霍尔式加速度传感器

合集下载

传感器与检测技术霍尔式传感器

传感器与检测技术霍尔式传感器

13霍尔压力变送器霍尔式传感器的测试项目描述•图13-1是我国自主研发、生产的YSH-1型霍尔压力变送器。

该变送器适用于测量对铜及铜合金不起腐蚀作用的、非结晶和非凝固的液体或蒸汽的压力及负压,由于变送器能将各种被测压力转换成0~20mV的信号,因此变送器与二次仪表配套使用可以对冶金、电力、石油、化工工业部门实现远程控制和集中检测的目的,和调节器配套使用可以实现对系统的自动调节目的。

一、霍尔效应及霍尔元件»1.霍尔效应•将金属或半导体薄片置于磁感应强度为B的磁场(磁场方向垂直与薄片)中,如图13-2所示,当有电流I通过时,在垂直于电流和磁场的方向上将产生电动势U,这种物理现H象成为霍尔效应。

该电势U称为霍尔电势。

H霍尔效应演示dabc当磁场垂直于薄片时,电子受到洛仑兹力的作用,向内侧偏移,在半导体薄片c、d方向的端面之间建立起霍尔电势。

2022/2/64•位于磁感应强度为B的磁场中,B垂直于L-W平面,沿L通电流I,N型半导体的载流体—电子将受到B产生的洛仑兹的作用力FL•在力F的作用下,电子向半导体片的一个侧面偏转,在该L侧面上形成电子的积累,而在相对的另一侧面上因缺少电子而出现等量的正电荷。

在这两个侧面上产生霍尔电场EH 。

该电场使运动电子受有电场力FE•电场力阻止电子继续向原侧面积累,当电子所受电场力和洛仑兹力相等时,电荷的积累达到动态平衡,由于存在EH,称为霍尔电势,半导体片两侧面间出现电位差UH•如果磁场与薄片法线夹角为,那么•又因R=μρ,即霍尔系数等于霍尔片材料的电阻率ρ与电子H迁移率μ的乘积。

一般金属材料载流子迁移率很高,而电阻率很小;而绝缘材料电阻率极高,而载流子迁移率极低。

故只有半导体材料适于制造霍尔片。

目前常用的霍尔元件材料有锗、硅、砷化铟、锑化铟等半导体材料2.霍尔元件•霍尔元件的结构很简单,它由霍尔片、引线和壳体组成•霍尔片是一块矩形半导体单晶薄片,引出4个引线,a、b两根引线加激励电压或电流,称为激励电极;c、d引线为霍尔输出引线,称为霍尔电极,如图13-3(b)所示。

霍尔传感器资料

霍尔传感器资料

在制动过程中,各车轮制动未出现趋于抱死 时,ABS不工作,此时制动过程与常规制动 过程完全相同。在制动过程中,当ABS电脑 判定有车轮制动趋于抱死时,就开始对相应 的控制通道进行防抱死控制,将车轮滑移率 控制在最佳范围之间,直至汽车速度很低或 停止。
在制动过程中,如果汽车为高速急转弯,当
汽车的横向加速度达到一定值时,横向加速 度开关中的一对触点就会断开,ABS电脑不 再有蓄电池电压信号,ABS电脑由此判定汽 车横向加速度已超过设定的界限值,就会对 其防抱死控制过程进行修正,使ABS更为有 效地工作
图1 HE-01霍尔转速传感器
图2 霍尔速度传感器的内部结构
❖ 利用霍尔传感器测转速的结果原理如图2所示。 它实际就是利用霍尔开关与电机轴连接的轮 片上粘有多对小磁钢(N.S极),小磁钢越 多,分辨率就越高。霍尔开关固定在小磁钢 附近,轮旋转时,磁钢经过霍尔开关集成电 路时,开关集成器就会产生一个响应的脉冲, 检测出的单位时间的脉冲数,其长度就是轮 轴的转动周期T及其转速n。
1- 2 霍尔元件 (a)外形结构示意图 (b)图形符号
霍尔传感器
霍尔电压传感器
1.2 霍尔传感器的应用
(一)、差动霍尔电路制成的霍尔齿轮传感 器,如图1所示,新一代的霍尔齿轮转速传感 器,广泛用于汽车智能发动机,作为点火定 时用的速度传感器,用于ABS(汽车防抱死
制动系统)作为车速传感器等。
n=1/T
UH
=RH
IB d
K
HIB
霍尔电势正比于激励电流及磁感应强度,其灵敏度与霍尔常数
RH成正比而与霍尔片厚度d成反比。为了提高灵敏度, 霍尔元 件常制成薄片形状。
❖ ABS(Anti-lock Braking System)防抱死 制动系统,它与传统的制动系统协同工作, 是一种安全、有效的制动辅助系统.通过安装 在车轮上的传感器发出车轮将被抱死的信号, 控制器指令调节器降低该车轮制动缸的油压, 减小制动力矩,经一定时间后,再恢复原有 的油压,不断的这样循环(每秒可达5~10 次),始终使车轮处于转动状态而又有最大 的制动力矩。

