎛----5110531631121~⎪⎪⎭⎫ ⎝⎛-000001001021? 于是 ⎪⎩⎪⎨⎧===+-=4432242102x x x x x x x x ? 故方程组的解为⎫⎛⎫⎛-⎫⎛121x 于是 ⎪⎩==0043x x (4)⎪⎩⎪⎨⎧=++-=+-+=-+-=+-+03270161311402332075434321432143214321x x x x x x x x x x x x x x x x ? 解 对系数矩阵A 进行初等行变换? 有A ?⎪⎪⎪⎭⎫ ⎝⎛-----3127161311423327543~⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--000000001720171910171317301?于是⎪⎪⎪⎨⎧=-=-=33432431172017191713173x x x x x x x x ? 于是R (2)⎪⎩⎪⎨-=+-=-+-=+-69413283542z y x z y x z y x ? 解 对增广矩阵B 进行初等行变换? 有B ?⎪⎪⎪⎭⎫ ⎝⎛-----69141328354214132~⎪⎪⎪⎭⎫ ⎝⎛--0000000021101201?于是 ⎪⎩⎪⎨⎧=+=--=zz z y z x 212? 即 ⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛021112k z y x (k 为任意常数)? (3)⎪⎩⎪⎨⎧=--+=+-+=+-+12222412w z y x w z y x w z y x ?于是 即 ⎪⎭ ⎝--25341⎭⎝00000于是 ⎪⎪⎩⎪⎪⎨⎧==--=++=w w z z w z y w z x 757975767171?即 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛00757610797101757121k k w z y x (k 1? k 2为任意常数)? 14? 写出一个以为通解的齐次线性方程组?解 根据已知? 可得或 或 ⎩321 (1)有唯一解? (2)无解? (3)有无穷多个解?解 ⎪⎪⎭⎫ ⎝⎛=21111111λλλλλB ⎪⎭⎫ ⎝⎛+-+----22)1)(1()2)(1(00)1(11011 ~λλλλλλλλλλr? (1)要使方程组有唯一解? 必须R (A )?3? 因此当??1且???2时方程组有唯一解.(2)要使方程组无解? 必须R (A )?R (B )? 故(1??)(2??)?0? (1??)(??1)2?0?因此???2时? 方程组无解?(3)要使方程组有有无穷多个解? 必须R (A )?R (B )?3? 故(1??)(2??)?0? (1??)(??1)2?0?因此当??1时? 方程组有无穷多个解.当? 即 ⎭⎝⎭⎝⎭⎝013x 当???2时?⎪⎪⎭⎫ ⎝⎛-----=421121212112B ~⎪⎪⎭⎫ ⎝⎛--000021102101? 方程组解为⎩⎨⎧+=+=223231x x x x 或⎪⎩⎪⎨⎧=+=+=33323122x x x x x x ? 即 ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛022111321k x x x (k 为任意常数)? 17? 设⎪⎩⎪⎨⎧--=-+--=--+=-+-1)5(4224)5(2122)2(321321321λλλλx x x x x x x x x ? 问??所以当??1时? 方程组有无穷多解?此时,增广矩阵为B ~⎪⎪⎭⎫ ⎝⎛-000000001221? 方程组的解为⎪⎩⎪⎨⎧==++-=3322321 1x x x x x x x ?或 ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛00110201221321k k x x x (k 1? k 2为任意常数)? 18? 证明R (A )?1的充分必要条件是存在非零列向量a 及非零行向量b T ? 使A ?ab T ?证明 必要性? 由R (A )?1知A 的标准形为)0 , ,0 ,1(01000001⋅⋅⋅⎪⎪⎫ ⎛=⎪⎪⎫ ⎛⋅⋅⋅⋅⋅⋅? ? 且A ? A )?1? 所以R (1)方程AX ?E m 有解的充分必要条件是R (A )?m ?证明 由定理7? 方程AX ?E m 有解的充分必要条件是R (A )?R (A ? E m )?而| E m |是矩阵(A ? E m )的最高阶非零子式? 故R (A )?R (A ? E m )?m ? 因此? 方程AX ?E m 有解的充分必要条件是R (A )?m ?(2)方程YA ?E n 有解的充分必要条件是R (A )?n ?证明 注意? 方程YA ?E n 有解的充分必要条件是A T Y T ?E n 有解? 由(1)A T Y T?E n有解的充分必要条件是R(A T)?n?因此,方程YA?E n有解的充分必要条件是R(A)?R(A T)?n?20?设A为m?n矩阵?证明?若AX?AY?且R(A)?n?则X?Y?证明由AX?AY?得A(X?Y)?O?因为R(A)?n?由定理9?方程A(X?Y)?O只有零解?即X?Y?O?也就是X?Y?第四章向量组的线性相关性1?T T T2?a2?(103?证明B知R(A)?R(A?B)?3?所以B组能由A组线性表示?由知R(B)?2?因为R(B)?R(B?A)?所以A组不能由B组线性表示?4?已知向量组A?a1?(0? 1? 1)T?a2?(1? 1? 0)T?B?b1?(?1? 0? 1)T?b2?(1? 2? 1)T? b3?(3? 2??1)T?证明A 组与B 组等价? 证明 由⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=000001122010311112201122010311011111122010311) ,(~~r r A B ?知R (B )?R (B ? A )?2? 显然在A 中有二阶非零子式? 故R (A )?2? 又R (A )?R (B ? A )?2? 所以R (A )?2? 从而R (A )?R (B )?R (A ? B )? 因此A 组与B 组等价? 5? ? 又由R (a 故a 4能由a a 2? a 3 6? 所以R (A )?2小于向量的个数? 从而所给向量组线性相关? (2)以所给向量为列向量的矩阵记为B ? 因为022200043012||≠=-=B ?所以R (B )?3等于向量的个数? 从而所给向量组线性相无关? 7? 问a 取什么值时下列向量组线性相关? a 1?(a ? 1? 1)T ? a 2?(1? a ? ?1)T ? a 3?(1? ?1? a )T ?解 以所给向量为列向量的矩阵记为A ? 由 知? 当a ??1、0、1时? R (A )?3? 此时向量组线性相关?8? 设a 1? a 2线性无关? a 1?b ? a 2?b 线性相关? 求向量b 用a 1? a 2线性表示的表示式?解 因为a 1?b ? a 2?b 线性相关? 故存在不全为零的数?1? ?2使 ?1(a 1?b )??2(a 2?b )?0? 1121λλλλλλλλλλλλ设=c 9 而a 1? 示?m 线性相关? 但a 1不能由a 2? ? ? ?? a m 线性表示? (2)若有不全为0的数?1? ?2? ? ? ?? ?m 使?1a 1? ? ? ? ??m a m ??1b 1? ? ? ? ??m b m ?0成立? 则a 1? a 2? ? ? ?? a m 线性相关, b 1? b 2? ? ? ?? b m 亦线性相关? 解 有不全为零的数?1? ?2? ? ? ?? ?m 使?1a 1? ? ? ? ??m a m ??1b 1? ? ? ? ??m b m ?0?原式可化为?1(a1?b1)??????m(a m?b m)?0?取a1?e1??b1?a2?e2??b2?????a m?e m??b m?其中e1?e2?????e m为单位坐标向量?则上式成立?而a1?a2?????a m和b1?b2?????b m均线性无关?(3)若只有当?1??2??????m全为0时?等式?1a1??????m a m??1b1??????m b m?0才能成立?则a1?a2?????a m线性无关, b1?b2?????b m亦线性无关?解由于只有当?1??2??????m全为0时?等式成立?成立??但a1?0的数???1??2?11?设b1?a1?a2?b2?a2?a3? b3?a3?a4? b4?a4?a1?证明向量组b1?b2?b3?b4线性相关?证明由已知条件得a1?b1?a2?a2?b2?a3? a3?b3?a4? a4?b4?a1?于是a1 ?b1?b2?a3?b1?b2?b3?a4?b1?b2?b3?b4?a1?从而 b 1?b 2?b 3?b 4?0?这说明向量组b 1? b 2? b 3? b 4线性相关?12? 设b 1?a 1? b 2?a 1?a 2? ? ? ?? b r ?a 1?a 2? ? ? ? ?a r ? 且向量组a 1? a 2? ? ? ? ? a r 线性无关? 证明向量组b 1? b 2? ? ? ? ? b r 线性无关? 证明 已知的r 个等式可以写成⎪⎪⎫⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅110111) , , ,() , , ,(2121r r a a a b b b ? ? b 2? ?? ? ? b r 知R (a 1 所以a 1? a 2 ⎪⎪⎭⎝⎪⎪⎭ ⎝----⎪⎪⎭⎝----=00000010180590763451) , ,(321a a a ? 知R (a 1T ? a 2T ? a 3T )?R (a 1? a 2? a 3)?2? 因为向量a 1T 与a 2T 的分量不成比例? 故a 1T ? a 2T 线性无关? 所以a 1T ? a 2T 是一个最大无关组?14? 利用初等行变换求下列矩阵的列向量组的一个最大无关组?(1)⎪⎪⎪⎭⎫⎝⎛4820322513454947513253947543173125? 解 因为⎪⎪⎪⎭⎫ ⎝⎛482032251345494751325394754317312513121433~r r r r r r ---⎪⎪⎪⎭⎫ ⎝⎛531053103210431731253423~r r r r --⎪⎪⎪⎭⎫ ⎝⎛00003100321043173125? ⎪⎭⎝----⎪⎭ ⎝---⎪⎭ ⎝=52001110611011103111332) , , ,(2143b a a b a b a a a a ?而R (a 1? a 2? a 3? a 4)?2? 所以a ?2? b ?5?16? 设a 1? a 2? ? ? ?? a n 是一组n 维向量? 已知n 维单位坐标向量e 1? e 2?? ? ?? e n 能由它们线性表示? 