七年级数学上册第二章有理数及其运算第5节有理数的减法北师大版

合集下载

2.2.5有理数的加减混合运算的应用 (课件)北师大版(2024)数学七年级上册)

2.2.5有理数的加减混合运算的应用 (课件)北师大版(2024)数学七年级上册)

二 +0.81三 -0.来自5四 +0.03五 +0.28
六 -0.36
日 -0.01
(1)本周哪一天河流的水位最高?哪一天河流的水位最低?它们位于 警戒水位之上还是之下?到警戒水位的距离分别是多少米? (2)与上周日相比,本周日河流水位是上升了还是下降了? (3)完成本周水位记录表:
星期 一
水 位 33.6 记录/m
问题:小青蛙爬出井了吗?
探究新知
(二)图2-9呈现了流花河的水位情况(单位:m),取河流的 警戒水位作为0点,那么图中的其他数据可以分别记作什 么? 下表是某年雨季流花河一周内的水位变化情况(正号表示水 位比前一天上升,负号表示水位比前一天下降;上周日的水 位达到警戒水位)。
星期 水位变化/m
一 +0.20






34.41 34.06 34.09 34.37 34.01 34
(4)以警戒水位为0点,在图2-10中画折线表示本周的水位情况。 (5)你还能提出什么数学问题?
课堂练习
1、教材p43“随堂练习”第1题。
2、某汽车制造厂计划前半年内每月生产汽车20辆,由于另有任务, 每月上班人数有变化,1月至6月实际每月生产量和计划每月生产量相 比,变化情况如下(增加为正,减少为负,单位:辆): +3,-2,-1,+4,+2,-5. (1)生产量最多的一个月比生产量最少的一个月多生产多少辆? (2)前半年的实际总产量是多少?比计划的总产量多了还是少了?相差 多少?
3.某公路养护小组乘车沿南北方向公路巡视维护,某天从A地出发,约定向 南行驶为正,到收工时的行驶记录如下:(单位:千米) 8,-5,7,-4,-6,13,4,12,-11 (1)问收工时,养护小组在A地的哪一边?距离地多远? (2)若汽车行驶每千米耗油0.5升,求从出发到收工共耗油多少升?

北师大版七年级上册数学教案:第二章有理数及其运算

北师大版七年级上册数学教案:第二章有理数及其运算
举例:解释为何0乘以任何数都等于0,以及-3÷(-2)=1.5的运算过程。
(4)混合运算中的运算顺序:学生在进行有理数混合运算时,容易忽视运算顺序,导致计算错误。
举例:强调先计算括号内的运算,再进行乘除运算,最后进行加减运算。
(5)运算律的应用:学生在运用运算律简化运算时,可能不熟练,需要加强练习。
举例:解释为何-3表示3的相反数,理解负数在实际问题中的应用。
(2)有理数的加减运算:特别是在异号相加和减法运算中,理解为何同号相加取相同符号,异号相加取绝对值较大的加数的符号。
举例:讲解-3+2的结果是-1,而不是1,理解其背后的运算规律。
(3)有理数的乘除运算:掌握有理数乘除运算的符号规律,尤其是零与有理数相乘、不为零的有理数相除的规则。
北师大版七年级上册数学教案:第二章有理数及其运算
一、教学内容
本节课选自北师大版七年级上册数学教材第二章“有理数及其运算”。主要内容包括:
1.有理数的概念:整数和分数统称为有理数,介绍正有理数、负有理数和零的概念。
2.有理数的分类:将有理数按照正、负和零进行分类,并了解它们的特点。
3.有理数的加法:掌握同号相加、异号相加、零与有理数相加的法则,并能熟练进行计算。
举例:运用结合律将(3+4)×5简化为3×5+4×5,降低计算难度。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《有理数及其运算》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过数字的正负和计算的问题?”比如,温度上升和下降,银行存款和取款等。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索有理数的奥秘。

北师大版七年级数学上册第二章有理数及其运算全章教案(共180页)

北师大版七年级数学上册第二章有理数及其运算全章教案(共180页)