霍尔传感器简介

霍尔传感器简介

量 出 磁场 就可 确定 导线 中 电 流 的 大 小 利 用
,
如图
所示 其 中
,
,

为 工作点 开 的磁



这 一 原 理 可 以设 计制 成 霍尔 电 流传 感器 其 优
点 是不 与 被测 电路 发 生 电 接触 不 影 响被测 电
,
感 应 强 度 旧 即 为 释 放 点 关 的 磁 感应 强 度
家霍 尔 于
年 研究 载 流 导 体在 磁 场 中受 力
受检测 对 象 本 身 的磁 场 或磁 特 性 后者 是 检测 受检对 象上 人 为 设 置 的 磁场 这个 磁场 是被检
测 的信 息 的 载体 通 过它 将许 多 非 电 非磁 的
, , 、 ,
,
的性 质 时 发现 的 二 霍 尔元 件
根 据霍 尔 效 应 人 们 用 半 导 体 材 料制 成 的

物出

二 霍尔 传 感 器 的分 类
霍 尔 传感 器 分 线 性 型 霍 尔 传 感 器 和 开 关
型 霍尔传 感 器两种 一 线 性 型 霍 尔 传感 器 由霍 尔元 件 线 性

放大器 和 射 极跟 随器 组 成 它 输 出模 拟量

,
二 开关 型 霍 尔传感 器 由稳 压 器 霍尔元
,

式中
,
传感 器 霍 尔 传 感 器 在 工 业 生 产 交 通 运 输 和
日 常 生 活 中有 着 非 常 广泛 的 应用

一 霍 尔 效应 霍 尔 元件 霍尔 传 感 器


传 感器
霍尔 传感 器也 称为霍 尔集 成 电 路 其外 形 较小 如 图

霍尔传感器

霍尔传感器

3.2 霍尔传感器霍尔传感器是利用霍尔元件的霍尔效应制作的半导体磁敏传感器。

半导体磁敏传感器是指电参数按一定规律随磁性量变化的传感器,常用的磁敏传感器有霍尔传感器和磁敏电阻传感器。

除此之外还有磁敏二极管、磁敏晶体管等。

磁敏器件是利用磁场工作的,因此可以通过非接触方式检验,这种方式可以保证使用寿命长、可靠性高。

利用磁场作为媒介可以检测很多物理量,例如:位移、振动、力、转速、加速度、流量、电流、电功率等。

它不仅可以实现非接触测量,并且不从磁场中获取能量。

在很多情况下,可采用永久磁铁来产生磁场,不需要附加能量,因此这一类传感器获得极为广泛的应用。

3.2.1霍尔效应1879年霍尔发现,在通有电流的金属板上加一均强磁场,当电流方向与磁场方向垂直时,在与电流和磁场都垂直的金属板的两表面间出现电势差,这个现象称为霍尔效应,这个电势差称为霍尔电动势,其成因可用带电粒子在磁场中所受到的洛伦兹力来解释。

如图3.11所示,将金属或半导体薄片置于磁感应强度为B的磁场中,当有电流流过薄片时,电子受到洛伦兹力F的作用向一侧偏移,电子向一侧堆积形成电场,该电场对电子又产生电场力。