证明a 1? a 2? ? ? ?? a n 线性无关?证法一 记A ?(a 1? a 2? ? ? ?? a n )? E ?(e 1? e 2?? ? ?? e n )? 由已知条件知? 存在矩阵K ? 使E?AK?两边取行列式?得|E|?|A||K|?可见|A|?0?所以R(A)?n?从而a1?a2?????a n线性无关?证法二因为e1?e2?????e n能由a1?a2?????a n线性表示?所以R(e1?e2?????e n)?R(a1?a2?????a n)?而R(e1?e2?????e n)?n?R(a1?a2?????a n)?n?所以R(a1?a2?????a n)?n?从而?a2?a是??而a1?a2?????a n即R(aa k (2?k?m???? ?m?使?1a1??2a2??????m a m?0?而且?2??3??????m不全为零?这是因为?如若不然?则?1a1?0?由a1?0知?1?0?矛盾?因此存在k(2?k?m)?使?k?0??k?1??k?2??????m?0?于是?1a1??2a2??????k a k?0?a k??(1/?k)(?1a1??2a2??????k?1a k?1)?即a k 能由a 1? a 2? ? ? ?? a k ?1线性表示?19? 设向量组B ? b 1? ? ? ?? b r 能由向量组A ? a 1? ? ? ?? a s 线性表示为 (b 1? ? ? ?? b r )?(a 1? ? ? ?? a s )K ? 其中K 为s ?r 矩阵? 且A 组线性无关? 证明B 组线性无关的充分必要条件是矩阵K 的秩R (K )?r ?证明 令B ?(b 1? ? ? ?? b r )? A ?(a 1? ? ? ?? a s )? 则有B ?AK ? 必要性? 设向量组B 线性无关?及 因此R ?于是r 线性无关? 证明 将已知关系写成⎪⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅0111101111011110) , , ,() , , ,(2121n n αααβββ? 将上式记为B ?AK ? 因为0)1()1(0111101111011110||1≠--=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-n K n ? 所以K 可逆? 故有A ?BK ?1? 由B ?AK 和A ?BK ?1可知向量组?1? ?2? ? ? ?? ?n 与向量组?1? ?2? ? ? ?? ?n 可相互线性表示? 因此向量组?1? ?2? ? ? ?? ?n 与向量组?1??2? ? ? ?? ?n 等价?32? A x ? A 2x 所以B ? 故3x ?A x 22? 求下列齐次线性方程组的基础解系? (1)⎪⎩⎪⎨⎧=-++=-++=++-02683054202108432143214321x x x x x x x x x x x x ?解 对系数矩阵进行初等行变换? 有⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛---=00004/14/3100401 2683154221081~r A ?于是得⎩⎨⎧+=-=43231)4/1()4/3(4x x x x x ?取(x 3? x 4)T ?(4? 0)T ? 得(x 1? x 2)T ?(?16? 3)T ? 取(x 3? x 4)T ?(0? 4)T ? 得(x 1? x 2)T ?(0? 1)T ? 因此方程组的基础解系为?1?(?16? 3? 4? 0)T ? ?2?(0? 1? 0? 4)T ? x n ??nx 1?(n ?1)x 2? ? ? ? ?2x n ?1?取x 1?1? x 2?x 3? ? ? ? ?x n ?1?0? 得x n ??n ?取x 2?1? x 1?x 3?x 4? ? ? ? ?x n ?1?0? 得x n ??(n ?1)??n ?1? ? ? ? ?取x n ?1?1? x 1?x 2? ? ? ? ?x n ?2?0? 得x n ??2? 因此方程组的基础解系为 ?1?(1? 0? 0? ? ? ?? 0? ?n )T ??2?(0? 1? 0? ? ? ?? 0? ?n ?1)T ? ? ? ???n ?1?(0? 0? 0? ? ? ?? 1? ?2)T ?23? 设⎪⎭⎫ ⎝⎛--=82593122A , 求一个4?2矩阵B , 使AB ?0, 且 R (B )?2.解 显然B 的两个列向量应是方程组AB ?0的两个线性无关的解? 因为 r⎪⎪⎪⎭ ⎝+⎪⎪⎪⎭⎝=⎪⎪⎪⎭ ⎝012321214321k k x x x , 即⎪⎩⎪⎨=+=+=1421321221322k x k k x k k x ? (k 1? k 2?R )? 消去k 1? k 2得⎩⎨⎧=+-=+-023032431421x x x x x x ? 此即所求的齐次线性方程组. 25? 设四元齐次线性方程组。
工程数学线性代数(同济大学第六版)课后习题答案

第一章 行列式1. 利用对角线法则计算下列三阶行列式: (1)381141102---;解 381141102---=2⨯(-4)⨯3+0⨯(-1)⨯(-1)+1⨯1⨯8 -0⨯1⨯3-2⨯(-1)⨯8-1⨯(-4)⨯(-1) =-24+8+16-4=-4.(2)b a c a c b cb a ;解 ba c a cb cb a=acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3.(3)222111c b a c b a ;解 222111c b a c b a=bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b )(b -c )(c -a ).(4)y x y x x y x y yx y x +++.解 yx y x x y x y yx y x +++=x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3 =3xy (x +y )-y 3-3x 2 y -x 3-y 3-x 3 =-2(x 3+y 3).2. 按自然数从小到大为标准次序, 求下列各排列的逆序数:(1)1 2 3 4;解逆序数为0(2)4 1 3 2;解逆序数为4:41, 43, 42, 32. (3)3 4 2 1;解逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1.(4)2 4 1 3;解逆序数为3: 2 1, 4 1, 4 3.(5)1 3 ⋅⋅⋅ (2n-1) 2 4 ⋅⋅⋅ (2n);解逆序数为2)1(-nn:3 2 (1个)5 2, 5 4(2个)7 2, 7 4, 7 6(3个)⋅⋅⋅⋅⋅⋅(2n-1)2, (2n-1)4, (2n-1)6,⋅⋅⋅, (2n-1)(2n-2) (n-1个) (6)1 3 ⋅⋅⋅(2n-1) (2n) (2n-2) ⋅⋅⋅ 2.解逆序数为n(n-1) :3 2(1个)5 2, 5 4 (2个)⋅⋅⋅⋅⋅⋅(2n-1)2, (2n-1)4, (2n-1)6,⋅⋅⋅, (2n-1)(2n-2) (n-1个)4 2(1个) 6 2, 6 4(2个) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅(2n )2, (2n )4, (2n )6, ⋅ ⋅ ⋅, (2n )(2n -2) (n -1个) 3. 写出四阶行列式中含有因子a 11a 23的项. 解 含因子a 11a 23的项的一般形式为(-1)t a 11a 23a 3r a 4s ,其中rs 是2和4构成的排列, 这种排列共有两个, 即24和42. 所以含因子a 11a 23的项分别是(-1)t a 11a 23a 32a 44=(-1)1a 11a 23a 32a 44=-a 11a 23a 32a 44, (-1)t a 11a 23a 34a 42=(-1)2a 11a 23a 34a 42=a 11a 23a 34a 42. 4. 计算下列各行列式:(1)71100251020214214; 解 71100251020214214010014231020211021473234-----======c c c c 34)1(143102211014+-⨯---= 143102211014--=01417172001099323211=-++======c c c c .(2)2605232112131412-;解 2605232112131412-260503212213041224--=====c c 041203212213041224--=====r r 000003212213041214=--=====r r . (3)efcf bf de cd bd aeac ab ---;解 ef cf bf de cd bd ae ac ab ---e c b e c b ec b adf ---=abcdef adfbce 4111111111=---=.(4)dc b a 100110011001---. 解d c b a 100110011001---dc b aab ar r 10011001101021---++===== dc a ab 101101)1)(1(12--+--=+01011123-+-++=====cd c ada ab dc ccdad ab +-+--=+111)1)(1(23=abcd +ab +cd +ad +1. 5. 证明:(1)1112222b b a a b ab a +=(a -b )3;证明1112222b b a a b ab a +00122222221213a b a b a a b a ab a c c c c ------=====ab a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--==(a -b )3 . (2)y x z x z y zy x b a bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax )(33+=+++++++++;证明bzay by ax bx az by ax bx az bz ay bxaz bz ay by ax +++++++++bz ay by ax x by ax bx az z bxaz bz ay y b bz ay by ax z by ax bx az y bx az bz ay x a +++++++++++++=bz ay y x by ax x z bxaz z y b y by ax z x bx az y z bz ay x a +++++++=22z y x y x z xz y b y x z x z y z y x a 33+=yx z x z y zy x b y x z x z y z y x a 33+=y x z x z y zy x b a )(33+=.