第二章有理数及其运算1.理解有理数的意义,能用数轴上的点表示有理数,能比较有理数的大小.2.能借助数轴理解相反数和绝对值的意义,知道|a|的含义(这里a表示有理数).3.理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步以内为主).4.理解有理数的运算定律,能运用运算律简化计算.5.能运用有理数的运算解决简单的问题.1.在求一个数的相反数和绝对值的过程中,让学生掌握求有理数的相反数和绝对值的方法.2.能按照有理数的运算法则进行有理数的加、减、乘、除及混合运算,掌握计算的方法和技巧.3.能用科学记数法表示数,以及用四舍五入法取近似数,掌握其表示的方法.1.在认识数的过程中,体验知识之间的必然联系,激发学生爱数学、学数学的兴趣.2.培养学生养成认真做题的良好习惯,认识数学是解决实际问题和进行交流的重要工具.3.在解决问题的过程中,能对问题提出自己的猜想,树立学好数学的信心.对于负数的引入,教材借助生活中的实例,引进负数,让学生在活动中体会数概念的扩张,了解负数的本质意义,然后再指出可以用正负数表示现实生活中具有相反意义的量,使学生感受到负数的引入源自实际生活的需要,体会数学知识与现实世界的联系.就学生的学习而言,负数的概念、意义有一定的抽象性,为什么要引进负数正是学生理解的困难所在.从数学的发展进程来看,数的出现的主要原因更多的是由于对实际现象(事物)“表示”的需要.所以教材遵循历史发展的过程,采用这样的线索展开:产生的实际背景——有理数的意义——数的表示.对于有理数运算法则的获得,教材没有采用直接给出的方式而是设置了丰富的现实背景,如足球比赛中的净胜球数、气温变化等,以直观形象地解释、归纳、探索的方式,寻求有理数运算法则和运算律.如有理数的加法法则,仅仅借助数轴理解,学生会有一定的困难,所以教材先从知识竞赛中的答对题数与答错题数入手,使学生首先理解(+1)+(- 1)=0和(- 1)+(+1)=0,然后利用“正负抵消”的思想,讨论整数加法的几种情形,最后再由特例归纳出有理数的加法法则,并借助数轴加深理解.基于有理数运算的学习重点是对法则和运算律的理解,所以为了避免因为小数、分数运算的复杂性而冲淡学习的重点,有理数的运算以整数运算的学习为出发点,然后过渡到含有小数、分数的运算.【重点】理解有理数的意义,掌握有理数的运算法则和运算律,会用科学记数法表示较大的数.【难点】利用有理数的加、减、乘、除、乘方等运算解决简单的实际问题.1.负数是一个比较抽象的概念.在教学中应该让学生充分了解引入负数的必要性和实际背景,通过生活中具有相反意义的量的讲解,让学生接受负数的概念.2.本章的重点内容是有理数的运算,所以一定要让学生有足够的练习的机会,只有通过一定量的计算实践,才能真正体会并熟练掌握有理数计算的一些技巧.让学生通过计算、观察、猜测、归纳等数学活动,自己总结出有理数的运算律.3.对绝对值概念的学习也要有一个循序渐进的过程,与绝对值相关的知识,如数轴上两点之间的距离的表示、绝对值不等式等,都是在后续学习中要专门安排的,因此这里不要涉及.本章安排绝对值概念,目的是为有理数的运算作准备,会求一个数的绝对值就达到了本章的要求.教材中用字母表示求一个数的绝对值的结论,只是给出一个数的绝对值的符号表示,教学时不要对这个符号表示进行变式训练,更不要在绝对值中出现字母并加以讨论.4.计算器是一个既简便又实用的计算工具,让学生通过实际操作,掌握计算器的基本用法.5.在本章的学习中,要注意数形结合思想、转化与化归思想、分类讨论思想的运用.1有理数1课时2数轴1课时3绝对值1课时4有理数的加法2课时5有理数的减法1课时6有理数的加减混合运算3课时7有理数的乘法2课时8有理数的除法1课时9有理数的乘方2课时10科学记数法1课时11有理数的混合运算1课时12用计算器进行运算1课时本章概括整合1课时1有理数1.通过实例理解引入负数的必要性和负数应用的广泛性,理解有理数的含义,体会有理数应用的广泛性.2.能用正数和负数表示具有相反意义的量.3.培养逻辑思维能力,以及按一定规律对事物进行分类整理的能力.会判断一个数是正数还是负数,能应用正负数表示生活中具有相反意义的量,能把有理数合理分类和把具体数正确归类.1.通过实例,使学生深刻体会到有理数和负数的实用性,加深对数的理解.2.让学生体会到数学中的基本概念都来源于实际需要.3.让学生进一步了解学习数学对于解决实际生活中各种问题的必要性,增强学习数学知识的兴趣.【重点】负数的意义、特点及实际应用,有理数的概念,能够对学过的数进行分类.【难点】正确用正、负数表示生活中具有相反意义的量,正确理解有理数的概念,会合理进行有理数的分类和把具体数归类到相应的数集.【教师准备】多媒体课件.【学生准备】预习教材P23~24.导入一:师:同学们小学都学过哪些数?生:整数、小数、分数、奇数、偶数……师:原始社会,从打猎记数开始,首先出现自然数,经过漫长岁月,人们用数“0”表示没有,随着人类的不断进步,在丈量土地进行分配时,又用小数使测量结果更加准确,小数也属于分数.那么小学学过的这些数能否满足社会生产生活及数学自身发展的需要呢?[设计意图]通过介绍数的产生与发展,向学生渗透“实践第一”的辩证唯物主义观点,使同学们感到数的每一次发展都是为了满足社会生产与生活的需要,也为讲述有理数概念及其分类做好铺垫.导入二:观察课本P22的图片.珠穆朗玛峰高出海平面8844 m,记作:+8844 m;吐鲁番盆地低于海平面155 m,记作: - 155 m.教师出示图片,并提出问题:1.生活中我们会遇到用负数表示的量,你能说出一些例子吗?2.你在小学的学习中对负数有什么样的认识?3.有了负数,数的运算与过去相比有什么区别和联系?有了负数,能解决哪些实际问题?