电子积累越多,电场力越大。

洛伦兹力的方向可用左手定则判断,它与电场力的方向恰好相反。

当两个力达到动态平衡时,在薄片的AB方向建立稳定电场,即霍尔电动势。

激励电流越大,磁场越强,电子受到的洛仑兹力也越大,霍尔电动势也就越高。

其次,薄片的厚度、半导体材料中的电子浓度等因素对霍尔电动势也有影响。

霍尔电动势(mV)的数学表达式为=(3.9)EKIBHHK[mV/(mA·T)]——霍尔元件的灵敏度系数。

式中:H霍尔电动势与输入电流I、磁感应强度B成正比,且当I或B的方向改变时,霍尔电动势的方向也随之改变。

如果磁场方向与半导体薄片不垂直,而是与其法线方向的夹角为θ,则霍尔电动势为θE=(3.10)KcosIBHH图3.11 霍尔效应(a)图形符号(b)外形图图3.12 霍尔元件3.2.2霍尔元件由于导体的霍尔效应很弱,霍尔元件都用半导体材料制作。

模块3——速度与加速度检测概述

模块3——速度与加速度检测概述
模块3 速度与元2 超声波速度检测 单元3 压电式加速度检测
模块3 速度与加速度检测
【引导语】
速度是表示物体运动快慢的程度。速度检测技术广泛应用 于机械制造、印刷、轻工、纺织、电力、医药、食品加工、交 通、气象等行业,实际速度检测包括转速、振动速度及线速度 测量,如交通领域的车辆速度检测,控制系统的传动机构、电 机、轴等转速测量,振动测试中振动线速度测量,气象预报中 的风速测量等 。 加速度是反映物体速度改变快慢的物理量,为速度相对时 间的变化率。加速度检测则应用于冲击和振动测试,或用于测 量物体的加速度,如飞机和轮船在行驶中,提供有关它们位置、 速度和运行位移,制动、加速情况等信息,以及汽车安全气囊 系统的防碰撞检测,智能手机、平板电脑、体感游戏输入设备 的倾斜、摇晃检测等。
单元1 霍尔式转速检测
【问题分析】
(2)霍尔式传感器转速检测
霍尔传感器转速测量示意图 1-输入轴;2-转盘;3-小磁铁;4-霍尔传感器
n=
60 f (r / min) z
式中:z—齿盘每圈齿数;f—频率(Hz)
单元1 霍尔式转速检测
【问题分析】
(2)霍尔式传感器转速检测
霍尔转速传感器转速测量系统
单元1 霍尔式转速检测
【知识链接】
1.霍尔元件的材料及结构特点 根据霍尔效应原理做成的器件叫做霍尔元件,霍尔元件一 般采用具有N型的锗、锑化铟和砷化铟等半导体单晶材料制成
材料 锑化铟 锗元件 砷化铟 输出特性 输出大 输出小 输出较大 温度情况 温度影响大 温度性能和线性度较好 温度的影响较小,线性度较好
单元1 霍尔式转速检测
【问题分析】
1.霍尔传感器的工作原理 半导体在外加磁场作用下,当有电流流过时,运动电子受 洛沦磁力的作用而偏移,在两侧形成电荷积累,产生电动势UH。

霍尔传感器

霍尔传感器

霍尔传感器霍尔传感器是根据霍尔效应制作的一种磁场传感器。

霍尔效应是磁电效应的一种,这一现象是霍尔(A.H.Hall,1855—1938)于1879年在研究金属的导电机构时发现的。

后来发现半导体、导电流体等也有这种效应,而半导体的霍尔效应比金属强得多,利用这现象制成的各种霍尔元件,广泛地应用于工业自动化技术、检测技术及信息处理等方面。

霍尔效应是研究半导体材料性能的基本方法。

通过霍尔效应实验测定的霍尔系数,能够判断半导体材料的导电类型、载流子浓度及载流子迁移率等重要参数。

霍尔效应在半导体薄片两端通以控制电流I,并在薄片的垂直方向施加磁感应强度为B的匀强磁场,则在垂直于电流和磁场的方向上,将产生电势差为H的霍尔电压U霍尔元件根据霍尔效应,人们用半导体材料制成的元件叫霍尔元件。