(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ; 证明 2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a (c 4-c 3, c 3-c 2, c 2-c 1得) 5232125232125232125232122222++++++++++++=d d d d c c c c b b b b a a a a (c 4-c 3, c 3-c 2得) 022122212221222122222=++++=d d c c b b a a . (4)444422221111d c b a d c b a d c b a =(a -b )(a -c )(a -d )(b -c )(b -d )(c -d )(a +b +c +d ); 证明444422221111d c b a d c b a d c b a )()()(0)()()(001111222222222a d d a c c a b b a d d a c c a b b ad a c a b ---------=)()()(111))()((222a d d a c c a b b d c b a d a c a b +++---=))(())((00111))()((a b d b d d a b c b c c b d b c a d a c a b ++-++------=)()(11))()()()((a b d d a b c c b d b c a d a c a b ++++-----==(a -b )(a -c )(a -d )(b -c )(b -d )(c -d )(a +b +c +d ).(5)1221 1 000 00 1000 01a x a a a a x x xn n n +⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅---Λ=x n +a 1x n -1+ ⋅ ⋅ ⋅ +a n -1x +a n .证明 用数学归纳法证明.当n =2时, 2121221a x a x a x a x D ++=+-=, 命题成立. 假设对于(n -1)阶行列式命题成立, 即 D n -1=x n -1+a 1 x n -2+ ⋅ ⋅ ⋅ +a n -2x +a n -1, 则D n 按第一列展开, 有11100 100 01)1(11-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅--+=+-x x a xD D n n n n =xD n -1+a n =x n +a 1x n -1+ ⋅ ⋅ ⋅ +a n -1x +a n . 因此, 对于n 阶行列式命题成立.6. 设n 阶行列式D =det(a ij ), 把D 上下翻转、或逆时针旋转90︒、或依副对角线翻转, 依次得nnn n a a a a D 11111 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=, 11112 n nn n a a a a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= , 11113 a a a a D n nnn ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=,证明D D D n n 2)1(21)1(--==, D 3=D .证明 因为D =det(a ij ), 所以 nnn n n n nnnn a a a a a a a a a a D 2211111111111 )1( ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=- ⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--=-- )1()1(331122111121nnn n nn n n a a a a a a a a D D n n n n 2)1()1()2( 21)1()1(--+-+⋅⋅⋅++-=-=.同理可证nnn n n n a a a a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=- )1(11112)1(2D D n n Tn n 2)1(2)1()1()1(---=-=. D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(.7. 计算下列各行列式(D k 为k 阶行列式): (1)aa D n 11⋅⋅⋅=, 其中对角线上元素都是a , 未写出的元素都是0; 解 aa a a a D n 010 000 00 000 0010 00⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=(按第n 行展开) )1()1(10 000 00 000 0010 000)1(-⨯-+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=n n n aa a )1()1(2 )1(-⨯-⋅⋅⋅⋅-+n n n a a an n n nn a a a+⋅⋅⋅-⋅-=--+)2)(2(1)1()1(=a n -a n -2=a n -2(a 2-1).(2)xa aa x a a a xD n ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= ;解 将第一行乘(-1)分别加到其余各行, 得 ax x a ax x a a x x a aa a x D n --⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--⋅⋅⋅--⋅⋅⋅=000 0 00 0, 再将各列都加到第一列上, 得ax ax a x aaa a n x D n -⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-+=0000 0 0000 )1(=[x +(n -1)a ](x -a )n -1. (3)111 1 )( )1()( )1(1111⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅⋅-⋅⋅⋅--⋅⋅⋅-=---+n a a a n a a a n a a a D n n n n nn n ; 解 根据第6题结果, 有nn n n n n n n n n a a a n a a a n a a aD )( )1()( )1( 11 11)1(1112)1(1-⋅⋅⋅--⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-=---++此行列式为范德蒙德行列式. ∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏≥>≥++---=112)1()]([)1(j i n n n j i∏≥>≥++⋅⋅⋅+-++-⋅-⋅-=1121)1(2)1()()1()1(j i n n n n n j i∏≥>≥+-=11)(j i n j i .(4)n nnnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112; 解nnnnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112(按第1行展开) nn n n n nd d c d c b a b a a 00011111111----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=Λ0)1(1111111112c d c d c b a b a b nn n n n nn ----+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-+. 再按最后一行展开得递推公式D 2n =a n d n D 2n -2-b n c n D 2n -2, 即D 2n =(a n d n -b n c n )D 2n -2. 于是 ∏=-=ni i i i i n D c b d a D 222)(.而 111111112c b d a d c b a D -==, 所以 ∏=-=n i i i i i n c b d a D 12)(. (5) D =det(a ij ), 其中a ij =|i -j |; 解 a ij =|i -j |, 043214 01233 10122 21011 3210)det(⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅==n n n n n n n n a D ij n 0 4321 1 11111 11111 11111 1111 2132⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅----⋅⋅⋅---⋅⋅⋅--⋅⋅⋅--⋅⋅⋅-=====n n n n r r r r 15242321 0 22210 02210 00210 0001 1213-⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅----⋅⋅⋅---⋅⋅⋅--⋅⋅⋅-+⋅⋅⋅+=====n n n n n c c c c =(-1)n -1(n -1)2n -2.(6)nn a a a D +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=1 11 1 1111121, 其中a 1a 2 ⋅ ⋅ ⋅ a n≠0.解nn a a a D +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=1 11 1 1111121 nn n n a a a a a a a a a c c c c +-⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-=====--10 0001 000 100 0100 0100 0011332212132 1111312112111011 000 00 11000 01100 001 ------+-⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅⋅⋅⋅=nn n a a a a a a a a∑=------+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=n i i n n a a a a a a a a 1111131******** 00010 000 00 10000 01000 001)11)((121∑=+=ni i n a a a a Λ.8. 