本章将在小学学习的基础上,进一步学习负数,研究有理数的有关概念及其运算,并利用有理数的知识解决实际问题.[设计意图]通过提供学生熟悉的情境引导学生回顾小学有关负数的知识,三个问题不仅为本节课成功引入,也为本章的学习做了铺垫.学生在对问题的思考与交流中体会负数在生活中的广泛应用,激发了学生学习本章内容的兴趣.(出示课件1)(例题讲解)请同学们完成以下问题,并与同伴交流.某班举行知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,不回答得0分;每个队的基本分均为0分.两个队答题情况如下表:答题情况第一队第二队如果答对题所得的分数用正数表示,那么你能写出每个队答题得分的情况吗?思路一试完成下表:答对题的得分答错题的得分未回答题的得分第一队+6第二队- 2思路二提出思考问题:(1)第一队答对几题?是如何表示的?答错几题?又是如何表示的?(2)第二队答对几题?是如何表示的?答错几题?又是如何表示的?(3)如何理解+6和- 2?(出示课件2)(教材议一议)生活中你见过其他用负数表示的量吗?与同伴进行交流.想一想:根据上面各队分数的计算及2010年全国居民消费价格的上涨情况及温度计上的温度,你能知道正、负数和零的大小关系吗?[处理方式]学生思考交流,完成后再展示说明,学生之间互相补充,教师适时点评.师生总结:“加分与扣分”“上涨量与下跌量”“零上温度与零下温度”等都是具有相反意义的量.为了表示具有相反意义的量,我们把其中一个量规定为正的,用正数来表示,而把与这个意义相反的量规定为负的,用负数来表示.[设计意图]本活动的设计意在引导学生通过自主探究、合作交流,用知识竞赛得分的情境启发学生用正、负数表示相反意义的量.通过练习引导学生举一反三地找出身边可以用正、负数表示的量,从而体会学习负数的必要性.从学生熟悉的情境讨论问题,学生积极参与,在教师的引导下寻找生活实例的过程中充分体会学习负数是生活的需要.探究活动2用正、负数表示生活中具有相反意义的量(出示课件3)(教材例题)(1)某人转动转盘,如果用+5圈表示沿逆时针方向转了5圈,那么沿顺时针方向转了12圈怎样表示?(2)在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02 g 记作+0.02 g,那么- 0.03 g 表示什么?(3)某大米包装袋上标注着“净含量:10 kg±150 g”,这里的“10 kg±150 g”表示什么?[处理方式]学生先独立思考,再小组交流如何用正、负数表示生活中具有相反意义的量.思路一如果用+5圈表示沿逆时针方向转了5圈,那么和逆时针方向具有相反意义的量是,所以沿顺时针方向转了12圈可表示为;一只乒乓球超出标准质量0.02 g记作+0.02 g,那么和超出标准质量具有相反意义的量是,所以- 0.03 g可以表示为;综上所述,“净含量:10 kg±150 g”,这里的“10 kg±150 g”表示.思路二(1)想一想:什么是具有相反意义的量?(2)品一品:如何表示具有相反意义的量?(3)考一考:和逆时针方向具有相反意义的量是,和超出标准质量具有相反意义的量是.【师生活动】学生讨论,教师巡视发现问题,并及时解决.解:(1)沿顺时针方向转了12圈记作- 12圈.(2) - 0.03 g表示乒乓球的质量低于标准质量0.03 g.(3)每袋大米的标准质量应为10 kg,但实际每袋大米可能有150 g的误差,即每袋大米的净含量最多是10 kg+150 g,最少是10 kg - 150 g.反馈练习(出示课件4) (1)在知识竞赛中如果用“+10”表示加10分,那么扣20分记作什么? (2)东、西为两个相反方向,如果 - 4米表示一个物体向西运动4米,那么+2米表示什么?物体原地不动记为什么?(3)某粮库运进面粉7.5吨记作+7.5吨,那么运出3.8吨应记作什么?议一议:你能选定一个高度为标准,用正、负数表示本班每位同学的身高与选定的身高标准的差异吗?你是怎样表示的?与同伴交流.通过例题和练习题的分析,让学生知道用正、负数表示相反意义的量时要明确“基准”.教材例题中各题的基准分别是“转盘静止不动”“一只乒乓球的标准质量”“10 kg ”. “议一议”则联系生活实际让学生学会如何选定“基准”.学生认识当用正、负数表示相反意义的量时要考虑“基准”.“0”是常用的基准,但不是所有的基准都必须为0.探究活动3 有理数的概念及分类1.新的整数、分数概念:引进负数后,数的范围扩大了.过去我们说整数只包括正整数和零,引进负数后,正整数前加上负号的数叫做负整数,因而整数包括正整数、负整数和零,同样分数包括正分数、负分数.整数和分数统称为有理数.(有理数分类结构图如下)有理数{整数{正整数0负整数分数{正分数负分数 2.有理数的分类.问题:为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类的方法也常常不同,根据有理数的定义可将有理数分成两类:整数和分数.有理数还有没有其他的分类方法呢?待学生思考后,请学生回答、评议、补充.教师小结:按有理数的符号分为三类:正有理数、负有理数和零,并指出,在有理数范围内,正数和零统称为非负数.并向学生强调:对有理数的分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类.[设计意图] 使学生在原有认知结构的基础上,将数扩充到了有理数的范围.通过练习使学生加深理解有理数的意义.[知识拓展] 对正数和负数的理解要注意以下几点:(1)并不一定必须将某一种量规定为正,若将其中的一种量规定为正,则与其意义相反的量即为负.(2)零既不是正数,也不是负数,这个数十分特殊,随着我们的学习,对于零这个数将有更深刻的认识.