它具有对磁场敏感、结构简单、体积小、频率响应宽、输出电压变化大和使用寿命长等优点,因此,在测量、自动化、计算机和信息技术等领域得到广泛的应用。

霍尔传感器的分类霍尔传感器分为线性型霍尔传感器和开关型霍尔传感器两种。

(1)线性型霍尔传感器由霍尔元件、线性放大器和射极跟随器组成,它输出模拟量。

(2)开关型霍尔传感器由稳压器、霍尔元件、差分放大器,斯密特触发器和输出级组成,它输出数字量。

按照霍尔器件的功能可将它们分为: 霍尔线性器件和霍尔开关器件。

前者输出模拟量,后者输出数字量。

按被检测的对象的性质可将它们的应用分为:直接应用和间接应用。

前者是直接检测出受检测对象本身的磁场或磁特性,后者是检测受检对象上人为设置的磁场,用这个磁场来作被检测的信息的载体,通过它,将许多非电、非磁的物理量例如力、力矩、压力、应力、位置、位移、速度、加速度、角度、角速度、转数、转速以及工作状态发生变化的时间等,转变成电量来进行检测和控制。

用单片机测量电磁场1.硬件设计硬件电路应包括:单片机接口电路、设定值输入(工作点磁感应强度设定值)、检测信号输入、控制输出和显示等部分。

汽车电子技术-霍尔(Hall)加速度传感器解析

汽车电子技术-霍尔(Hall)加速度传感器解析

汽车电子技术:霍尔(Hall)加速度传感器解析
带有防抱死制动系统(ABS)、驱动防滑砖控制(ASR)、四轮驱动或带有
电子稳定性程序(ESP)的汽车,除了车轮传感器外都装有Hall 加速度传感器,以测量汽车行驶时的纵向和横向的加速度。

霍尔元件是一种基于霍尔效应的磁传感器,已发展成一个品种多样的磁
传感器产品族,并已得到广泛的应用。

用它们可以检测磁场及其变化,可在各
种与磁场有关的场合中使用。

霍尔器件以霍尔效应为其工作基础。

霍尔器件具有许多优点,它们的结构牢固,体积小,重量轻,寿命长,安装方便,功耗小,频率高,耐震动,不怕灰尘、油污、水汽及盐雾等的污染或腐蚀。

霍尔器件和工作磁体间的运动方式
霍尔线性器件的精度高、线性度好;霍尔开关器件无触点、无磨损、输
出波形清晰、无抖动、无回跳、位置重复精度高。

取用了各种补偿和保护措施
的霍尔器件的工作温度范围宽。

按照霍尔器件的功能可将它们分为:霍尔线性器件和霍尔开关器件。

前者输出模拟量,后者输出数字量。

在霍尔器件背面放置磁体
按被检测的对象的性质可将它们的应用分为:直接应用和间接应用。


者是直接检测出受检测对象本身的磁场或磁特性,后者是检测受检对象上人为
设置的磁场,用这个磁场来作被检测的信息的载体,通过它,将许多非电、非
磁的物理量例如力、力矩、压力、应力、位置、位移、速度、加速度、角度、。

第八章霍尔传感器-PPT课件

第八章霍尔传感器-PPT课件
路状态下工作时,可在输入回路中串人适当电 阻来补偿温度误差,其分析过程与结果同式
pptcn
温度误差及其补偿
温度误差产生原因: 霍尔元件的基片是半导体材料,因而对温
度的变化很敏感。其载流子浓度和载流子迁移 率、电阻率和霍尔系数都是温度的函数。 当温度变化时,霍尔元件的一些特性参数, 如霍尔电势、输入电阻和输出电阻等都要发生 变化,从而使霍尔式传感器产生温度误差。
恒流源及输入并联电阻温度补偿电路
pptcn
由补偿电路图知,在温度t0和t时
当温度影响完全补偿时,UH0=UHt,则 将式(9-8)~式(9-11)代入式(9-12),可得