用克莱姆法则解下列方程组:(1)⎪⎩⎪⎨⎧=+++-=----=+-+=+++01123253224254321432143214321x x x x x x x x x x x x x x x x ;解 因为14211213513241211111-=----=D , 142112105132412211151-=------=D , 284112035122412111512-=-----=D , 426110135232422115113-=----=D , 14202132132212151114=-----=D , 所以 111==DD x , 222==D D x , 333==D D x , 144-==D D x .(2)⎪⎪⎩⎪⎪⎨⎧=+=++=++=++=+150650650651655454343232121x x x x x x x x x x x x x .解 因为 665510006510006510065100065==D ,150751001651000651000650000611==D , 114551010651000650000601000152-==D , 70351100650000601000051001653==D , 39551000601000051000651010654-==D , 2121105100065100651100655==D , 所以66515071=x , 66511452-=x , 6657033=x , 6653954-=x , 6652124=x .9. 问λ, μ取何值时, 齐次线性方程组⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?解 系数行列式为μλμμμλ-==1211111D .令D =0, 得 μ=0或λ=1.于是, 当μ=0或λ=1时该齐次线性方程组有非零解.10. 问λ取何值时, 齐次线性方程组⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ有非零解?解 系数行列式为λλλλλλλ--+--=----=101112431111132421D=(1-λ)3+(λ-3)-4(1-λ)-2(1-λ)(-3-λ) =(1-λ)3+2(1-λ)2+λ-3. 令D =0, 得λ=0, λ=2或λ=3.于是, 当λ=0, λ=2或λ=3时, 该齐次线性方程组有非零解.第二章 矩阵及其运算1. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x , 求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换.解 由已知:⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x ,故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y ,⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y .2. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x ,⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y , 求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换.解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z ,所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .3. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 及A T B .解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503,⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T .4. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134;解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫⎝⎛=49635.(2)⎪⎪⎭⎫⎝⎛123)321(;解 ⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛;解 )21(312-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫⎝⎛---=632142.(4)⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ; 解 ⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫ ⎝⎛---=6520876.(5)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ;解⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x=(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问: (1)AB =BA 吗? 解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA . (2)(A +B )2=A 2+2AB +B 2吗? 解 (A +B )2≠A 2+2AB +B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148,但 ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610, 所以(A +B )2≠A 2+2AB +B 2. (3)(A +B )(A -B )=A 2-B 2吗? 解 (A +B )(A -B )≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A ,而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A ,故(A +B )(A -B )≠A 2-B 2.6. 举反列说明下列命题是错误的: (1)若A 2=0, 则A =0;解 取⎪⎭⎫ ⎝⎛=0010A , 则A 2=0, 但A ≠0. (2)若A 2=A , 则A =0或A =E ;解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y .解 取⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y ,则AX =AY , 且A ≠0, 但X ≠Y .7. 设⎪⎭⎫ ⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k . 解 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫ ⎝⎛=101λk A k . 8. 设⎪⎪⎭⎫⎝⎛=λλλ001001A , 求A k .解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫⎝⎛=222002012λλλλλ,⎪⎪⎭⎫⎝⎛=⋅=3232323003033λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=43423434004064λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=545345450050105λλλλλλA A A ,⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=kA k k kk k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫ . 用数学归纳法证明: 当k =2时, 显然成立. 假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A⎪⎪⎪⎪⎭⎫⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ,由数学归纳法原理知:⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121.9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵.证明 因为A T =A , 所以(B T AB )T =B T (B T A )T =B T A T B =B T AB ,从而B T AB 是对称矩阵.10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA .证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以 (AB )T =(BA )T =A T B T =AB , 即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB )T =AB , 所以 AB =(AB )T =B T A T =BA . 11. 求下列矩阵的逆矩阵:(1)⎪⎭⎫ ⎝⎛5221; 解 ⎪⎭⎫ ⎝⎛=5221A . |A |=1, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A , 故 *||11A A A =-⎪⎭⎫ ⎝⎛--=1225. (2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ; 解 ⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos A . |A |=1≠0, 故A -1存在. 因为 ⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A ,所以 *||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos .(3)⎪⎪⎭⎫⎝⎛---145243121;解 ⎪⎪⎭⎫⎝⎛---=145243121A . |A |=2≠0, 故A -1存在. 因为⎪⎪⎭⎫⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A ,所以 *||11A A A =-⎪⎪⎪⎭⎫⎝⎛-----=1716213213012.(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a O 0021(a 1a 2⋅ ⋅ ⋅a n ≠0) .解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A O0021, 由对角矩阵的性质知 ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211O . 12. 解下列矩阵方程:(1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ;解 ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232. (2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311111012112X ;解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫⎝⎛---=32538122. (3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ;解 11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111. (4)⎪⎪⎭⎫⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X .解 11010100001021102341100001010--⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=201431012.13. 利用逆矩阵解下列线性方程组: (1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x ,故 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x ,从而有 ⎪⎩⎪⎨⎧===001321x x x .(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x .解 方程组可表示为 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x ,故 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x ,故有 ⎪⎩⎪⎨⎧===305321x x x .14. 设A k =O (k 为正整数), 证明(E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1. 证明 因为A k =O , 所以E -A k =E . 又因为 E -A k =(E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1), 所以 (E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E , 由定理2推论知(E -A )可逆, 且 (E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A )-1(E -A ). 另一方面, 由A k =O , 有E =(E -A )+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k ) =(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ), 故 (E -A )-1(E -A )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ), 两端同时右乘(E -A )-1, 就有(E -A )-1(E -A )=E +A +A 2+⋅ ⋅ ⋅+A k -1.15. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E )-1.证明 由A 2-A -2E =O 得 A 2-A =2E , 即A (A -E )=2E , 或 E E A A =-⋅)(21,由定理2推论知A 可逆, 且)(211E A A -=-.由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E )(A -3E )=-4E , 或 E A E E A =-⋅+)3(41)2(由定理2推论知(A +2E )可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得 |A 2-A |=2, 即 |A ||A -E |=2, 故 |A |≠0,所以A 可逆, 而A +2E =A 2, |A +2E |=|A 2|=|A |2≠0, 故A +2E 也可逆. 由 A 2-A -2E =O ⇒A (A -E )=2E⇒A -1A (A -E )=2A -1E ⇒)(211E A A -=-,又由 A 2-A -2E =O ⇒(A +2E )A -3(A +2E )=-4E ⇒ (A +2E )(A -3E )=-4 E ,所以 (A +2E )-1(A +2E )(A -3E )=-4(A +2 E )-1, )3(41)2(1A E E A -=+-.16. 设A 为3阶矩阵, 21||=A , 求|(2A )-1-5A *|.解 因为*||11A A A =-, 所以|||521||*5)2(|111----=-A A A A A |2521|11---=A A=|-2A -1|=(-2)3|A -1|=-8|A |-1=-8⨯2=-16. 17. 设矩阵A 可逆, 证明其伴随阵A *也可逆, 且(A *)-1=(A -1)*.证明 由*||11A A A =-, 得A *=|A |A -1, 所以当A 可逆时, 有 |A *|=|A |n |A -1|=|A |n -1≠0, 从而A *也可逆.因为A *=|A |A -1, 所以 (A *)-1=|A |-1A .又*)(||)*(||1111---==A A A A A , 所以 (A *)-1=|A |-1A =|A |-1|A |(A -1)*=(A -1)*. 18. 设n 阶矩阵A 的伴随矩阵为A *, 证明: (1)若|A |=0, 则|A *|=0; (2)|A *|=|A |n -1. 证明(1)用反证法证明. 假设|A *|≠0, 则有A *(A *)-1=E , 由此得 A =A A *(A *)-1=|A |E (A *)-1=O ,所以A *=O , 这与|A *|≠0矛盾,故当|A |=0时, 有|A *|=0. (2)由于*||11A A A =-, 则AA *=|A |E , 取行列式得到|A ||A *|=|A |n .若|A |≠0, 则|A *|=|A |n -1;若|A |=0, 由(1)知|A *|=0, 此时命题也成立. 因此|A *|=|A |n -1.19. 设⎪⎪⎭⎫⎝⎛-=321011330A , AB =A +2B , 求B .解 由AB =A +2E 可得(A -2E )B =A , 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E A B ⎪⎪⎭⎫⎝⎛-=011321330.20. 设⎪⎪⎭⎫⎝⎛=101020101A , 且AB +E =A 2+B , 求B .解 由AB +E =A 2+B 得 (A -E )B =A 2-E , 即 (A -E )B =(A -E )(A +E ).因为01001010100||≠-==-E A , 所以(A -E )可逆, 从而⎪⎪⎭⎫⎝⎛=+=201030102E A B .21. 设A =diag(1, -2, 1), A *BA =2BA -8E , 求B . 解 由A *BA =2BA -8E 得 (A *-2E )BA =-8E ,B =-8(A *-2E )-1A -1 =-8[A (A *-2E )]-1 =-8(AA *-2A )-1 =-8(|A |E -2A )-1 =-8(-2E -2A )-1 =4(E +A )-1=4[diag(2, -1, 2)]-1 )21 ,1 ,21(diag 4-==2diag(1, -2, 1).22. 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A , 且ABA -1=BA -1+3E , 求B . 解 由|A *|=|A |3=8, 得|A |=2. 由ABA -1=BA -1+3E 得 AB =B +3A ,B =3(A -E )-1A =3[A (E -A -1)]-1A11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-1030060600600006603001010010000161. 23. 设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11.解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A =P Λ11P -1.|P |=3, ⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P ,而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=Λ11111120 012001,故 ⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731. 24. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511,求ϕ(A )=A 8(5E -6A +A 2). 解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)] =diag(1,1,58)diag(12,0,0)=12diag(1,0,0). ϕ(A )=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ⎪⎪⎭⎫ ⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫⎝⎛=1111111114.25. 