(3)负数前面的“一”号,表示这个数的性质,是性质符号,读作“负”号,但正数前面的“+”可以省略.即时巩固将下列各数填入到相应的数集中: - 2015, - 13,14,12, - 513, - 7.3,3,369,0.1,92, - 374.正数集合{ …}; 负数集合{ …}; 正整数集合{ …}; 负整数集合{ …}; 分数集合{ …}; 负分数集合{ …}; 负有理数集合{ …}; 有理数集合{ …}.〔解析〕 小数 - 7.3,0.1都属于分数,369=4不属于分数.(学生口述解答过程,师总结、板演)1.正数与负数都来自于生活实际,用正、负数可以表示实际问题中具有相反意义的量.2.正数前面添上“ - ”号的数是负数;0既不是正数,也不是负数,它表示正、负数的界限.3.有理数的分类方法不是唯一的,可以按整数和分数分成两大类,也可以按正有理数、零、负有理数分成三大类.1.如果将汽车向东行驶3千米记为+3千米,那么记为 - 3千米表示的是 ( )A.向西行驶3千米B.向南行驶3千米C.向北行驶3千米D.向东南方向行驶3千米解析:先根据向东行驶3千米记为+3千米,可确定向西为负,而 - 3千米表示的应是向西行驶3千米.故选A .2.在0,2, - 7, - 513,3.14, - 317, - 3,+0.75中,负数共有 ( )A.1个B.2个C.3个D.4个解析:在正数的前面加上“ - ”号的数即是负数,本题中的 - 7, - 513, - 317, - 3是负数.故选D .3.飞机上升了 - 80米,实际上是 ( ) A.上升80米 B.下降 - 80米C.先上升80米,再下降80米D.下降80米解析:解题的关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.负号表示与上升意义相反,即下降.故选D .4.举一个能用正数、负数表示生活中的量的实例,并解释其中相关数量的含义.解:本题答案不唯一,只要满足题意即可,如:河道中第一天的水位是 - 0.2米,第二天的水位是+0.3米,其中 - 0.2米表示比正常水位低0.2米,+0.3米表示比正常水位高0.3米.1有理数1.认识生活中的负数.2.用正、负数表示生活中具有相反意义的量.3.有理数的概念及分类.一、教材作业【必做题】教材第26页习题2.1的2,3题.【选做题】教材第26页习题2.1的4,5题.二、课后作业【基础巩固】1.下列结论中正确的是()A.0既是正数,又是负数B.0是最小的正数C.0是最大的负数D.0既不是正数,也不是负数2.向东运动记作“+”,向西运动记作“- ”,下列说法正确的是()A. - 5米表示向东运动了5米B.向西运动5米表示向东运动了- 5米C.+5米表示向西运动了5米D.向西运动5米也可以记作向西运动- 5米3.武汉市夏季气温比较高,若以30 ℃为标准,高出标准的为正,低于标准的为负,则38 ℃与28 ℃分别记作()A.+8 ℃- 2 ℃B.+8 ℃+2 ℃C. - 8 ℃- 2 ℃D. - 8 ℃+2 ℃4.某药品说明书上标明药品保存的温度是(20±2)℃,该药品在温度范围内保存才合适.5.请指出下列各数中哪些是正数,哪些是负数.- 18,+227,3.1416,0.2011, - 35, - 0.1010…, - π, - 2,99%.【能力提升】6.如果海平面的高度为0 m,一潜水艇在海平面以下40 m处航行,一条鲨鱼在潜水艇上方10 m 处游动,试用正、负数分别表示潜水艇和鲨鱼的高度.7.用正数和负数表示下列具有相反意义的量.(1)钟表的指针逆时针方向旋转20°记作- 20°,顺时针方向旋转30°记作;(2)运进200箱记作,运出150箱记作- 150箱.【拓展探究】8.某日小明在一条南北方向的公路上跑步,他从A地出发,如果把向北跑1100 m记作- 1100 m,那么他向北跑1100 m时向后转又继续跑了1200 m是什么意思?这时他停下来休息,此时他在A地的什么方向?距A地多远?【答案与解析】1.D(解析:根据0既不是正数,也不是负数,可以判断A,B,C都错误,D正确.故选D.)2.B(解析:A. - 5米表示向西运动了5米,故A错误;C.+5米表示向东运动了5米,故C错误;D.向西运动5米记为- 5米,故D错误.故选B.)3.A (解析:因为以30 ℃为标准,高出标准的为正,低于标准的为负,所以38 ℃与28 ℃分别记作:+8 ℃, - 2 ℃.故选A.)4.18~22 ℃(解析:温度是20 ℃±2 ℃,表示最低温度是20 ℃- 2 ℃=18 ℃,最高温度是20 ℃+2 ℃=22 ℃,即18~22 ℃之间是合适温度.)5.解:正数有:+227,3.1416,0.2011,99%;负数有: - 18, - 35, - 0.1010…, - π, - 2.6.解:因为海平面的高度为0 m,所以低于海平面的高度为负数,由于潜水艇和鲨鱼的高度都在海平面的下方,故分别为- 40 m和- 30 m.7.(1)+30°(2)+200箱8.解:如果把向北跑1100 m 记作 - 1100 m ,那么他向北跑1100 m 时向后转又继续跑了1200 m ,说明小明又向南跑了1200 m ,此时他在A 地的南边,距A 地的距离=1200 - 1100=100(m ).本节课从学生较熟悉的珠穆朗玛峰、气温开始,接下来从具体问题情境出发,使学生感受到现有的数确实不够用了,唤起学生的好奇心和求知欲,然后引出负数、正数和零的概念和实际意义,接着引导学生回顾、总结学过的数,告诉学生有理数的意义,和学生一起探讨有理数的分类,这样学生易于接受,在学习过程中,学生经历了观察、比较、归纳、总结,学会了研究问题、解决问题的方法,加深了对所学知识的理解,完成了从数不够用到数可以表示具有相反意义的量的成长过程。