(9-8) (9-9) (9-10) (9-11)
(9-12)
(9-13,14)
pptcn
2.选取合适的负载电阻RL 霍尔元件的输出电阻R。和霍尔电势都是温度的函数
移动距离与输出关系
pptcn
2.霍尔开关集成器件 常用的霍尔开关集成器件有UGN3000系列,
其外形与UGN3501T相同。
+
霍尔开关集成器件 (a) 内部结构框图;(b)工作特性;(c)工作电路;(d)锁定型器件工作特性
pptcn
第三节 霍尔传感器应用
霍尔电势是关于I、B、θ 三个变量的函数,即 E=kIBcosθ ,人们利用这个关系可以使其中两个变量 不变,将第三个量作为变量,或者固定其中一个量、 其余两个量都作为变量。三个变量的多种组合使得霍 尔传感器具有非常广阔的应用领域。霍尔传感器由于 结构简单、尺寸小、无触点、动态特性好、寿命长等 特点,因而得到了广泛应用。如磁感应强度、电流、 电功率等参数的检测都可以选用霍尔器件。它特别适 合于大电流、微小气隙中的磁感应强度、高梯度磁场 参数的测量。此外,也可用于位移、加速度、转速等 参数的测量以及自动控制。归纳起来,霍尔传感器主 要有下列三个方面的用途:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖南科技大学
课程设计
题目霍尔式加速度传感器
作者伍文斌
学院机电工程学院
专业测控技术与仪器
学号1403030104
指导教师杨淑仪、凌启辉
二零一七年六月二十日
目录
摘要 (3)
第一章霍尔传感器基本原理 (4)
1.1霍尔效应 (4)
1.2霍尔元件 (5)
第二章加速度传感器设计方案 (6)
2.1设计理念 (6)
2.2设计电路图 (6)
2.3电路图解析 (7)
第三章传感器结构参数 (10)
第四章参考文献
摘要
霍尔传感器是基于霍效应而将被测量转化成电动势输出的一种传感器。

霍尔元件已发展成一个品种多样的磁传感器产品簇,并且得到广泛的应用。

霍尔器件是一种磁传感器,用它可以检测磁场及其变化,可以在各种与磁有关的场合中使用。

霍尔传感器以霍尔效应为其工作原理。

本文的加速度传感器属于霍尔开关器件,当物体移动时,若使其表面带上一定磁场,当其接近传感器时,会输出高电平,通过计算一定时间内的转的圈数(如汽车轮胎的转动圈数),可以得到物体运动的加速度(如汽车行驶的加速度)。

霍尔开关器件无触点、无磨损、输出波形清晰、无抖动、无回跳、位置重复精度高。

取用了各种补偿和保护措施的霍尔器件的工作温度范围宽等特点,因此应用广泛。

关键字:霍尔效应;霍尔开关器件;转动;加速度
第一章霍尔传感器基本原理
1.1霍尔效应
所谓霍尔效应,是指磁场作用于载流金属导体、半导体中的载流子时,产生横向电位差的物理现象。

金属的霍尔效应是1879年被美国物理学家霍尔发现的。

当电流通过金属箔片时,若在垂直于电流的方向施加磁场,则金属箔片两侧面会出现横向电位差。

半导体中的霍尔效应比金属箔片中更为明显,而铁磁金属在居里温度以下将呈现极强的霍尔效应。

利用霍尔效应可以设计制成多种传感器。

霍尔电位差UH的基本关系为
UH=RHIB/d (18)
RH=1/nq(金属)(19)
式中RH——霍尔系数:
n——载流子浓度或自由电子浓度;
q——电子电量;
I——通过的电流;
B——垂直于I的磁感应强度;
d——导体的厚度。