设矩阵A 、B 及A +B 都可逆, 证明A -1+B -1也可逆, 并求其逆阵.证明 因为A -1(A +B )B -1=B -1+A -1=A -1+B -1,而A -1(A +B )B -1是三个可逆矩阵的乘积, 所以A -1(A +B )B -1可逆, 即A -1+B -1可逆.(A -1+B -1)-1=[A -1(A +B )B -1]-1=B (A +B )-1A .26. 计算⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121. 解 设⎪⎭⎫ ⎝⎛=10211A , ⎪⎭⎫ ⎝⎛=30122A , ⎪⎭⎫ ⎝⎛-=12131B , ⎪⎭⎫ ⎝⎛--=30322B ,则 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫⎝⎛+=222111B A O B B A A , 而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A , 所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫⎝⎛---=9000340042102521, 即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521. 27. 取⎪⎭⎫ ⎝⎛==-==1001D C B A , 验证|||||||| D C B A D C B A ≠.解 4100120021010*********0021010010110100101==--=--=D C B A , 而 01111|||||||| ==D C B A ,故 |||||||| D C B A D C B A ≠.28. 设⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A , 求|A 8|及A 4. 解 令⎪⎭⎫ ⎝⎛-=34431A , ⎪⎭⎫ ⎝⎛=22022A , 则 ⎪⎭⎫⎝⎛=21A O O A A ,故 8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A , 1682818281810||||||||||===A A A A A . ⎪⎪⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A . 29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求 (1)1-⎪⎭⎫ ⎝⎛O B A O ; 解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 则⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143. 由此得 ⎪⎩⎪⎨⎧====s n E BC OBC O AC E AC 2143⇒⎪⎩⎪⎨⎧====--121413BC O C O C A C ,所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111. (2)1-⎪⎭⎫ ⎝⎛B C O A . 解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 则 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321.由此得 ⎪⎩⎪⎨⎧=+=+==s nEBD CD O BD CD OAD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D ,所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A . 30. 求下列矩阵的逆阵:(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025; 解 设⎪⎭⎫ ⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛----850032000052002125003800001200251111B A B A .(2)⎪⎪⎪⎭⎫⎝⎛4121031200210001. 解 设⎪⎭⎫ ⎝⎛=2101A , ⎪⎭⎫ ⎝⎛=4103B , ⎪⎭⎫ ⎝⎛=2112C , 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛------1111114121031200210001B CA B O A B C O A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=411212458103161210021210001.第三章 矩阵的初等变换与线性方程组1. 把下列矩阵化为行最简形矩阵:(1)⎪⎪⎭⎫⎝⎛--340313021201;解 ⎪⎪⎭⎫⎝⎛--340313021201(下一步: r 2+(-2)r 1, r 3+(-3)r 1. )~⎪⎪⎭⎫⎝⎛---020*********(下一步: r 2÷(-1), r 3÷(-2). )~⎪⎪⎭⎫⎝⎛--010*********(下一步: r 3-r 2. )~⎪⎪⎭⎫⎝⎛--300031001201(下一步: r 3÷3. )~⎪⎪⎭⎫⎝⎛--100031001201(下一步: r 2+3r 3. )~⎪⎪⎭⎫⎝⎛-100001001201(下一步: r 1+(-2)r 2, r 1+r 3. )~⎪⎪⎭⎫⎝⎛100001000001.(2)⎪⎪⎭⎫⎝⎛----174034301320;解 ⎪⎪⎭⎫⎝⎛----174034301320(下一步: r 2⨯2+(-3)r 1, r 3+(-2)r 1. )~⎪⎪⎭⎫⎝⎛---310031001320(下一步: r 3+r 2, r 1+3r 2. )~⎪⎪⎭⎫⎝⎛0000310010020(下一步: r 1÷2. )~⎪⎪⎭⎫⎝⎛000031005010.(3)⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; 解 ⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311(下一步: r 2-3r 1, r 3-2r 1, r 4-3r 1. )~⎪⎪⎪⎭⎫⎝⎛--------1010500663008840034311(下一步: r 2÷(-4), r 3÷(-3) , r 4÷(-5). )~⎪⎪⎪⎭⎫⎝⎛-----22100221002210034311(下一步: r 1-3r 2, r 3-r 2, r 4-r 2. )~⎪⎪⎪⎭⎫⎝⎛---00000000002210032011. (4)⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解 ⎪⎪⎪⎭⎫ ⎝⎛------34732038234202173132(下一步: r 1-2r 2, r 3-3r 2, r 4-2r 2. )~⎪⎪⎪⎭⎫⎝⎛-----1187701298804202111110(下一步: r 2+2r 1, r 3-8r 1, r 4-7r 1. )~⎪⎪⎪⎭⎫⎝⎛--41000410002020111110(下一步: r 1↔r 2, r 2⨯(-1), r 4-r 3. )~⎪⎪⎪⎭⎫⎝⎛----00000410001111020201(下一步: r 2+r 3. )~⎪⎪⎪⎭⎫⎝⎛--000410*******20201. 2. 设⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A , 求A .解 ⎪⎪⎭⎫⎝⎛100001010是初等矩阵E (1, 2), 其逆矩阵就是其本身.⎪⎪⎭⎫⎝⎛100010101是初等矩阵E (1, 2(1)), 其逆矩阵是E (1, 2(-1)) ⎪⎪⎭⎫⎝⎛-=100010101.⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=100010101987654321100001010A⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=287221254100010101987321654.3. 试利用矩阵的初等变换, 求下列方阵的逆矩阵:(1)⎪⎪⎭⎫⎝⎛323513123;解 ⎪⎪⎭⎫ ⎝⎛100010001323513123~⎪⎪⎭⎫⎝⎛---101011001200410123~⎪⎪⎭⎫ ⎝⎛----1012002110102/102/3023~⎪⎪⎭⎫⎝⎛----2/102/11002110102/922/7003~⎪⎪⎭⎫⎝⎛----2/102/11002110102/33/26/7001故逆矩阵为⎪⎪⎪⎪⎭⎫ ⎝⎛----21021211233267.(2)⎪⎪⎪⎭⎫ ⎝⎛-----1210232112201023.解 ⎪⎪⎪⎭⎫ ⎝⎛-----10000100001000011210232112201023~⎪⎪⎪⎭⎫ ⎝⎛----00100301100001001220594012102321~⎪⎪⎪⎭⎫ ⎝⎛--------20104301100001001200110012102321~⎪⎪⎪⎭⎫ ⎝⎛-------106124301100001001000110012102321 ~⎪⎪⎪⎭⎫⎝⎛----------10612631110`1022111000010000100021 ~⎪⎪⎪⎭⎫⎝⎛-------106126311101042111000010000100001 故逆矩阵为⎪⎪⎪⎭⎫⎝⎛-------10612631110104211. 4. (1)设⎪⎪⎭⎫ ⎝⎛--=113122214A , ⎪⎪⎭⎫⎝⎛--=132231B , 求X 使AX =B ;解 因为⎪⎪⎭⎫ ⎝⎛----=132231 113122214) ,(B A ⎪⎪⎭⎫⎝⎛--412315210 100010001 ~r ,所以 ⎪⎪⎭⎫⎝⎛--==-4123152101B A X .(2)设⎪⎪⎭⎫ ⎝⎛---=433312120A , ⎪⎭⎫ ⎝⎛-=132321B , 求X 使XA =B . 解 考虑A T X T =B T . 因为⎪⎪⎭⎫ ⎝⎛----=134313*********) ,(T T B A ⎪⎪⎭⎫⎝⎛---411007101042001 ~r ,所以 ⎪⎪⎭⎫⎝⎛---==-417142)(1T T T B A X ,从而 ⎪⎭⎫ ⎝⎛---==-4741121BA X . 5. 设⎪⎪⎭⎫⎝⎛---=101110011A , AX =2X +A , 求X .