数学初一上北师大版2.5有理数的减法说课稿

数学初一上北师大版2.5有理数的减法说课稿

数学初一上北师大版2.5有理数的减法说课稿教材分析本节所讲的是北师大版《数学》实验教科书七年级上册第二章第五节的内容。

本章内容是有理数及其运算,在一定意义上讲,它是全新的,但必须充分认识到它是小学所学的四那么运算的继承和发展,就本节内容来看,有理数的减法运算是建立在刚刚学过的有理数加法运算基础上的,这一节课是前面所学知识的继续,又是后面学习有理数混合运算的基础,起着承前启后的作用。

有理数的减法对学生来说是比较难学的,特别容易和前面的加法混淆。

初学时,学生的正确率不高,所以要通过对法那么的透彻理解和大量的练习才能达到熟练的地步。

这节课首先从某一天的温差出发,引入有理数减法,使学生体会减法在实际生活中的应用,通过减法是加法的逆运算得出答案。

在此基础上,归纳出有理数的减法法那么,然后根据法那么进行计算,最后又以两个实际问题进行运用,使数学计算变得生活化,数学课变得活泼一些,没有这么枯燥无味。

根据上述教材结构以及本人对教材的理解和分析,确定本节课的教学目标如下:经历探索有理数减法法那么的过程,理解有理数减法法那么。

能熟练地进行有理数减法的运算。

为学生创设熟悉的生活环境,使其在轻松愉快中体会数学知识在实际生活中的应用。

教学重点:有理数减法法那么的理解及熟练运用法那么计算。

难点:探索有理数减法法那么,正确完成减法与加法的转化学情分析七年级学生性格开朗活泼,对新鲜事物比较感兴趣,因此,教学过程中创设的问题情境应当生动活泼,直观形象,贴近学生的生活。

由于刚升入初中,学生的智力,基础,学习习惯都有较大的差异,很多同学会出现符号处理有误,法那么选择不灵活等问题。

因此,老师要充分发挥情感目标的调控作用,随时收集来自学生方面的信息,及时反馈矫正加强交流与合作。

【三】教法分析本节课的教学遵循了启发性的教学原那么,注意渗透了转化的数学思想。

按照“教师为主导,学生为主体”的教学观,倡导学生主动参与,让学生在应用旧知识的过程中探究,通过老师的引导启发得到新的结论。

2023-2024学年北师大版七年级数学上册《第二章有理数及其运算2.5有理数的减法》教学设计

2023-2024学年北师大版七年级数学上册《第二章有理数及其运算2.5有理数的减法》教学设计

2023-2024学年北师大版七年级数学上册《第二章有理数及其运算2.5有理数的减法》教学设计一. 教材分析《有理数及其运算2.5有理数的减法》这一节的主要内容是让学生掌握有理数的减法法则,并能熟练地进行有理数的减法运算。