应该指出:霍尔效应对于一切导电体(导体、金属半导体)都成立。

图1 霍尔效应原理图
1.2霍尔元件
霍尔元件是应用霍尔效应的半导体。

一般用于电机中测定转子转速,如录象机的磁鼓,电脑中的散热风扇等;是一种基于霍尔效应的磁传感器,已发展成一个品种多样的磁传感器产品族,并已得到广泛的应用。

霍尔元件具有许多优点,它们的结构牢固,体积小,重量轻,寿命长,安装方便,功耗小,频率高(可达1MHZ),耐震动,不怕灰尘、油污、水汽及盐雾等的污染或腐蚀。

图2 霍尔元件示意图
1.3霍尔元件基本电路
第二章 加速度传感器设计方案
2.1设计理念
当有磁场靠近霍尔元件时,霍尔元件将产生电压,撤去磁场,又将恢复低电平。

当汽车在马路上行驶时,其轮胎会一起转动,只要在转轴的圆周上粘上一粒磁钢,让霍尔开关靠近磁钢,就有信号输出,转轴旋转时,就会不断地产生脉冲信号输出。

如果在圆周上粘上多粒磁钢,可以实现旋转一周,获得多个脉冲输出。

在粘磁钢时要注意,霍尔传感器对磁场方向敏感,粘之前可以先手动接近一下传感器,如果没有信号输出,可以换一个方向再试。

轮胎转动时,霍尔元件将产生脉冲,由此可得到固定时间内汽车轮胎的转动次数N 和转速n,汽车行驶速度nr r v πω2==,以及汽车加速度t v a ∆∆=/。

为提高测量的灵敏度,在轮胎上等距离的安装多个永久磁铁。

2.2设计电路图
其中霍尔元件用其等效电路代替(其原理见2.3)
图3 电路图
2.3电路图解析
a霍尔元件的零位误差补偿电路
所谓零位误差,就是指在无外加磁场或无控制电流的情况下,霍尔元件产生输出电压并由此而产生的误差称为零位误差。

它主要表现为以下几种具体形式:(1)不等位电动势(2)寄生直流电势(3)感应零电势(4)自激场零电势。

在实验中发现,对于霍尔元件来说,不等位电动势与不等位电阻是一致的,因此,可以将霍尔元件等效为一个电桥,并通过调整其电阻的方法来进行补偿图4为霍尔元件的结构,其中A、B为控制电极,C、D为霍尔电极,在极间分布的电阻用R1、R2、R3、R4表示,等效电路如图5所示。

在理想情况下,R1=R2=R3=R4,即可取得零位电动势为零(或零位电阻为零),从而消除不等位电动势。

实际上,若存在零位电动势,则说明此4个电阻不完全相等即电桥不平衡。

为使其达到平衡,可在阻值较大的桥臂上并联可调电阻RP或在两个臂上同时并联电阻RP和R。

理论上可采用三种调整方案,第一种方案为单桥臂挂可调电阻,如图6所示;第二和第三种方案为双桥臂挂可调电阻,如图7、图8所示。

本次设计以图8所示电路作为霍尔元件的补偿电路,不但电路简单,而且测量精度高、容易操作,可作为霍尔元件补偿电路的首选。

b霍尔元件的温度补偿电路
霍尔元件受温度的影响较大,必须进行温度补偿,常见的温度补偿有(1)采用恒流源供
R的阻值(3)采用恒压源和输入回路串联电和输入回路并联电阻(2)合理选取负载电阻L
电阻(4)采用温度补偿元件(5)桥路补偿电路。

本次设计采用恒流源供电和输入回路并联电阻进行温度补偿。

图9 补偿电路
C放大电路
本次设计使用UA741集成放大器进行放大。

图10 放大电路
第三章传感器结构参数
图11
v .. . ..
第四章参考文献
[1]唐文彦.传感器.第5版[M].北京:机械工业出版社.2014,1:83-87
[2]李醒飞.测控电路.第5版[M].北京:机械工业出版社.2006,1.
[3]徐恕宏.传感器原理及其设计基础[M].北京:机械工业出版社.1989.
[4]李科杰.新编传感器技术手册[M].国防工业出版社.2002,1.
[5]刘迎春,叶湘滨.传感器原理设计与应用[M].国防科技大学出版社.2004.
[6]丁镇生.传感器及传感器技术应用[M].电子工业出版社.1997,10.
. . . 资料. .。

相关文档
最新文档