解 原方程化为(A -2E )X =A . 因为⎪⎪⎭⎫⎝⎛---------=-101101110110011011) ,2(A E A⎪⎪⎭⎫⎝⎛---011100101010110001~,所以 ⎪⎪⎭⎫⎝⎛---=-=-011101110)2(1A E A X .6. 在秩是r 的矩阵中,有没有等于0的r -1阶子式? 有没有等于0的r 阶子式?解 在秩是r 的矩阵中, 可能存在等于0的r -1阶子式, 也可能存在等于0的r 阶子式.例如, ⎪⎪⎭⎫⎝⎛=010*********A , R (A )=3.0000是等于0的2阶子式, 010001000是等于0的3阶子式. 7. 从矩阵A 中划去一行得到矩阵B , 问A , B 的秩的关系怎样?解 R (A )≥R (B ).这是因为B 的非零子式必是A 的非零子式, 故A 的秩不会小于B 的秩.8. 求作一个秩是4的方阵, 它的两个行向量是(1, 0, 1, 0, 0), (1, -1, 0, 0, 0).解 用已知向量容易构成一个有4个非零行的5阶下三角矩阵:⎪⎪⎪⎪⎭⎫ ⎝⎛-0000001000001010001100001, 此矩阵的秩为4, 其第2行和第3行是已知向量.9. 求下列矩阵的秩, 并求一个最高阶非零子式:(1)⎪⎪⎭⎫⎝⎛---443112112013;解 ⎪⎪⎭⎫⎝⎛---443112112013(下一步: r 1↔r 2. )~⎪⎪⎭⎫⎝⎛---443120131211(下一步: r 2-3r 1, r 3-r 1. )~⎪⎪⎭⎫⎝⎛----564056401211(下一步: r 3-r 2. )~⎪⎭⎫ ⎝⎛---000056401211, 矩阵的2秩为, 41113-=-是一个最高阶非零子式.(2)⎪⎪⎭⎫⎝⎛-------815073*********;解 ⎪⎪⎭⎫⎝⎛-------815073*********(下一步: r 1-r 2, r 2-2r 1, r 3-7r 1. )~⎪⎭⎫ ⎝⎛------15273321059117014431(下一步: r 3-3r 2. ) ~⎪⎭⎫ ⎝⎛----0000059117014431,矩阵的秩是2, 71223-=-是一个最高阶非零子式.(3)⎪⎪⎪⎭⎫⎝⎛---02301085235703273812. 解 ⎪⎪⎪⎭⎫⎝⎛---02301085235703273812(下一步: r 1-2r 4, r 2-2r 4, r 3-3r 4. )~⎪⎪⎪⎭⎫⎝⎛------023*********63071210(下一步: r 2+3r 1, r 3+2r 1. )~⎪⎪⎪⎭⎫⎝⎛-0230114000016000071210(下一步: r 2÷16r 4, r 3-16r 2. )~⎪⎪⎪⎭⎫⎝⎛-023010*********71210 ~⎪⎪⎪⎭⎫⎝⎛-00000100007121002301, 矩阵的秩为3, 070023085570≠=-是一个最高阶非零子式.10. 设A 、B 都是m ⨯n 矩阵, 证明A ~B 的充分必要条件是R (A )=R (B ).证明 根据定理3, 必要性是成立的.充分性. 设R (A )=R (B ), 则A 与B 的标准形是相同的. 设A 与B 的标准形为D , 则有A ~D , D ~B .由等价关系的传递性, 有A ~B .11. 设⎪⎪⎭⎫⎝⎛----=32321321k k k A , 问k 为何值, 可使(1)R (A )=1; (2)R (A )=2; (3)R (A )=3.解 ⎪⎪⎭⎫ ⎝⎛----=32321321k k k A ⎪⎪⎭⎫ ⎝⎛+-----)2)(1(0011011 ~k k k k k r . (1)当k =1时, R (A )=1; (2)当k =-2且k ≠1时, R (A )=2; (3)当k ≠1且k ≠-2时, R (A )=3.12. 求解下列齐次线性方程组: (1)⎪⎩⎪⎨⎧=+++=-++=-++02220202432143214321x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有A =⎪⎪⎭⎫ ⎝⎛--212211121211~⎪⎪⎭⎫ ⎝⎛---3/410013100101,于是 ⎪⎪⎩⎪⎪⎨⎧==-==4443424134334x x x x x x x x ,故方程组的解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛1343344321k x x x x (k 为任意常数).(2)⎪⎩⎪⎨⎧=-++=--+=-++05105036302432143214321x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有A =⎪⎪⎭⎫ ⎝⎛----5110531631121~⎪⎪⎭⎫⎝⎛-000001001021,于是 ⎪⎩⎪⎨⎧===+-=4432242102x x x x x x x x ,故方程组的解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛10010********1k k x x x x (k 1, k 2为任意常数).(3)⎪⎩⎪⎨⎧=-+-=+-+=-++=+-+07420634072305324321432143214321x x x x x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有A =⎪⎪⎪⎭⎫⎝⎛-----7421631472135132~⎪⎪⎪⎭⎫ ⎝⎛1000010000100001,于是 ⎪⎩⎪⎨⎧====0004321x x x x ,故方程组的解为 ⎪⎩⎪⎨⎧====00004321x x x x .(4)⎪⎩⎪⎨⎧=++-=+-+=-+-=+-+03270161311402332075434321432143214321x x x x x x x x x x x x x x x x .解 对系数矩阵A 进行初等行变换, 有A =⎪⎪⎪⎭⎫⎝⎛-----3127161311423327543~⎪⎪⎪⎪⎪⎭⎫⎝⎛--000000001720171910171317301,。
同济大学《工程数学—线性代数》笔记和课后习题(含真题)详解(相似矩阵及二次型)

圣才电子书
(1)定义
十万种考研考证电子书、题库视频学习平台
令
,则‖x‖称为 n 维向量 x 的长度(或
范数).当‖x‖=1 时,称 x 为单位向量.
(2)性质
向量的长度具有以下性质:
①非负性:当 x≠0 时,‖x‖>0;当 x=0 时,‖x‖=0;
②齐次性:‖λx‖=|λ|‖x‖;
容易验证 b1,…,br 两两正交,且 b1,…,br 不 a1,…,ar 等价.将其单位化,即取
就是 V 的一个标准正交基.上述过程称为施密特正交化. 4.正交矩阵 (1)定义 如果 n 阶矩阵 A 满足 ATA=E(即 A-1=AT),则称 A 为正交矩阵,简称正交阵. (2)性质 ①若 A 为正交矩阵,则 A-1=AT 也是正交矩阵,且|A|=1 或(-1); ②若 A 和 B 都是正交矩阵,则 AB 也是正交矩阵. 5.正交变换 (1)定义 若 P 为正交矩阵,则线性变换 y=Px 称为正交变换. (2)性质 设 y=Px 为正交变换,则有
圣才电子书 十万种考研考证电子书、题库视频学习平台
第 5 章 相似矩阵及二次型
5.1 复习笔记
一、向量的内积、长度及正交性 1.向量内积 (1)定义 设有 n 维向量
令
[x,y]称为向量 x 不 y 的内积.记为[x,y]=xTy. (2)性质 内积具有下列性质(其中 x,y,z 为 n 维向量,λ 为实数): ①[x,y]=[y,x]; ②[λx,y]=λ[x,y]; ③[x+y,z]=[x,z]+[y,z]; ④当 x=0 时,[x,x]=0;当 x≠0 时,[x,x]>0. 2.向量长度
3 / 45
圣才电子书 十万种考研考证电子书、题库视频学习平台
(NEW)同济大学数学系《工程数学—线性代数》(第6版)笔记和课后习题(含考研真题)详解

目 录
第1章 行列式
1.1 复习笔记
1.2 课后习题详解
1.3 考研真题详解
第2章 矩阵及其运算
2.1 复习笔记
2.2 课后习题详解
2.3 考研真题详解
第3章 矩阵的初等变换与线性方程组
3.1 复习笔记
3.2 课后习题详解
3.3 考研真题详解
第4章 向量组的线性相关性4.1 复习笔记
4.2 课后习题详解
4.3 考研真题详解
第5章 相似矩阵及二次型5.1 复习笔记
5.2 课后习题详解
5.3 考研真题详解
第6章 线性空间与线性变换6.1 复习笔记
6.2 课后习题详解
6.3 考研真题详解
第1章 行列式
1.1 复习笔记
一、二阶与三阶行列式
1二阶行列式
定义 将四个数,,,按一定位置,排成二行二列的数表:
则表达式就是数表的二阶行列式,并记作
2三阶行列式
定义 设有9个数排成3行3列的数表
记
该式称为数表所确定的三阶行列式.
二、全排列和对换
1全排列。
同济大学数学系《工程数学—线性代数》(第6版)-考研真题精选(下)【圣才出品】

0 E B 0
0
0 1 0 1 0 0
则 r(E-B)=1;
0 1 1 E C 0 0 0
0 0 0
则 r(E-C)=1;
0 0 1 E D 0 0 0
0 0 0
则 r(E-D)=1。只有 E-A 的秩与 E-X 相等,因此选 A。
2 / 28
圣才电子书 十万种考研考证电子书、题库视频学习平台
设 λ 为 A 的特征值,则 λ2+λ=0⇒λ=0,λ=-1.又 A 的秩为 3,则 A 的特征值为-1,-
1,-l,0。
圣才电子书
十万种考研考证电子书、题库视频学习平台
第 5 章 相似矩阵及二次型
一、选择题 1.设 A 是 3 阶实对称矩阵,E 是 3 阶单位矩阵。若 A2+A=2E,且|A|=4,则二次型 xTAx 的规范型为( )。[数一 2019 研] A.y12+y22+y32 B.y12+y22-y32 C.y12-y22-y32 D.-y12-y22-y32 【答案】C 【解析】规范型由正负惯性指数而定,因此计算 A 的特征值即可。由 A2+A=2E 可得 λ2+λ-2=0,所以 A 的特征值只能为 1 或-2。又因为|A|=4 且 A 是 3 阶矩阵,所以 A 的特征值为 1,-2,-2。由 A 的特征值符号可得正惯性指数为 1,负惯性指数为 2,从而 二次型的规范型是 y12-y22-y32。故选 C。
C.2y12-y22-y32
D.2y12+y22+y32
【答案】A
【解析】解法 1 设二次型矩阵为 A,则
2 0 0
P1
AP
PT
AP
0
1
0
0 0 1
可见 e1,e2,e3 都是 A 的特征向量。特征值依次为 2,1,-1,于是-e3 也是 A 的特
工程数学线性代数(同济大学第六版)课后习题答案精品.ppt

精品文档
精品文档
10.
精品文档
12.
精品文档
13.
精品文档
14.