北师大版教材在这一节中通过例题和练习题的方式让学生理解和掌握有理数的减法,同时也为后续的有理数混合运算打下基础。

二. 学情分析学生在学习这一节之前,已经学习了有理数的概念,加法和减法的基本概念,对于有理数的减法有一定的认知基础。

但学生可能对于有理数的减法法则理解不够深入,容易将减法运算和加法运算混淆。

三. 教学目标1.让学生理解有理数的减法概念,掌握有理数的减法法则。

2.培养学生进行有理数减法运算的能力。

3.培养学生的逻辑思维能力,使学生能够灵活运用有理数的减法解决实际问题。

四. 教学重难点1.教学重点:有理数的减法法则,有理数的减法运算。

2.教学难点:有理数的减法法则的理解和运用。

五. 教学方法采用问题驱动法,通过设置问题情境,引导学生探究有理数的减法法则,并通过例题和练习题让学生进行有理数的减法运算,从而达到理解和掌握有理数的减法。

六. 教学准备1.准备相关的教学PPT,展示有理数的减法运算过程。

2.准备相关的例题和练习题,让学生进行有理数的减法运算。

3.准备黑板,用于板书有理数的减法运算过程。

七. 教学过程1.导入(5分钟)通过设置问题情境,引导学生思考有理数的减法是什么,激发学生的学习兴趣。

2.呈现(10分钟)通过PPT展示有理数的减法法则,让学生初步了解有理数的减法。

3.操练(15分钟)让学生进行有理数的减法运算,通过例题和练习题让学生理解和掌握有理数的减法法则。

4.巩固(10分钟)通过练习题让学生进一步巩固有理数的减法运算,提高学生的运算速度和准确性。

5.拓展(10分钟)让学生运用有理数的减法解决实际问题,提高学生的应用能力。

6.小结(5分钟)对本节课的内容进行小结,让学生明确本节课的学习重点。

有理数的减法课件北师大版数学七年级上册

有理数的减法课件北师大版数学七年级上册

2.填空: (1)3-5=__-2_;
=3+(-5) =-2
(2)3-(-5)=__8 _; =3+5 =8
(3)(-3)-5=__-_8___;(4)(-3)-(-5)=__2__;
=(-3)+(-5) =-8
=(-3)+5 =2
(5)-6-(-6)=___0___;(6)-7-0=_-_7 _;
减数变相反数 50-(-10)=___6_0__, 50-(-20)=__7_0__.
50+(-20)=___3_0___, 50+(-10)=___4_0__, 50 + 0 =__5_0___, 50 + 10 =__6_0___, 50 + 20 =___7_0_.
视察、对照每横行的两个算式,你能得出什么结论?
解:(1) 原式=(-72)+37+22-17=-30; (2)原式=(-16)+12-24+18=-10; (3)原式=23+76-36+105=168; (4)原式=(-32)+27+72-87=-20.
课堂小结
有理数减法法则
减去一个数,等于__加__上__这个数的__相__反__数____. 其实质是:变减法运算为___加__法___运算. 要做到“两变”:一变运算符号,即减号变成加号; 二变减数,即减数变成它的相反数.
拓展提高
1. 若|a|=4,|b|=2,求a-b.
解:因为 |a|=4,|b|=2, 所以 a=4或-4,b=2或-2. 当a=4,b=2时,a-b=4-2=2; 当a=4,b=-2时,a-b=4-(-2)=6; 当a=-4,b=2时,a-b=(-4)-2=-6; 当a=-4,b=-2时,a-b=(-4)-(-2)=-2.

七年级数学上册 第二章 有理数及其运算 5 有理数的减

七年级数学上册 第二章 有理数及其运算 5 有理数的减

= 2 + 3 = 5 .
666
(3) 2
1 3

- 13 = 2
1 3

+ 13

=-2 2 .
3
(4)0-(-8)=0+(+8)=8.
题型一 利用数轴考查有理数的加减运算法则 例1 已知有理数a、b在数轴上的对应位置如图2-5-1所示,则下列结论 正确的是 ( )

3
2 3

-
2
3 4

-
7
2 3

-(+2.75);
(3)(-1)-
1
1 2

-
2
1 4

-2.
解析 (1)原式=(-32)+(+12)+(-5)+(+15)
=[(-32)+(-5)]+[(+12)+(+15)]
=(-37)+(+27)=-10.

=0+ 12 = 12 ;D中,- 13 - 12

=- 13 + 12 =+ 12
1 3

= 1 ,故选B.
6
2.与(-a)-(-b)相等的式子是 ( )
A.(+a)+(-b) B.(-a)+(-b)
C.(-a)+(+b) D.(+a)+(+b)
答案 C (-a)-(-b)=(-a)+(+b),故选C.
初中数学(北师大版)
七年级 上册
第二章 有理数及其运算

最新北师大版初中数学目录

最新北师大版初中数学目录

北师大版七年级上册第一章丰富的图形世界1.生活中的立体图形2.展开与折叠3.截一个几何体4.从三个方向看物体的形状回顾与思考复习题第二章有理数及其运算1.有理数2.数轴3.绝对值4.有理数的加法5.有理数的剑法6.有理数的加减混合运算7.有理数的乘法8.有理数的除法9.有理数的乘方10.科学计数法11.有理数的混合运算12.用计算器进行运算回顾与思考复习题第三章整式及其加减1.字母表示数2.代数式3.整式4.整式的加减5.探索与表达规律回顾与思考复习题第四章基本平面图形1.线段、射线、直线2.比较线段的长短3.角4.角的比较5.多边形与圆的初步认识回顾与思考复习题第五章一元一次方程1.认识一元一次方程2.求解一元一次方程3.应用一元一次方程---水箱变高4.应用一元一次方程---打折销售5.应用一元一次方程---“希望工程”6.应用一元一次方程---追赶小明回顾与思考复习题第六章数据的收集与整理1.收据的收集2.普查与抽样调查3.数据的表示4.统计图的选择回顾与思考复习题综合与实践探寻神奇的幻方关注人口老龄化制作一个尽可能大的无盖长方体课题学习制作一个尽可能大的无盖长方体总复习北师大版七年级下册第一章整式的乘法1.同底数幂的乘法2.幂的乘方与积的乘方3.同底数幂的除法4.整式的乘法5.平方差公式6.完全平方公式7.整式的除法回顾与思考复习题第二章相交线与平行线1.两条直线的位置关系2.探索直线平行的条件3.平行线的性质4.用尺规作角回顾与思考总复习第三章三角形1.认识三角形2.图形的全等3.探索三角形全等的条件1.用尺规作三角形2.利用三角形全等测距离回顾与思考总复习第四章变量之间的关系1.用表格表示的变量之间的关系2.用关系式表示的变量之间的关系3.用图像表示的变量之间的关系回顾与思考总复习第五章生活中的轴对称1.轴对称现象2.探索轴对称的性质3.简单的轴对称图形4.利用轴对称进行设计回顾与思考总复习第六章概率初步1.感受可能性2.频率的稳定性3.等可能事件的概率回顾与思考总复习综合与实践设计自己的运算程序综合与实践七巧板总复习北师大版八年级上册第一章勾股定理1.探索勾股定理2.一定是直角三角形吗3.勾股定理的应用回顾与思考复习题第二章实数1.认识无理数2.平方根3.立方根4.估算5.用计算器开方6.实数7.二次根式回顾与思考复习题第三章位置与坐标1.确定位置2.平面直角坐标系3.平行线的判定4.平行线的性质5.三角形内角和定理回顾与思考复习题第四章一次函数1.函数2.一次函数与正比例函数3.一次函数图像4.一次函数的应用回顾与思考复习题第五章二元一次方程组1.认识二元一次方程组2.求解二元一次方程组3.应用二元一次方程组--鸡兔同笼4.应用二元一次方程组--增收节支5.应用二元一次方程组--里程碑的数6.二元一次放陈玉一次函数7.用二元一次方程组确定一次函数8.三元一次方程组回顾与思考复习题第六章数据的分析1.平均数2.中为数与众数3.从统计图分析数据的集中趋势4.数据的离散程度回顾与思考复习题第七章平行线的证明1.为什么要证明2.定义与命题3.平行线的判定4.平行线的性质5.三角形内角和定理回顾与思考复习题综合与实践计算器运用与功能探索综合与实践哪一款手资费套餐更合适综合与实践哪个城市更热北师大版八年级下册第一章三角形的证明1.等腰三角形2.直角三角形3.线段的垂直平分线4.角平分线回顾与思考复习题第二章一元一次不等式与一元一次不等式组1.不等关系2.不等式的基本性质3.不等式的解集4.一元一次不等式5.一元一次不等式与一次函数6.一元一次不等式组回顾与思考复习题第三章图形的平移与旋转1.图形的平移2.图形的旋转3.中心对称4.简单的图案设计回顾与思考复习题第四章因式分解1.因式分解2.提公因式法3.公式法回顾与思考复习题第五章分式与分式方程1.认识分式2.分式的乘除法3.分式的加减法4.分式方程回顾与思考复习题第六章平行四边形1.平行四边形的性质2.平行四边形的判定3.三角形的中位线4.多边形的内角和与外角和回顾与思考复习题综合与实践生活中的“一次模型”综合与实践平面图形的镶嵌总复习旧版资源第一章一元一次不等式和一元一次方程第二章因式分解第三章分式第四章相似图形第五章数据的收集与处理第六章证明(一)总复习北师大版九年级上册第一章证明(二)1.你能证明它们吗2.直角三角形3.线段的垂直平分线4.角平分线回顾与思考复习题第二章一元二次方程1.花边有多宽2.配方法3.公式法4.分解因式法5.为什么是0.618回顾与思考复习题第三章证明(三)1.平行四边形2.特殊的平行四边形回顾与思考复习题第四章视图与投影1.视图2.太阳光与影子3.灯光与影子回顾与思考复习题第五章反比例函数1.反比例函数2.反比例函数的图像与性质3.反比例函数的应用回顾与思考复习题课题学习猜想、证明与拓广第六章频率与概率1.频率与概率2.投针试验3.生日相同的概率4.池塘里有多少条鱼回顾与思考复习题总复习北师大版九年级下册第一章直角三角形的边角关系1.从梯子的倾斜成都谈起2.30、45、60角的三角函数值3.三角函数的有关计算4.船有触礁的危险吗5.测量物体的高度回顾与思考复习题第二章二次函数1.二次函数所描述的关系2.结识抛物线3.刹车距离与二次函数4.二次函数图像5.用三种方式表示二次函数6.何时获得最大利润7.最大面积是多少8.二次函数与一元二次方程回顾与思考复习题课题学习拱桥设计第三章圆1.车轮为什么做成圆形2.圆的对称性3.圆周角与圆心角的关系4.确定圆的条件5.直线和圆的位置关系6.圆与圆的位置关系7.弧长及扇形的面积8.圆锥的侧面积回顾与思考复习题课题学习设计遮阳蓬第四章统计与概率1.50年的变化2.哪种方式更合算3.游戏公平吗回顾与思考复习题总复习。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:有理数的减法
●教学目标:
一、知识与技能目标:
1.掌握有理数的减法法则,会将有理数的减法运算转化为加法运算.
2.能熟练应用法则进行有理数减法运算.
二、过程与方法目标:
通过有理数的减法运算,向学生渗透转化思想,培养学生的运算能力.
三、情感态度与价值观目标:
通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想.
●重点:
运用有理数的减法法则,熟练进行减法运算
●难点:理解有理数减法法则
●教学流程:
一、课前回顾
上节课我们学习了有理数的加法,大家来回忆有理数加法的法则。