精品文档
精品文档
1 3 3
(4)
AXB
C,
其中A
2 5
1 4
,
B
11
4 3
3 4
,
C
1 1
0 2
01.
7 3 3
A1
1Hale Waihona Puke 34 512
,
B1
1 1
1 0
0 1
7 3 3
X
A1CB 1
1 4
3
5
11 0
线性代数(同济六版)
精品文档
1
第一章
精品文档
2
精品文档
精品文档
精品文档
精品文档
精品文档
精品文档
精品文档
精品文档
精品文档
精品文档
精品文档
精品文档
精品文档
精品文档
精品文档
精品文档
(4) 1 1 1
abc bc ca ab
1
1
1
r3 r2 a
b
c
abc cab abc
精品文档
6 证明:
(1) a2 ab b2 2a a b 2b (a-b)3; 111
精品文档
精品文档
精品文档
精品文档
精品文档
精品文档
精品文档
精品文档
精品文档
7
精品文档
精品文档
8
精品文档
精品文档
7
精品文档
精品文档
精品文档
(5) 1 a1 a1 L a1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)n 元线性方程组 Ax=b
①无解⇔R(A)<R(A,b);
②有唯一解⇔R(A)=R(A,b)=n;
③有无限多解⇔R(A)=R(A,b)<n。
(2)n 元齐次线性方程组 Ax=0 有非零解⇔R(A)<n。
(3)线性方程组 Ax=b 有解⇔R(A)=R(A,b)。
(4)矩阵方程 Ax=B 有解⇔R(A)=R(A,B)。
圣才电子书 十万种考研考证电子书、题库视频学习平台
第 3 章 矩阵的初等变换与线性方程组
3.1 复习笔记
一、矩阵的初等变换 1.初等变换 (1)定义 下面三种变换称为矩阵的初等行变换: ①ri↔rj; ②ri×k,k≠0; ③ri+krj。 (2)矩阵等价
①矩阵 A 与 B 行等价:矩阵 A 经有限次初等行变换变成矩阵 B,记作 A r B ; ②矩阵 A 与 B 列等价:矩阵 A 经有限次初等列变换变成矩阵 B,记作 A c B ;
③A~B 的充分必要条件是存在 m 阶可逆矩阵 P 及 n 阶可逆矩阵 Q,使 PAQ=B。 (2)性质 ①设 Am×n,对 Am×n 进行一次初等行变换,等价于在 Am×n 的左边乘以相应的 m 阶初 等矩阵;对 Am×n 进行一次初等列变换,等价于在 Am×n 的右边乘以相应的 n 阶初等矩阵。 ②方阵 A 可逆⇔存在有限个初等矩阵 P1,P2,…Pl,使 A=P1P2…Pl。
1 0
;(4)
1 3
2 2
0 8
2 3
4
0
3
3
4
2
1
2
3
7
4
3
解:(1)
4 / 29
圣才电子书 十万种考研考证电子书、题库视频学习平台
1 0 2 1
1 0 2 1
2 3
0 0
3 4
31
r2 2r1 r3 3r1
0 0
0 0
1 2
63
1 0 0 5
③矩阵 A 与 B 等价:矩阵 A 经有限次初等变换变成矩阵 B,记作 A~B。 (3)矩阵之间的等价关系的性质 ①反身性:A~A; ②对称性:若 A~B,则 B~A; ③传递性:若 A~B,B~C,则 A~C。 (4)两个结论 ①任何非零矩阵 Am×n 总可经过有限次初等行变换把它变为行阶梯形矩阵和行最简形矩 阵。
3.结论 (1)设 A 为 n 阶矩阵,则 R(A+E)+R(A-E)≥n。 (2)若 Am×nBn×l=C,且 R(A)=n,则 R(B)=R(C)。 (3)设 AB=0,若 A 为列满秩矩阵,则 B=0。
三、线性方程组的解
3 / 29
圣才电子书
解的判断
十万种考研考证电子书、题库视频学习平台
1 / 29
圣才电子书 十万种考研考证电子书、题库视频学习平台
②对于 Am×n,总可经过初等变换(行变换和列变换)把它化为标准形。
2.初等变换的性质 (1)定理 设 A 与 B 为 m×n 矩阵,则:
① A r B 的充分必要条件是存在 m 阶可逆矩阵 P,使 PA=B; ② A c B 的充分必要条件是存在 n 阶可逆矩阵 Q,使 AQ=B;
(5)设 AB=C,则 R(C)≤min{R(A),R(B)}。
3.2 课后习题详解
1.用初等行变换把下列矩阵化为行最简形矩阵:
1 0 2 1
0 2 3 1
(1)
2 3
0 0
3 4
1 3
;(2)
0 0
3 4
4 7
31
1 1 3 4 3
2 3 1 3 7
(3)
3 2
3 2
5 3
4 2
1 9 8
1
12
11
1 0 2 0 2 1 0 2 0 2
r2
(-1)
0
0 r12r2
r3 0 r4
87rr22
1 0 0
1 0 0
1 1 1
1
r2 r3
0
4 4
r2 ( 1) rr1222rr22
00
0 0
1 0
30
(2)
0 2 3 1 0 2 3 1 0 1 1 2
0 0
3 4
4 7
31
r2 r1 r3 2r1
0 0
1 0
1 1
2 3
r1
r2
0 0
2 0
3 131Biblioteka 0 1 1 2 0 1 0 5
r2
2
r1
0 0
0 0
1 1
3
③方阵 A 可逆⇔ A r E 。
二、矩阵的秩 1.秩的定义 (1)矩阵的秩 设在矩阵 A 中有一个不等于 0 的 r 阶子式 D,且所有 r+1 阶子式(如果存在的话)全 等于 0,则 r 为矩阵 A 的秩,记作 R(A)。 注:零矩阵的秩等于 0。 (2)满秩矩阵与降秩矩阵 满秩矩阵:可逆矩阵(秩等于矩阵的阶数);
3
r2 (-1) rr13rr22
0 0
01 00
3 0
(3)
1 1 3 4 3 1 1 3 4 3
3
2
3
3 2 3
5 3 4
4 2 2
1
r2 r4
0
0 1
r3 r4
2 r1 3r1
0 0
0 1 2
2
0 3 6 6
0
5
10
10
1 1 0 2 3
r1 3r2
0
0 r33r2 0 r4 5r2
2 / 29
圣才电子书 十万种考研考证电子书、题库视频学习平台
降秩矩阵:不可逆矩阵(秩小于矩阵的阶数)。 (3)等价矩阵的秩 ①若 A~B,则 R(A)=R(B)。 ②若可逆矩阵 P,Q 使 PAQ=B,则 R(A)=R(B)。
2.秩的性质 (1)0≤R(Am×n)≤min{m,n}; (2)R(AT)=R(A); (3)若 A~B,则 R(A)=R(B); (4)若 P、Q 可逆,则 R(PAQ)=R(A); (5)max{R(A),R(B)}≤R(A,B)≤R(A)+R(B),特别地,当 B=b 为非零 列向量时,有 R(A)≤R(A,b)≤R(A)+1; (6)R(A+B)≤R(A)+R(B); (7)R(AB)≤min{R(A),R(B)}; (8)若 Am×nBn×l=0,则 R(A)+R(B)≤n。
0 1 2 00 0 00 0
2
0
0
(4)
2 3 1 3 7 1 2 0 2 4 1 2 0 2 4
1
3
2
2 2 3
0 8 7
2 3 4
4
r1
r2
2
0 3
3
2
3 2 3
1 8 7
3 3 4
7
r2
2r1
0
0 3
0 r33r1 0 r4 2r1
1 8 7
1 8 7