现在做练习题来巩固之前所学。

(-5)+(-7)= -12 (-5)+3=-2
9+(-5)= 4 -2+0=-2
-4+4= 0 +(-2)=-1
那么这节课,我们来学习有理数的减法。

二、活动探究
学生活动:根据表格内容,计算哈尔滨市这一天的温差。

三、讲授新知
哈尔滨的最高温度是3℃,最低温度为-3℃,求这一天哈尔滨的温差。

先来列算式:3 -(-3)
大家都知道10-4=6.那么10-4=6这个式子中的性质符号补出来是什么样呢?
生:(+10)-(+4)=+6.
师:计算:(+10)+(-4)得多少呢?
生:(+10)+(-4)=+6.
既然两个式子最后的结果都是+6,我们就可以得出两个等式的左边是相等的。

也就是说(+10)-(+4)=(+10)+(-4)
从这个等式大家发现了什么?
生:减去一个正数等于加上它的相反数。

师:对,稍微延伸一下就是减法和加法是可以相互转化的。

那么3 -(-3)该怎么计算呢?
根据以前学过的减法,减数+差=被减数,也就是说,要有一个数+(-3)=3,那这个数是多少呢?
生:6
也就是6+(-3)=3,所以3 -(-3)=6;
而3+3=6
等式替换得:3 -(-3)=3+3
从这个等式,大家又能发现什么?
生:减去一个负数等于加它的相反数。

所以总结刚刚的两句话,减去一个正数等于加上它的相反数,减去一个负数等于加它的相反数。

我们就得到了有理数减法的法则:
减去一个数,等于加上这个数的相反数
注意: (1)减法转化为加法,减数要变成相反数.“两变”
(2)法则适用于任何两有理数相减.
(3)用字母表示一般形式为:a-b=a+(-b).
四、举一反三
那现在我们来看沈阳市一天的温差该怎么计算。

沈阳市当天最高气温5℃,最低气温-2℃,所以温差应该是
计算5-(-2)
= 5+2
=7
五、实例讲解
1.(1)9-(-5)(2)(-3)-1
解:= 9+5 解:= (-3)+(-1)
= 14 =-4
(3)0-8 (4)(-5)-0
解:=0+(-8)解:=-5
=-8
2. 世界上最高的山峰是珠穆朗玛峰,其海拔高度大约是8844m,吐鲁番盆地的海拔高度大约是-155m,两处高度相差多少米?
解: 8848-(-155)
=8848+155
=8999(m)
因此,两处高度相差8999m。

3.全班学生分为五个组进行游戏,每组的基本分为100分,答对一题加50分,答错一题扣50分。

游戏结束时,各组的分数如下:
(2)第一名超出第五名多少分?
解:由上表可以看出,第一名得了350分,第二名得了150分,第五名得了-400分。

(1)350-150=200(分);
(2)350-(-400)=750(分)
因此,第一名超出第二名200分,第一名超出第五名750分。

六、拓展提升
1.矿井下某工人在-100米深处检修设备,一小时后他上升了20米,半小时后他又上升了10米,再过一小时他又下降了15米,求该工人现在所处的位置。

解:-100+20+10-15=-85
所以该工人现在在-85米处
2.如果a<0,b<0,且|a|>|b|,那么a-b是()
A.正数
B.负数
C. 0
D.以上都有可能
解:a<0,b<0,且|a|>|b|,则a<b,所以a-b<0
3.已知|a-3|+|b+1|=0,求a-b的值。

解: |a-3|+|b+1|=0,
又|a-3|≥0;|b+1|≥0
∴ a-3=0;b+1=0
∴ a=3,b=-1.
a-b=4
七、体验收获
本节课我们学习了
有理数减法的法则:减去一个数,等于加上这个数的相反数七、布置作业
教材第42页,1、2、3、6题。

相关文档
最新文档